
P4VJS Developer Guide
2020.3

December 2020

Copyright © 2019-2020 Perforce Software, Inc..

All rights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sell it, or sell any documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License statements" on page 59.

https://www.perforce.com/

Contents

How to use this developer guide 5
Syntax conventions 5

Feedback 5

Other documentation 6

Get started with P4VJS 7
Examples that run in demo mode 8

List of examples for P4V 8
Run the demo examples 10
Definitions of the demo tabs 11
Tab demos 12
Window demos 14

Example for P4Admin - HTML Alert 15

P4Admin Alert API 16
Appending to the list of alerts 17

Access editing tools 18

Add custom HTML Tools to P4V and P4Admin 19
HTML Tabs 19

Next step 20
HTML Windows 20

Next step 23
HTML Actions 23

Run the example of pre and post submit 23
P4VJS and the examples 24
P4VJS functions for Submit 25
Replacing the Submit dialog is possible 26
Next step 26

Supported p4 commands 26

Supported functions 27

Call P4VJS functions 30

Deploy custom HTML pages 32

To deploy custom HTML tabs, windows, or actions 32
Changes after deployment 33
Next step 33

3

Walkthrough of development and deployment 33

Developing your HTML tools locally 33
Setting up a web server 34
Testing the pages on the web server 35
Copy the configuration onto the web server 35
Deploy your tools onto the web server 36
Deployed tools listed first 37
Shortcuts for HTML Tools 37
Controlling access to HTML tools 38

Assign shortcut keys for P4V 39
Glossary 40
License statements 59

4

How to use this developer guide
P4VJS enables you to extend P4V, the Helix Visual Client, using visual tools. It replaces P4JSAPI.

This guide explains how to get started and work with P4VJS. It also lists supported functions.

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning
literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for a
serverid parameter, supply the ID of the server.

-a -b Both a or b are required.

{-a | -
b}

Either a or b is required. Omit the curly braces when you compose the command.

[-a -b] Any combination of the enclosed elements is optional. None is also optional.
Omit the brackets when you compose the command.

[-a | -
b]

Any one of the enclosed elements is optional. None is also optional. Omit the
brackets when you compose the command.

... Previous argument can be repeated.

 n p4 [g-opts] streamlog [-l -L -t -m max] stream1
...
means 1 or more stream arguments separated by a space

 n See also the use on ... in Command alias syntax in the Helix Core P4
Command Reference

Tip
... has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

Feedback
How can we improve this manual? Email us at manual@perforce.com.

5

https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation
See https://www.perforce.com/support/self-service-resources/documentation.

Tip
You can also search for Support articles in the Perforce Knowledgebase.

6

https://www.perforce.com/support/self-service-resources/documentation
https://community.perforce.com/s/

Get started with P4VJS
With P4VJS, you can extend P4V and P4Admin with custom HTML pages made available in the form of:

 n Tabs: Available from the View menu and displayed as a tab in the right pane. Suitable for pages
without context-driven data. Tabbed pages typically define their own scope and context.

 n Windows: Available from the Tools menu and displayed as popup windows. Includes option to
pass the selection to the HTML page as a parameter to be used by the page to drive its context.
P4VJS provides a function to close windows, to be used by Submit or Cancel buttons.

Note
P4V comes with a set of HTML Tool examples that are available in demo mode.

P4VJS also supports adding Alerts to P4Admin. See "Example for P4Admin - HTML Alert" on page 15.

P4VJS: uses a Chromium-based browser technology, Qt WebEngine, with a:

 n rendering engine that is tuned for multi-processing

 n small memory footprint

 n large development community that guarantees support for HTML5 and newer JavaScript versions

Tip
When you configure the context menu for your HTML Tool, you can allow the tool user to access the
Inspect menu item. Inspect brings up the Chromium-based DevTools, which provide many features
for code development, including a runtime debugger that allows the user of your HTML Tool to set
breakpoints. See the "Example for P4Admin - HTML Alert" on page 15.

P4V menus list custom HTML tabs and windows in the following order:

7

https://doc.qt.io/qt-5/qtwebengine-overview.html

Examples that run in demo mode

 1. Deployed tabs or windows appear first.

Note
P4Admin does not have the concept of deployed tabs or windows per connection. However,
you can distribute your tabs and windows by exporting them from your development machine
and then importing them onto your users' machines.

