PERFORCE

P4Java APl User Guide

2017.1
April 2017

P4Java APl User Guide
2017.1

April 2017

Copyright © 2009-2017 Perforce Software.

All rights reserved.

Perforce software and documentation is available from http://www.perforce.com/. You can download and use Perforce programs, but you
can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell it, or sell any
documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration Regulations,
the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination restrictions. Licensee shall not
permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or otherwise in violation of any U.S. export
control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and support, along
with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce software is listed in License Statements on page 17.

Table of Contents

P4Java PrOgrammingccceceeuveiererenensinssssissessessssssssanes 1
ADOUL PAJAVA ..ttt et ettt e e e et e e e eaaaas 1
System Requirementsuuuuuiiiiiiiiiiiiiiiiiiiiiii e 1
INSTAllAtiON ...evviiiiiiiiiiiiiii 1
Documentationcooooeiiiiiiiiiii e 1
Sample PIOGIAINS ...oooiviiiiiiiiiiii i 2
Java package 10admMapcoeiiiiiiiiiiiiiiiiiiiii 2
Basic P4Java usage model 2
Typical usage Patternscooooiiiiiiiiiiiiii 4

The IServer and IClient interfaces and the ServerFactory classccccccoviiiiiiiiiinins 4
Exception and error handlingcccoocoiiiiiiiiiiiii 6
Perforce file operationsccccooiiii 7
Summary vs. Full Objectscccccciiiiiiiiiiiiiiiii 8
Advanced USAZE NOESoiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 9
Perforce server addresses, URIs, and propertiesccccccuvvvviviiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnn, 9

SSL connection SUPPOTtcoooiiiiiiiiiiiiiiiii 10

The IServerResource Interfacecccccoiiiiiiiiiiiiiiiiiiii i 10
P4Java Propertiesccoiiiiiiiiiiiiiiiiii i 11
Character Set SUPPOTTcccuuiiiiiiiiiiiiiiii e 12
Error Message Localizationcooooiiiiiiiiiiiiiii, 12
Logging and tracingccccccccoiiiiiiii 12
Standard implementation classescooooiiiiiiiiiiiiiii 13

I/O and file Metadata ISSUES ..uueeenneeeeeeee et et e e eens 13
TRIEAAING ISSUES «...eeeiiiiiiieee ettt e e ettt e e e e e e eeeees 13
AUthenticationooiiiiiiiiiiiiii i 14
Other INOESooiiiiiiiiiiii e 14
LICENSE STALEMENTS .vvovvvvvervcrriricerisisiiss st sssssssssss s sssss s ssassssssaes 17

P4Java API User Guide

il

v

P4Java API User Guide

P4Java Programming

About P4Java

Perforce Software’s P4Java is a Java API that enables applications to access Perforce’s enterprise
version management system in a “Java natural” and Java-native way. P4Java presents Perforce services
and Perforce-managed resources and files as first-class Java interfaces, classes, methods, and objects,
rather than as simple strings or command-line-style functions. This approach makes it easier to
integrate the API into Java applications and tools, and is particularly useful for integrating Perforce
into model-view-controller (MVC) contexts and workflows.

P4Java is aimed mostly at the following types of Java development:
e Standalone applications that need to access Perforce services from within the application

e Plug-ins for Java tools such as Eclipse, ant, Mylyn, Cruise Control, and so on, that need to
communicate with Perforce servers

* J2EE applications, where P4Java can be embedded within a servlet and/or presented as a web
service or an AJAX binding for client-side use

This document provides a brief guide to installing and using P4Java, and assumes a basic knowledge
of both Java (JDK 5 or later) and Perforce.

System Requirements

P4Java assumes the presence of a JDK 6 or later environment, but will work against a JDK 5
installation, with some limitations.

Due to current US export control restrictions for some countries, the standard JDK package only comes
with 128 bit encryption level cyphers. In order to use P4Java to connect to an SSL-enabled Perforce
server, those living in eligible countries may download the unlimited strength JCE (Java Cryptography
Extension) package and replace the current default cryptography jar files with the unlimited strength
files.

For details, refer to the P4Java release notes.

Installation

Download the P4Java ZIP file from the Perforce web site, extract the enclosed JARs and other files to
a temporary directory, then install the p4java.jar JAR file into a location that is suitable for use by
compilers, JVMs, and other development tools or applications.

Documentation

Included with the P4Java ZIP file is a directory of documentation that contains this document and a
full Javadoc document set for all public interfaces and classes.