 2. Locally defined tabs or windows.

 3. Custom tools (tools and context menus only).

Examples that run in demo mode 8
List of examples for P4V 8
Run the demo examples 10
Definitions of the demo tabs 11
Tab demos 12
Window demos 14

Example for P4Admin - HTML Alert 15
P4Admin Alert API 16
Appending to the list of alerts 17

Access editing tools 18

Examples that run in demo mode

Tip
For the example of a pre-submit and a post-submit page, which does not run in demo mode, see
"HTML Actions" on page 23.

Note
For a set of P4JsApi examples ported as P4VJS examples, see the <installation_
root>\Perforce\P4VResources\p4vjs or <installation_
root>/Perforce/P4VResources/p4vjs folder. For more information, see the P4JSAPI
to P4VJS Conversion Guide.

List of examples for P4V
In demo mode, P4V includes the example custom HTML Tabs and HTML Windows. All examples are
written in core HTML/JavaScript and P4JsApi/P4VJS (no frameworks used).

Note
This is not production code. The intent is to demonstrate possible use cases for the P4VJS API.

8

http://www.perforce.com/manuals/p4vjs-cg
http://www.perforce.com/manuals/p4vjs-cg

List of examples for P4V

Example
type Name Description Available

from
Tab Downloads Shows the Perforce Downloads

page.
View menu

Blogs Shows the Perforce Blogs page.

Products Shows the Perforce Products page.

Demo P4V Images Shows how to retrieve images from
P4V. It ports a P4JsApi example to
P4VJS by emulating synchronous
requests.

See how to run "Demo P4V
Images" on page 12.

Demo Run Queries Shows how to run queries and
display the result in an HTML table.
This example uses built-in queries
that parse the JSON result into an
HTML table, but you can enter your
own queries.

See how to run "Demo Run
Queries" on page 13.

Demo Server Info Runs the p4 info command to
show how to port a P4JsApi
example to P4VJS in different files:

 n serverinfo1.html:
Emulates synchronous
requests

 n Serverinfo2.html:
Implements an anonymous
inline callback

 n Serverinfo3.html:
Implements a named
callback function

See how to run "Demo Server Info"
on page 13.

9

Run the demo examples

Example
type Name Description Available

from
Window Demo Connection Info Runs the p4 info command.

See how to run "Demo Connection
Info" on page 14.

Tools menu

Demo File Info Shows how to handle multi-
selection and run a series of
commands.

See how to run "Demo File Info" on
page 15.

Demo Submit Shows the basic implementation of
a Submit window.

Demo Edit
Branch/Workspace/Job/Stream

Demonstrates how to create and
populate a dynamic form (a
FormSpec). This example consists
of one HTML file registered as
different HTML Windows to support
different selected object types.

Note
In demo mode, P4V does not save any changes you make using the Manage HTML Windows and
Manage HTML Tabs editors.

Run the demo examples
When you install P4V, the example files for the P4VJS demo are included in the
Perforce\P4VResources\resources folder. In demo mode, you have access to example
HTML Tabs and HTML Windows from the View and Tools menus, and to the respective editors to
manage custom HTML pages. You can activate demo mode from the Preferences window.

Note
In demo mode, P4V does not save any changes you make using the Manage HTML Windows and
Manage HTML Tabs editors.

To run P4V in demo mode:

 1. In P4V, go to Edit > Preferences.

 2. In the Preferences window, on the HTML Tools tab, select Enable HTML Tools. In this mode,
P4V supports P4VJS.

 3. Restart P4V for this change to take effect.

10

Definitions of the demo tabs

 4. Go to Edit > Preferences.

 5. In the Preferences window, on the HTML Tools tab, select the Run HTML Tools in demo
mode check box.

P4V runs in demo mode for the duration of this session or until you clear the check box.

Definitions of the demo tabs
To see the definitions of the demo tabs, on the Tools menu, click Manage Tools > HTML Tabs.

To see the definition of the demo window, on the Tools menu, click Manage Tools > HTML Tabs.

You can run the Tab demos from the View menu.

11

Tab demos

You can run the Window demos from the Tools menu.

Note
Many of the HTML windows are also added to the context menus of the appropriate objects, as
specified in the Definition of the demo window.

In the Tools menu, if the P4V user selects an object that is defined by the arguments in the definition,
the associated HTML Window menu item is enabled.

Tab demos
Demo Perforce : three links to Perforce pages showing that WebEngine is a full-fledged HTML renderer
capable of hosting external pages and tools in P4V.

Demo P4V Images
This demo illustrates how to access some of P4V's built-in images to use in your own HTML pages.

Some code snippets from <P4V installation
directory>/Contents/Resources/p4vjs/porting/p4vjs/imagelist.html

var p4vimages = await p4vjs.getImageNames(); // retrieves all
image names

var image = await p4vjs.getImage(imageNames[i]); // downloads an
image

12

Tab demos

Demo Run Queries
In this demo, you pick a query, or type in a query, then click 'Execute', and when executed it will show
the JSON return value in an HTML table.

One code snippet from <P4V installation
directory>/Contents/Resources/p4vjs/examples/runQueries/runqueries
.html

function loadQueryResult() {

p4vjs.p4(p4query).then(function(result) { //p4query is content
from the 'Query to run:' textfield. — in the illustration 'streams
-m 100'

var queryResultContainer = result.data;

Demo Server Info
This demo runs the p4 info command.

13

Window demos

One code snippet from <P4V installation
directory>/Contents/Resources/p4vjs/porting/p4vjs/serverinfo2.html

p4vjs.p4('info').then(function(serverInfo) {

console.log("p4 info called", serverInfo);

Window demos

Demo Connection Info
<P4V installation
directory>/Contents/Resources/p4vjs/porting/p4vjs/displayinfo2.htm
l demonstrates how to read configuration values from p4vjs.

Some code snippets

textNode = document.createTextNode(await p4vjs.getApiVersion());

textNode = document.createTextNode(await p4vjs.getCharset());

textNode = document.createTextNode(await p4vjs.getClient());

textNode = document.createTextNode(await p4vjs.getPort());

textNode = document.createTextNode(await p4vjs.getUser());

textNode = document.createTextNode(await
p4vjs.getServerRootDirectory());

textNode = document.createTextNode(await p4vjs.getServerVersion
());

14

Example for P4Admin - HTML Alert

textNode = document.createTextNode((await p4vjs.isServerUnicode
()=="true" ? 'Yes' : 'No'));

textNode = document.createTextNode((await
p4vjs.isServerCaseSensitive()=="true" ? 'Yes' : 'No'));

Demo File Info
<P4V installation
directory>/Contents/Resources/p4vjs/examples/fileInfo/fileinfo.htm
l illustrates handle a multiple selection.

The multiple selection is used to compose a query, and execute the query.

Some code snippets:

files = p4vjs.selectedFiles();

var quotedfiles = "";

files.forEach((file) => {

 quotedfiles += '\"' + file + '\" ';

});

p4query = "fstat -Orlf " + quotedfiles;

p4vjs.p4(p4query).then(function(result) {

 var queryResultContainer = result.data;

Example for P4Admin - HTML Alert

Note
Alerts in P4Admin have a small API as shown in the "P4Admin Alert API" on the next page section
below. This API is also shown in the code example, which is installed by default at:

 n p4admin.app/Contents/Resources/p4vjs/examples/p4admin/Demon
strationAlert.js for Mac

 n C:\Program
Files\Perforce\P4VResources\p4vjs\examples\p4admin\Demonstr
ationAlert.js for Windows

To write the logic of your alert, you can also use the "Supported functions" on page 27 of P4VJS.

To run the example of an HTML Alert for P4Admin:

 1. Make sure that HTML tools are enabled in your P4Admin preferences.

 2. Know the absolute path to the file with the DemonstrationAlert.js code.

 3. On the Tools menu, select Manage Tools > HTML Alerts...

15

https://www.perforce.com/manuals/p4admin/Content/P4Admin/admin.preferences.html

P4Admin Alert API

 4. In the Manage HTML Alerts dialog, click New.

 5. Configure the example by assigning a Name, setting the URL field to the absolute path of the
example, and setting the Entry Point to Change.runAlert.