The Javadoc document set can be found at:

P4Java API User Guide 1

P4Java Programming

http:/ /www.perforce.com / perforce/r17.1/manuals/p4java-javadoc/index.html

Sample

programs

Sample P4Java applications are available in Perforce’s public depot.

To access the public depot, set P4PORT to public.perforce.com:1666 and add the depot path //guest/
perforce_software/p4java/samples/basic/... to your client workspace view.

These samples are used throughout this document to illustrate common usage patterns and simple
code snippets, and can also be used as the basis for further user experiments with P4Java development.

Java package roadmap

The P4Java API contains the following main public packages:

com.perforce.p4java: the main P4Java package hierarchy root. Contains a small handful of API-
wide definitions and classes for activities like logging, tracing, and package metadata.

com.perforce.p4java.server: contains the server factory class and Perforce IServer server interface,
and associated classes and interfaces related to the IServer definition. This package enables
participating applications to connect to Perforce servers and start interacting with Perforce services
through the IServer interface.

com.perforce.p4java.client: defines the Perforce IClient client interface and associated classes
and support definitions. Participating applications typically use the IClient interface to access
Perforce client services such as syncing and adding, editing, or deleting files.

com.perforce.p4java.exception: defines the main publicly-visible exceptions likely to be
encountered in general use, and some specialized and rarely-encountered errors.

com.perforce.p4java.core: contains interface definitions for major Perforce-managed objects such
as changelists, jobs, and clients.

com.perforce.p4java.core.file: contains the main Perforce IFileSpec interface for accessing and
defining the various types of files that Perforce manages (for example, depot, local, and client),
along with associated definitions.

com.perforce.p4java.impl.generic: root package for “generic” or standard implementations of
many useful Perforce client, changelist, job, and similar interfaces. These implementations are
available for use by participating applications, but are not mandatory.

Basic P4Java usage model

The following basic model for P4Java reflects typical Perforce usage:

1.

A Java application uses the P4Java ServerFactory class to obtain a IServer interface onto a specific
Perforce server at a known network address and port, and connects to this Perforce server through
the IServer interface that is returned from the factory.

P4Java API User Guide

http://www.perforce.com/perforce/r17.1/manuals/p4java-javadoc/index.html

P4Java Programming

2. The application optionally logs in to the Perforce server through the IServer's login and associated
methods.

3. The application obtains a suitable IClient interface into a Perforce client workspace through the
IServer interface’s “get client” method.

4. The application syncs the Perforce client workspace through the IClient interface’s sync method.

5. The application gets and processes (Java java.util.List) lists of depot, client, and local files in (or
associated with) the Perforce client workspace, through the IServer and IClient interfaces.

6. The application adds, edits, or deletes files in the local Perforce client workspace using the IClient
interface. These files are added to the default or a numbered Perforce changelist represented by
one or more IChangeList interfaces, which are obtained through the IClient or IServer interfaces.
(There are often several ways to obtain a specific type of object depending on context, but these
tend to be convenience methods rather than fundamental.)

7. The application submits a specific changelist using the associated IChangelList interface. This
submission can be linked with one or more Perforce jobs, represented by the IJob interface.

8. The application can switch between Perforce workspaces, browse Perforce jobs and changelists, log
in as a different user, and add, edit, or delete files, using the relevant IServer or IClient interfaces.

9. To disconnect from a Perforce server, the application calls the disconnect method on the IServer
interface.

This usage model relies heavily on representing all significant Perforce objects — clients, servers,
changelists, jobs, files, revisions, labels, branches, and so on — as first-class Java interfaces, classes,
or enums, and, where appropriate, returning these objects as ordered Java lists so that the developer
can iterate across the results using typical Java iterator patterns. P4Java uses JDK 5 (and later)
parameterized types for these lists.

P4Java represents most recoverable usage errors and Perforce errors as Java exceptions that are
subclassed out of the main P4JException class, and thrown from nearly every significant IServer and
IClient interface method (and from subsidiary and associated class methods). Most such errors are
connection errors (caused by a network or connectivity issue), access errors (caused by permissions or
authentication issues), or request errors (caused by the Perforce server detecting a badly-constructed
request or non-existent file spec). P4Java applications catch and recover from these errors in standard
ways, as discussed in “Exception and error handling” on page 6.

Exceptions are not used in methods that return multiple files in lists, because the server typically
interpolates errors, informational messages, and valid file specs in the same returns. P4Java provides
a single method call as a standard way of identifying individual returns in the (often very long) list of
returns, discussed in detail in “Perforce file operations” on page 7.

In general, the methods and options available on the various P4Java API interfaces map to the basic
Perforce server commands (or the familiar p4 command line equivalent), but there are exceptions. Not
all Perforce server commands are available through the P4Java APL

Unlike the Perforce C++ API or the p4 command-line client, P4Java is not intended for direct end-
user interaction. Rather, P4Java is intended to be embedded in GUI or command-line applications to

P4Java API User Guide 3

P4Java Programming

provide Perforce client / server communications, and P4Java assumes that the surrounding context
supplies the results of user interaction directly to P4Java methods as Java objects. Consequently,

many of the environment variables used by command-line client users (such as PAPORT or P4USER) are
deliberately ignored by P4Java. The values they usually represent must be explicitly set by appropriate
IServer methods or other methods.

The standard default P4Java server and client implementations are basically thread-safe. To avoid
deadlock and blocking, refer to “Threading issues” on page 13.

Typical usage patterns

This section briefly describes typical usage patterns and provides a starting point for developers using
P4Java for the first time. Many examples below are snippets from (or refer to) the P4Java sample
programs available in the Perforce public depot.

To access the public depot, set P4PORT to public.perforce.com:1666 and add the depot path //guest/
perforce_software/p4java/samples/basic/... to your client workspace view.

The IServer and IClient interfaces and the ServerFactory class

The com.perforce.p4java.server.IServer interface represents a specific Perforce server in

the P4Java API, with methods to access typical Perforce server services. Each instance of a

IServer interface is associated with a Perforce server running at a specified location (network
address and port), and each IServer instance is obtained from the P4Java server factory,
com.perforce.p4java.server.ServerFactory, by passing it a suitable server URI and optional Java
properties.

The snippet below is from the ServerFactoryDemo class in the sample package, and shows a very
simple way to prompt the user for a Perforce server URI, connect to the server at the URI, and get basic
information about that server. This is the basic “Hello World!” P4Java application, and works like

the p4 info command (with suitable attention being paid to formatting details with the formatInfo
method below).

4 P4Java API User Guide

P4Java Programming

BufferedReader lineReader = new BufferedReader(
new InputStreamReader(System.in));
try {
for (5;) {
System.out.print(PROMPT);
String serverUriString = lineReader.readLine();

if serverUriString == null) || serverUriString.equalsIgnoreCase("quit" {
break;

} else {
IServer server = ServerFactory.getServer(serverUriString, null);
server.connect();

IServerInfo info = server.getServerInfo();
if (info != null) {

System.out.println(
"Info from Perforce server at URI '"
+ serverUriString + "':");
System.out.println(formatInfo(info));
}
if (server != null) {
server.disconnect();
}

}
}

} catch (RequestException rexc) {
System.err.println(rexc.getDisplayString());
rexc.printStackTrace();

} catch (P4JavaException exc) {
exc.printStackTrace();

} catch (IOException ioexc) {
ioexc.printStackTrace();

} catch (URISyntaxException e) {
e.printStackTrace();

}

Multiple IServer objects can represent the same physical Perforce server, and this approach is
recommended for heavyweight usage and for multi-threaded applications.

The Java properties parameter passed to the factory in the first example is null, but you can
pass in a variety of generic and implementation-specific values as described in “Character Set
Support” on page 12.

Perforce client workspaces are represented by the com.perforce.p4java.client.IClient interface,
which can be used to issue Perforce client workspace-related commands such as sync commands,
file add /delete / edit commands, and so on. A IClient interface is typically obtained from an
IServer interface using the getClient() method, and is associated with the IServer using the
setCurrentClient() method as illustrated in the ClientUsageDemo snippet below:

P4Java API User Guide

P4Java Programming

IServer server = null;
try {
server = getServer(null);
server.setUserName(userName);
server.login(password);
IClient client = server.getClient(clientName);
if (client != null) {
server.setCurrentClient(client);
// use the client in whatever way needed...
}
} catch (Exception exc) {
// handle errors...

}

Note also the use of the setUserName and login methods on the server to establish the current user and
log them in, respectively.

Note also, that unlike the p4 command line client, there are no defaults for user and workspace. Your
application must explicitly associate a workspace (an IClient client object) and user with the server
using the IServer.getClient and IServer.setCurrentClient methods.

Exception and error handling

P4Java uses a small set of Java exceptions to signal errors that have occurred in either the Perforce
server as a result of issuing a specific command to the server, or in the P4Java plumbing in
response to things like TCP/IP connection errors or system configuration issues. (These exceptions
are not used to signal file operation problems at the individual file level — see “Perforce file
operations” on page 7 for details about individual file error handling.)