Note
When you write your own custom Alerts, the value of the URL field can be a web address or an
absolute path to a file.

 6. Save your Alert.

 7. In Home, right-click the Alerts box and select Reload on the context-menu.

 8. Notice that the Alert has posted a message.

P4Admin Alert API
What follows is the API that is available exclusively for P4Admin Alerts.

AlertAPI.addAlert(msg, status) [async]
Posts a new alert to the alerts box and returns the identifier.

msg: The message text for your alert.

status: The status level of your alert. By default it is AlertAPI.Status.Warning.

return value: An identifier of the posted alert. You can save this to use on your next pass.

AlertAPI.updateAlert(id, msg, status) [async]
Updates a posted alert.

id: The identifier of the alert to modify.

16

Appending to the list of alerts

msg: The message text for your alert.

status: The status level of your alert. By default it is AlertAPI.Status.Warning.

return value: none.

AlertAPI.deleteAlert(id) [async]
Removes a posted alert from the alerts box.

id: The identifier of the alert to delete.

return value: none.

AlertAPI.Status levels
There are three alert status levels you can use, each of which has its own icon:

 n Info

 n Error

 n Warning

Appending to the list of alerts
When a new alert occurs, it is appended to the list of alerts.

Let's start with this code :

var AlertId1 = AlertAPI.addAlert("Posting Alert 1",
AlertAPI.Status.Info);

var AlertId2 = AlertAPI.addAlert("Posting Alert 2",
AlertAPI.Status.Info);

var AlertId3 = AlertAPI.addAlert("Posting Alert 3",
AlertAPI.Status.Info);

A new alert is appended to the end of the list, so the position order is :

1: Posting Alert 1

2: Posting Alert 2

3: Posting Alert 3

Let's now update one of the alerts.

AlertAPI.updateAlert(AlertId2, "Updating Alert2",
AlertAPI.Status.Warning);

Tip
If you start up p4admin with existing Alerts, they automatically load and display.

17

Access editing tools

After adding a new Alert or changing the code in an Alert, to display the addition or change, right-click
the Alerts box and select Reload on the context-menu.

An update does not change the position of the previously posted alert, so the position order remains :

1: Posting Alert 1

2: Updating Alert2

3: Posting Alert 3

Now let's delete an alert:

AlertAPI.deleteAlert(AlertId1);

The position order is now:

1: Updating Alert2

2: Posting Alert 3

Access editing tools
To open the editors to add or edit custom HTML pages, go to Tools > Manage Tools and select one of
the following:

 n HTML Tabs: Opens the HTML Tabs editor

 n HTML Windows: Opens the HTML Windows editor

To work with these tools, see "Add custom HTML Tools to P4V and P4Admin" on page 19.

18

Add custom HTML Tools to P4V and P4Admin
When HTML Tools are enabled in P4V, you can extend P4V to host custom HMTL pages in the form of
"HTML Tabs" below, "HTML Windows" on the next page, or "HTML Actions" on page 23. For a list of
functions you can use in your HTML page to communicate with P4V, see "Supported functions" on
page 27.

Note
In this chapter, a note will indicate when P4Admin support differs from P4V support.

Learn how to:

 n "Call P4VJS functions" on page 30

 n "Deploy custom HTML pages" on page 32

and read the "Walkthrough of development and deployment" on page 33.

HTML Tabs
Tabs become available as menu items in the Views menu. In P4V, HTML tabs open as tabs in the right
pane. P4V handles an HTML tab like any other tab: You can undock it, and P4V remembers the window
position. When you re-start P4V, P4V re-opens the tab if it was previously open.

To add a custom tab:

 1. Go to Tools > Manage Tools > HTML Tabs.

 2. In the Manage HTML Tabs dialog, click New and select Tab.

 3. In the Add HTML Tab dialog, provide the following information:

 n Name: The name of the menu item

 n Placement: The placement of the new page in the View menu. By default, the highest level
(HTML Tabs) is selected. You can select a subfolder, if available, or create a new folder.

 n URL: The location of the HTML file

 n Image: The icon used in the menu and the tab header

 4. Under HTML Page context menus, select any options you want to appear when you right-click
(Windows) or context-click (Mac) a page.