In general, P4Java exceptions are rooted in two different classes: the P4JavaException classes are
intended for “normal” (that is, recoverable) errors that occur as the result of things like missing client
files, a broken server connection, or an inappropriate command option; the P4JavaError classes

are intended for more serious errors that are unlikely to be recoverable, including unintended null
pointers or P4Java-internal errors. The P4JavaException class hierarchy is rooted in the normal
java.lang.Exception tree, and any such exception is always declared in relevant method “throws”
clauses; the P4JavaError classes, however, are rooted in java.lang.Error, and consequently do not
need to be declared or explicitly caught. This allows a developer to catch all such “P4JavaError’s, for
example, in an outer loop, but to process “normal” “P4JavaException’s in inner blocks and loops as
they occur.

Typically, application code should report a P4JavaError exception and then terminate either itself or
whatever it was doing as soon as possible, as this exception indicates a serious error within P4Java.
P4JavaException handling is more fine-grained and nuanced: A P4JavaException almost always
signals a recoverable (or potentially-recoverable) error, and should be caught individually or at

the class level. The following snippet represents a common pattern for P4Java error and exception
handling around major functional blocks or processing loops:

P4Java API User Guide

P4Java Programming

try {

// issue one or more server or client commands...
} catch (P4JavaError err) {

panic(err); // causes app to exit after printing message to stderr...
} catch (RequestException rexc) {

// process server-side Perforce error...
} catch (ConnectionException cexc) {

// process Perforce connection exception...
} catch (P4JavaException exc) {

// catchall...
} catch (Exception exc) {

// Other-exception catchall...

}

Note the way RequestException and ConnectionException events are handled separately:
RequestException exceptions are almost always thrown in response to a Perforce server error message
and therefore include a Perforce severity and generic code that can be used or displayed (other
P4JavaExceptions do not usually contain these), and ConnectionExceptions should normally result in
the enclosing app explicitly closing or at least re-trying the associated connection, as processing can no
longer continue on the current Perforce connection.

Perforce file operations

To define common Perforce-managed file attributes and options, P4Java uses the
com.perforce.p4java.core.file.IFileSpec interface. Attributes like revisions, dates, actions, and so
on, are also defined in the core.file package, along with some key helper classes and methods. In
general, most Perforce file-related methods are available on the IServer and IClient interfaces, and
might also be available on other interfaces such as the IChangeList interface.

Because Perforce file operations can typically run to a conclusion even with errors or warnings caused
by incoming arguments, and because the server usually interpolates error and informational messages
in the list of file action results being returned, most file-related methods do not throw exceptions when
a request error is encountered. Instead, the file-related methods return a Java list of results, which

can be scanned for errors, warnings, informational messages, and the successful file specs normally
returned by the server. P4Java provides helper classes and methods to detect these errors.

P4Java file methods are also designed to be composable: the valid output of one file method (for
instance, IServer.getDepotFilelist) can usually be passed directly to another file method (such as
IClient.editFiles) as a parameter. This approach can be very convenient in complex contexts such as
ant or Eclipse plug-ins, which perform extensive file list processing.

The snippet below, from the sample ListFilesDemo class, illustrates a very common pattern used when
retrieving a list of files (in this case from the getDepotFiles method):

P4Java API User Guide 7

P4Java Programming

List<IFileSpec> filelist = server.getDepotFiles(
FileSpecBuilder.makeFileSpecList(new String[] {"//..."}), false);
if (fileList != null) {
for (IFileSpec fileSpec : filelist) {
if (fileSpec != null) {
if (fileSpec.getOpStatus() == FileSpecOpStatus.VALID) {
System.out.println(formatFileSpec(fileSpec));
} else {
System.err.println(fileSpec.getStatusMessage());
}
}
}
}

Note in particular the use of the FileSpecBuilder.makeFileSpecList helper method that converts a
String array to a list of IFileSpec objects; note also the formatFileSpec method referenced above; this
simply prints the depot path of the returned IFileSpec object if it’s valid.

Summary vs. Full Objects

The 2009.2 release of P4Java introduced the notion of “summary” and “full” representations of objects
on a Perforce server. In many cases the Perforce server only returns summaries of objects that it’s been
asked to list. For example, if you issue a p4 clients command to a server, what comes back is a list of
client metadata for known client workspaces, but not the associated workspace views. For things like
changelists, jobs, branches, and so on, to obtain the full version of the Perforce object (such as a specific
client workspace), you typically do a p4 client -o with the workspace’s name.

Similarly, P4Java distinguishes between the summary objects returned from the main list methods
(such as IServer.getClients()) and the full objects returned from individual retrieval methods (such
as IServer.getClient()).

The snippet below, edited from the ListClientDemo sample app, illustrates a typical usage pattern for
summary and full object retrieval:

P4Java API User Guide

P4Java Programming

try {
IServer server = getServer(null);
server.setUserName(userName);
server.login(password);
List<IClientSummary> clientlist = server.getClients(
userName, null, 0);
if (clientList != null) {
for (IClientSummary clientSummary : clientlList) {
// NOTE: list returns client summaries only; need to get
// the full client to get the view:
IClient client = server.getClient(clientSummary);
System.out.println(client.getName() + " "
+ client.getDescription().trim() +
+ client.getRoot());
ClientView clientView = client.getClientView();
if (clientView != null) {
for (IClientViewMapping viewMapping : clientView) {
System.out.println("\t\t" + viewMapping);
}
}
}
}

} catch (RequestException rexc) {
System.err.println(rexc.getDisplayString());
rexc.printStackTrace();

} catch (P4JavaException exc) {
exc.printStackTrace();

} catch (URISyntaxException e) {
e.printStackTrace();

}

Note that only clients owned by username are returned, and that in order to print the associated client
workspace view for each retrieved summary client workspace, we get the full client object. This is
more common in cases where a user might iterate across a list of all workspaces known to the Perforce
server in order to find a specific client workspace, then retrieve that client (and only that client)
workspace in full.

Advanced usage notes
The following notes provide guidelines for developers using features beyond the basic usage model.

Perforce server addresses, URIs, and properties

P4Java uses a URI string format to specify the network location of target Perforce servers. This URI
string format is described in detail in the server factory documentation, but it always includes at least
the server’s hostname and port number, and a scheme part that indicates a P4Java connection (for
example, p4java://localhost:1666). Note that:

* P4Java does not obtain default values from the execution environment or other sources for any part
of the URI string. All non-optional parts of the URI must be filled in. (For example, P4Java does not
attempt to retrieve the value of P4PORT from a Unix or Linux environment to complete a URL with a
missing port number.)

P4Java API User Guide 9

P4Java Programming

e P4Java’s factory methods allow you to pass properties into the IServer object in the server’s URI
string as query parts that override any properties that are passed in through the normal properties
parameter in the server factory getServer method. This feature is somewhat limited in that it doesn’t
currently implement URI escape sequence parsing in the query string, but it can be very convenient
for properties passing. See “P4Java properties” on page 11 for an explanation.

SSL connection support

The Perforce Server at release 2012.1 or higher supports 256-bit SSL connections and trust
establishment by accepting the fingerprint of the SSL certificate’s public key.

Due to current US export control restrictions for some countries, the standard JDK package only comes
with 128 bit encryption level cyphers. In order to use P4Java to connect to an SSL-enabled Perforce
server, those living in eligible countries may download the unlimited strength JCE (Java Cryptography
Extension) package and replace the current default cryptography jar files with the unlimited strength
files.

To make a secure connection using P4Java, append ssl to the end of the P4Java protocol (for example,
p4javassl://localhost:1667). For a new connection or a key change, you must also (re)establish trust
using the IOptionsServer's addTrust method. For example:

// Create a P4Java SSL connection to a secure Perforce server
try {
String serverUri = "pajavassl://localhost:1667";
Properties props = null;
IOptionsServer server = ServerFactory.getOptionsServer(serverUri,
props);

// assume a new first time connection
server.addTrust(new TrustOptions().setAutoAccept(true));

// if all goes well...

IServerInfo serverInfo = server.getServerInfo();
} catch (P4JavaException e) {

// process P4lava exception
} catch (Exception e) {

// process other exception

The IServerResource Interface

P4Java represents Perforce server objects (such as changelists, branch mappings, job specs, and so
on) to the end user through associated interfaces (such as IChangelist, IBranchSpec, and so on) onto
objects within P4Java that mirror or proxy the server-side originals. This means that over time, the
P4Java-internal versions of the objects may get out of date with the server originals, or the server
originals may need to be updated with corresponding changes made to the P4Java versions.

P4Java’s IServerResource interface is designed to support such proxying and to allow refreshes from
the server or updates to the server as necessary. Virtually all useful P4Java objects or interfaces that
proxy or represent Perforce server-side objects extend the IServerResource interface, and unless

10

P4Java API User Guide

P4Java Programming

otherwise noted in the individual Javadoc comments, the interface methods can be used to update
server- and client-side versions accordingly.