 5. Click OK.

Note
For P4Admin, opened HTML Tabs are not saved and restored, but the user can open the tabs again.

19

Next step

Next step
Continue with "Deploy custom HTML pages" on page 32.

HTML Windows
An HTML Window displays an HTML page in a floating window. The user can resize and close the
window.

If you add an HTML Window to P4V or P4Admin, it becomes available in two ways:

 n as a menu item in the Tools menu

 n as a context-menu item when you right-click (Microsoft Windows) or context-click (MacOS) the
relevant item in the graphical user interface.

Depending on the argument type configured, P4V launches the HTML page with an additional argument.
The following argument types are supported:

 n %a: Selected label

 n %b: Selected branch

 n %C: Selected changelists

 n %c: Selected changelist

 n %D: Selected files or folders (depot syntax)

 n %d: Selected file or folder (depot syntax)

 n %F: Selected files (workspace syntax)

 n %f: Selected file (workspace syntax)

 n %i: Selected workspace

20

HTML Windows

 n %J: Selected jobs

 n %j: Selected job

 n %P: Selected pending changelists

 n %p: Selected pending changelist

 n %S: Selected submitted changelists

 n %s: Selected submitted changelist

 n %t: Selected stream

 n %u: Selected user

Note
In P4Admin, each connection has four tabs (Home, Users, Permissions, and Depots). These tabs
are not closeable, and you cannot float them. All connections are managed in one window. If the user
switches the connection, the set of tabs switch.

P4Admin accepts only the following arguments for HTML Windows:

 n %u : selected user

 n %g : selected group

 n %d : selected depot - depot directory not recognized as a directory

 n %F : selected files

 n %f : selected file

 n %d : selected directory

 n $u : current user

 n $D : Arguments for prompt dialog

 n $% : Literal '%' character

 n $$: Literal '$' character

The following is a list of arguments that P4V adds when launching the HTML page:

 n %a: <url>?label=<labelname>

 n %b: <url>?branch=<branchname>

 n %c: <url>?change=<changename>

 n %C: <url>?changes=<changename1>,<changename2>,<changename3>

 n %d: <url>?file=<filename>. // depot syntax

 n %D: <url>?files=<filename1>, <filename2>, <filename3>

 n %f: <url>?file=<filename> // local syntax

 n %F: <url>?files=<filename1>, <filename2>, <filename3>

21

HTML Windows

 n %i: <url>?workspace=<workspacename>

 n %j: <url>?job=<jobname>

 n %J: <url>?jobs=<jobname1>,<jobname2>,<jobname3>

 n %p: <url>?change=<changename> // pending change

 n %P: <url>?changes=<changename1>,<changename2>,<changename3>

 n %s: <url>?change=<changename> // submitted change

 n %S: <url>?changes=<changename1>,<changename2>,<changename3>

 n %t: <url>?stream=<steamname>

 n %u: <url>?user=<username>

To retrieve the value of an argument in the HTML page, specify the argument. For example:

branchName = GetURLParameter("branch");

Your HTML Windows can include buttons with labels such as OK, Yes, No, Cancel, Submit, or Save.
When clicked, these buttons are expected to close the window. To achieve this in the HTML page, call
the following function:

p4vjs.closeWindow();

This only works from HTML Windows. You cannot close an HTML Tab from the HTML code. This is
consistent with the behavior of existing tabs and windows in P4V.

To add a custom window:

 1. Go to Tools > Manage Tools > HTML Windows.

 2. In the Manage HTML Windows dialog, click New and select Window.

 3. In the Add HTML Window dialog, provide the following information:

 n Name: The name of the menu item.

 n Placement: The placement of the new page in the Tools menu. By default, the highest
level (HTML Windows) is selected. You can select a subfolder, if available, or create a
new folder. For new folders, you can also specify if you want them to appear as an
additional level in context menus.

 n URL: The location of the HTML file.

 n Argument Type: The type of the selected object. See the list of arguments here.

 n Width and Height: The dimension of the window, in pixels

 4. Under HTML page context menus, select any options you want to appear when you right-click
(Windows) or context-click (Mac) the page.