P4Java properties

P4Java uses Java properties to set various operational values for specific IServer instances and/or for
P4Java as a whole. These properties are typically used for things like preferred temporary file directory
locations, application version and name information for Perforce server usage, and the location of a
suitable Perforce authentication tickets file (see “Authentication” on page 14 for details). A full list

of publicly-visible properties (with default values) is given in the PropertyDefs Javadoc.

Properties intended for P4Java use can have “long form” or “short form” names.

Long form names are canonical, and are always prefixed by the string represented by
PropertyDefs.P4JAVA_PROP_KEY PREFIX (normally com.perforce.p4java., for example,
com.perforce.p4java.userName). Short form names are the same string without the standard prefix
(for example, userName). Use long form names when there’s any chance of conflict with system or other
properties; short form names, on the other hand, are convenient for putting property values onto URI
strings as long as you know the property name won’t collide with another property name in use by the
app or system.

Properties can be passed to P4Java in several ways:

¢ As properties originally passed to the JVM using the usual Java JVM and system properties
mechanisms.

Passing properties in this way is useful for fundamental P4Java-wide values that do not change over
the lifetime of the P4Java invocation and that do not differ from one IServer instance to another. A
typical example of such a property is the com.perforce.p4java.tmpDir property, which is used by
P4Java to get the name of the temporary directory to be used for P4Java tmp files (and which defaults
to java.io.tmpdir if not given).

¢ As properties passed in to an individual IServer instance through the server factory getServer
method’s properties parameter.

Properties passed in this way override properties passed in through the JVM. This mechanism is
useful for any properties that are (or may be) server-specific, such as userName, clientName, and so
on.

¢ As properties passed in through the server factory’s URI string parameter query string.
Properties passed in this way override properties passed in through the properties parameter and
the JVM. This mechanism is useful for ad hoc property-passing and/or overriding less-changeable

properties passed in through the properties parameter.

The following code shows an example of passing properties to a IServer instance using the URI string
query mechanism:

IServer server = ServerFactory.getServer(
"p4java://test:16662userName=test12&clientName=test12 client&"
+ "autoConnect=y", null);

P4Java API User Guide 11

P4Java Programming

Assuming no errors occur along the way, this code returns a IServer object connected to the Perforce
server host test on port 1666 with the Perforce client name test12_client and Perforce user name
test12 logged in automatically (note that the login only works if the underlying authentication
succeeds — see “Authentication” on page 14 for details.

Character Set Support

Character set support is only enabled for Unicode-enabled Perforce servers. In this mode, P4Java
differentiates between Perforce file content character sets (that is, the encoding used to read or write
a file’s contents) and the character sets used for Perforce file names, job specs, changelist descriptions,
and so on.

This distinction is made due to the way Java handles strings and basic I/O: in general, while file
content character set encodings need to be preserved so that the end results written to or read from
the local disk are properly encoded, P4Java does not need to know about file metadata or other

string value encodings. Because Perforce servers store and transmit all such metadata and strings in
normalized UTF-8 form, and because all Java strings are inherently encoded in UTF-16, the encoding
to and from non-UTF-16 character sets (such as shiftjis) is done externally from P4Java (usually by
the surrounding app), and is not influenced by or implemented in P4Java itself. This means that the
character set passed to the IServer.setCharsetName method is only used for translation of file content.
Everything else, including all file names, job specs, changelist descriptions, and so on, is encoded in the
Java-native Java string encoding UTF-16 (and may or may not need to be translated out of that coding
to something like shiftjis or winansi).

P4Java supports file content operations on files encoded in most of the character sets supported by

the Perforce server, but not all. The list of supported Perforce file content charsets is available to
calling programs through the PerforceCharsets.getknownCharsets method. If you attempt to set

a IServer object’s charset to a charset not supported by both the Perforce server and the local JDK
installation, you will get an appropriate exception; similarly, if you try to (for example) sync a file with
an unsupported character set encoding, you will also get an exception.

The Perforce server uses non-standard names for several standard character sets. P4Java also uses the
Perforce version of the character set, rather than the standard name.

Error Message Localization

Error messages originating from the Perforce server are localized if the Perforce server is localized;
error messages originating in P4Java itself are not currently localized. P4Java’s internal error messages
aren’t intended for end-user consumption as-is; your applications should process such errors into
localized versions that are presentable to end users.

Logging and tracing

P4Java includes a simple logging callback feature, documented in the ILogCallback Javadoc page, that
enables consumers to log P4Java-internal errors, warnings, informational messages, exceptions, and so
on. Logging is enabled or disabled on a P4Java-wide basis, not on a per-connection or per-server basis.

The logging feature performs no message formatting or packaging. You can put the log message
through the surrounding application context’s logger as required. In general, your applications should
log all error and exception messages. Informational messages, statistics, and warning messages do not
need to be logged unless you are working with Perforce support to debug an issue.

P4Java API User Guide

P4Java Programming

Standard implementation classes

The com.perforce.p4java.impl.generic package is the root for a fairly large set of standard
implementation classes such as Job, Changelist, and so on. These implementation classes are used
internally by P4Java, and while usage is not mandatory, you are encouraged to use them as well. This
is especially useful if you wish to extend standard P4Java functionality by, for example, adding audit
or authentication methods to standard classes.

1/0 and file metadata issues

The quality of P4Java’s network and file I/ O in real-world usage is strongly affected by the quality of
implementation of the underlying Java NIO packages. Java’s handling of file metadata also affects I/O.
Although JDK 6 is an improvement over JDK 5, it can be difficult to manipulate file type and metadata
(such as permissions, access/modification time, symlinks, and so on) in pure Java. These are abilities
that C programmers take for granted. Issues often arise from JVM limitations such as an inability to set
read-only files as writable, reset modification times, observe Unix and Linux umask values, and so on.

Because of these issues, P4Java has a file metadata helper callback scheme, defined in
com.perforce.p4java.impl.generic.sys.ISystemFileCommandsHelper. This approach enables users to
register their own file metadata class helper (typically using something like an Eclipse file helper or a
set of native methods) with the server factory, to help in cases where the JDK is not sufficient. See the
relevant ISystemFileCommandsHelper Javadoc for details.

Threading issues

P4Java is inherently thread-safe when used properly. The following best practices can help to ensure
that users do not encounter thread-related problems:

e P4Java’s IServer object is partially thread-safe. The only state preserved in the underlying
implementation classes is the Perforce client that is associated with the server, and the server’s
authentication state.

* You can have multiple threads working against a single IServer object simultaneously, but note
that changing authentication state (login state, password, user name, and so on) or the client that is
associated with the server can have unpredictable results on long-running commands that are still
running against that server object. You should ensure that changing these attributes only happens
when other commands are not in progress with the particular server object.

¢ P4Java makes no guarantees about the order of commands sent to the Perforce server by your
applications. You must ensure that any required ordering is enforced.

¢ Using a large numbers of threads against a single IServer object can impose a heavy load on the
JVM and the corresponding server. To control load, create your own logic for limiting thread usage.
Be certain that your use of threads does not cause deadlock or blocking. Consider using a single
IServer object for each thread.

¢ P4Java offers a number of useful callbacks for things like logging, file helpers, progress monitoring,
and so on. These callbacks are performed within a live thread context. Ensure that any callbacks that
you register or use do not cause blocking or deadlocks.

¢ To obtain the best resource and memory allocation strategies for your specific threading needs,
experiment with JVM invocation parameters. Garbage collection and memory allocation strategies

P4Java API User Guide 13

P4Java Programming

can make quite a difference in raw threading throughput and latency, but often indirectly and
unpredictably.

Authentication

P4Java implements both the Perforce tickets-based authentication and the Perforce single sign on (SSO)
feature. Both types of authentication are described in detail in the P4Java Javadoc, but some P4Java-
specific issues to note include:

P4Java manages a p4 tickets file in a matter similar to that of the P4 command line (under normal
circumstances, the two can share the same tickets file). When a ticket value is requested by the
Perforce server and the current ticket value in the associated IServer object is not set, an attempt

is made to retrieve the ticket out of the p4 tickets file. If found, the ticket is stored on the IServer
object and used as the Perforce authentication ticket.

A successful login causes the ticket value to be added or updated in the tickets file, and a logout
causes the current ticket value in the p4 tickets file to be removed. The IServer object’s ticket
should be set to null to cause a re-reading of the ticket value from the p4 tickets file.

The p4 tickets file is usually stored in the same place the p4 command line stores it, but the
PropertyDefs.TICKET_PATH_KEY property can be used to specify an alternate tickets file.

P4Java implements Perforce’s SSO scheme using a callback interface described in the ISS0Callback
Javadoc (in the package com.perforce.p4java.server.callback). Ensure that the callback doesn’t
block, and that it adheres to the expected format of the associated Perforce server.

Other Notes

As documented in the main Perforce documentation, Perforce form triggers can cause additional
output on form commands such as “change” or “client”, even when the trigger succeeds. This
trigger output is available through the P4Java command callback feature, but note that there is
currently no way to differentiate trigger output from normal command output, and that such
trigger output will also be prepended or appended to normal string output on commands such as
IServer.newlLabel.