 5. Click OK.

22

Next step

Next step
Continue with "Deploy custom HTML pages" on page 32.

HTML Actions
HTML Actions provide a way to customize behavior before or after a Submit action. For example, you
might include logic that enforces a business rule regarding submissions.

You can launch an HTML page:

 n before a Submit Changelist action

 n after a successful Submit Changelist action

Run the example of pre and post submit
The two examples merely show the mechanics of an HTML Action. They might be useful as a framework
for you to develop your own HTML Action in which you add the logic of your business rules around file
submissions.

To run the examples:

 1. In Edit > Preferences > HTML Tools, check the Enable HTML Tools checkbox and click OK.

 2. Restart P4V.

 3. Select Tools > Manage Tools > HTML Actions.

 4. In the Manage HTML Actions dialog, set the value for the Pre URL field and the Post URL field.
For example,

23

P4VJS and the examples

 5. Click OK.

In this example:

 n the Submit window can display two pages:

 l the example's custom Pre Submit Page

 l the P4V Submit Changelist page

 n the Post Submit Page is its own window.

When the user attempts to submit, the Pre Submit Page displays.

When the user clicks Next, the P4V Submit Changelist page displays.

When the user clicks Submit, the Post Submit Page appears in its own window.

P4VJS and the examples
On Windows, assuming C:/Program Files/Perforce/ is the installation directory, the
example files are in the P4VResources/p4vjs/examples/submitAction/ subdirectory.
They are named prepage.html and postpage.html

The example prepage.html and postpage.html involve P4VJS, which is a JavaScript-based
API to communicate with P4V.

If you view the source code of prepage.html and postpage.html, you will see the P4VJS
function calls of the examples.

24

P4VJS functions for Submit

P4VJS functions for Submit
The following P4VJS functions are designed to help you customize the Submit behavior of your own
HTML Action.

Function Description Availability
GetURLParameter("change") Returns the value of the changelist:

 n on the prepage.html, this
represents the changelist number
of the pending change, which
might be default or a specific
integer

 n on the postpage.html, this
represents the changelist number
of the submitted change

prepage and
postpage

GetURLParameter
("submitshelved")

Returns true if the Submit dialog was
launched from Submit Shelved
Files...

This is useful if you have a business rule
that you want to enforce solely for
submissions from a shelf.

prepage only

p4vjs.selectedFiles() Returns an array that represents the set
of files that are selected when the user
clicks the Submit button from either
the Workspace or the Depot Browser.

prepage only

p4vjs.selectedDirectories
()

Returns an array that represents the set
of directories that are selected when the
user clicks the Submit button from
either the Workspace or the Depot
Browser.

prepage only

p4vjs.nextPage() Shows the P4V Submit page. prepage only

p4vjs.closeWindow() In the prepage, this closes the Submit
window, which also closes the prepage
window.

In the postpage, this closes the
postpage window.

prepage and
postpage

25

Replacing the Submit dialog is possible

Replacing the Submit dialog is possible
It is not likely that you will want to completely replace the standard Submit dialog, but doing so is
possible. If you want to completely replace the standard P4V Submit dialog with a custom Submit
dialog that you create:

 1. Write a prepage.html that presents your custom Submit dialog to the user.

 2. Close this prepage.html by calling p4vjs.closeWindow() without calling
p4vjs.nextPage(), such that the standard P4V Submit dialog is not called.

Next step
Continue with "Deploy custom HTML pages" on page 32.

Supported p4 commands
P4VJS supports the following p4 commands as the argument to the p4vjs.p4 function.

 n add, annotate, archive, attribute

 n branch, branches

 n change, changes, changelist, changelists, client, clients, configure, copy, counter, counters,
cstat

 n dbschema, dbstat, delete, depot, depots, describe, diff, diff2, dirs

 n edit, export, filelog, files, fix, fixes, fstat

 n grep, group, groups

 n have

 n info, integ, integrate, integrated, interchanges, istat

 n job, jobs

 n key, keys

 n label, labels, license, lock, lockstat, logger, login, logout, logstat, logtail

 n merge, monitor, move

 n obliterate, opened

 n passwd, populate, print, property, protect, protects

 n reopen, replicate, repo, repos, resolve, resolved, restore, revert, review, reviews