P4Java’s command callback feature, documented in class
com.perforce.p4java.server.callback.ICommandCallback, is a useful way to get blow-by-blow
command status messages and trigger output messages from the server in a way that can mimic the
p4 command line client’s output. Usage is straightforward, but note the potential for deadlocks and
blocking if you are not careful with callback method implementation.

P4Java’s progress callback feature gives users a somewhat impressionistic measure of command
progress for longer-running commands. Progress callbacks are documented in the Javadoc for class
com.perforce.p4java.server.callback.IProgressCallback. Once again, if you use this feature,
ensure that your callback implementations do not cause deadlocks or blocking.

We strongly recommend setting the progName and progVersion properties (either globally or for
each IServer instance) whenever you use P4Java. Set these values to something meaningful that
reflects the application or tool in which P4Java is embedded; this can help Perforce administrators
and application debugging.

14

P4Java API User Guide

P4Java Programming

For example, the following code sets progName and progVersion via the JVM invocation property
flags:

$ java -Dcom.perforce.p4java.programName=p4test
-Dcom.perforce.p4java.programVersion=2.01A ...

Alternatively, you can also use the server factory getServer method’s properties parameter:

Properties props = new Properties(System.getProperties());
props.setProperty(PropertyDefs.PROG_NAME_KEY, "ant-test");
props.setProperty(PropertyDefs.PROG_VERSION_KEY, "Alpha 0.9d");

server = IServerFactory.getServer(serverUriString, props);

If your application receives a ConnectionException from a IServer or IClient method while
communicating with a Perforce server, the only truly safe action is to close the connection and start
over with a new connection, rather than continue using the connection.

A ConnectionException event typically represents a serious network error (such as the Perforce
server unexpectedly closing a connection or a bad checksum in a network packet), and there’s no
guarantee that after receiving such an event the connection is even usable, let alone reliable.

There is currently no diff method on IFileSpec interfaces to compare versions of the same
Perforce-managed file, but this functionality may be easily implemented with a combination of
IServer.getFileContents to retrieve the contents of specific versions to temporary files, and the use
of the operating system’s diff application on these temporary files as shown below:

P4Java API User Guide 15

P4Java Programming

InputStream fspecStreaml = server.getFileContents(
FileSpecBuilder.makeFileSpecList(
new String[] {speci}), false, true);
InputStream fspecStream2 = server.getFileContents(
FileSpecBuilder.makeFileSpecList(
new String[] {spec2}), false, true);

File file1l = null;
File file2 = null;
try {

file1l = File.createTempFile("p4jdiff", ".tmp");
file2 = File.createTempFile("p4jdiff", ".tmp");
FileOutputStream outStreami = new FileOutputStream(filel);
FileOutputStream outStream2 = new FileOutputStream(file2);
byte[] bytes = new byte[1024];
int bytesRead = 0;
while bytesRead = fspecStreami.read(bytes > 0) {
outStreami.write(bytes, 0, bytesRead);
}
fspecStreami.close();
outStreami.close();
while bytesRead = fspecStream2.read(bytes > 0) {
outStream2.write(bytes, 0, bytesRead);
}
fspecStream2.close();
outStream2.close();
Process diffProc = Runtime.getRuntime().exec(new String[] {
"fusr/bin/diff",file1.getPath(),file2.getPath()});
diffProc.waitFor();
if (diffProc != null) {
InputStream iStream = diffProc.getInputStream();
byte[] inBytes = new byte[1024];
int inBytesRead = 0;
while inBytesRead = iStream.read(inBytes > 0) {
System.out.write(inBytes, 0, inBytesRead);

}
}
} catch (Exception exc) {
error("diff error: " + exc.getlLocalizedMessage());
return;
} finally {
if (filei != null) filei.delete();
if (file2 != null) file2.delete();

}

16

P4Java API User Guide

License Statements

Perforce software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http:/ /www.openssl.org/).

P4Java API User Guide 17

http://www.openssl.org/

18

P4Java API User Guide

	P4Java API User Guide
	Table of Contents
	P4Java Programming
	About P4Java
	System Requirements
	Installation
	Documentation
	Sample programs
	Java package roadmap
	Basic P4Java usage model
	Typical usage patterns
	The IServer and IClient interfaces and the ServerFactory class
	Exception and error handling
	Perforce file operations
	Summary vs. Full Objects

	Advanced usage notes
	Perforce server addresses, URIs, and properties
	SSL connection support
	The IServerResource Interface
	P4Java properties
	Character Set Support
	Error Message Localization
	Logging and tracing
	Standard implementation classes
	I/O and file metadata issues
	Threading issues
	Authentication
	Other Notes

	License Statements