 n shelve, sizes, stream, streams, submit, sync

 n tag, triggers, typemap

 n unlock, unshelve, user, users

26

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_add.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_annotate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_archive.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_attribute.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_branch.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_branches.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_change.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_changes.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_changelist.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_changelists.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_client.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_clients.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_configure.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_copy.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_counter.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_counters.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_cstat.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_dbschema.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_dbschema.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_delete.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_depot.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_depots.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_describe.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_diff.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_diff2.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_dirs.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_edit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_export.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_filelog.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_files.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_fix.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_fixes.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_fstat.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_grep.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_group.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_groups.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_have.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_info.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_integrate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_integrated.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_interchanges.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_istat.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_job.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_jobs.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_key.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_keys.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_label.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_labels.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_license.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_lock.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_lockstat.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_logger.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_login.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_logout.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_logstat.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_logtail.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_merge.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_monitor.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_move.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_obliterate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_opened.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_passwd.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_populate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_print.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_property.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_protect.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_protects.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_reopen.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_replicate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_repo.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_repos.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_resolve.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_resolved.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_restore.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_revert.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_review.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_reviews.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_shelve.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_sizes.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_streams.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_submit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_sync.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_tag.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_triggers.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_typemap.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_unlock.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_unshelve.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_user.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_users.html

Supported functions

 n verify

 n where, workspace, workspaces

Supported functions
The file p4vjs.js defines the P4VJS commands that you can use in your HTML page to communicate
with P4V. To use the following functions, you need to include this file.

All P4VJS functions return a JavaScript Promise, an object representing the eventual completion (or
failure) of an asynchronous operation and its resulting value.

p4vjs.p4(command [,form] [,callback])
Runs the specified p4 command.

Command results are returned as JavaScript objects containing data in JSON format, composed of the
following properties:

{

 [str] data: when tagged data returned, array of tag/value pairs

 int size: number of members in data array

 str error: server error text, if any

 str info: server info text, if any

 str text: text returned only by diff2 command

 }

p4vjs.closeWindow()
Closes the hosting floating window. Only works with HTML Windows (not with HTML Tabs).

p4vjs.getApiVersion()
Returns a string containing the version (level) of the JavaScript API.

p4vjs.getCharset()
For Unicode-mode servers, returns a string containing the character set in use (P4CHARSET).

p4vjs.getClient()
Returns a string containing the client workspace name (P4V only).

27

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_verify.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_where.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_workspace.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_workspaces.html

Supported functions

p4vjs.getImage(image)
Returns a string containing the specified P4V image in HTML-embedded format. Use the names returned
by getImageNames().

p4vjs.getImageNames()
Returns a string array containing a list of images used by P4V to indicate file type and status. For
consistency with P4V, use these images in your applications.

p4vjs.getPort()
Returns a string containing the Helix server connection setting.

p4vjs.getSelection()
Returns a list of the folders and files that are currently selected in the depot pane.

p4vjs.getServerRootDirectory()
Returns a string containing the directory on the host machine where Helix server stores its metadata
files.

p4vjs.getServerSecurityLevel()
Returns a string containing the server’s security level.

p4vjs.getServerVersion()
Returns a string containing the server version number.

p4vjs.getUrlIParameter("change")
Returns the value of the changelist. This is a P4VJS function for Submit in an HTML Action.

p4vjs.getUrlIParameter("submitshelved")
Returns true if the Submit dialog was launched from Submit Shelved Files. This is a P4VJS function for
Submit in an HTML Action.

p4vjs.getUser()
Returns a string containing the current user.

p4vjs.isServerCaseSensitive()
Returns a string containing true or false, indicating whether the server is case-sensitive.

28

Supported functions

p4vjs.isServerUnicode()
Returns a string containing true or false, indicating whether the server is running in Unicode mode.

p4vjs.nextPage()
Shows the P4V Submit page. This is a P4VJS function for Submit in an HTML Action.

p4vjs.openUrlInBrowser(url)
Launches the default web browser and displays the specified URL.

p4vjs.refreshAll ()
Forces a refresh of P4V.

p4vjs.selectedDirectories()
Returns an array of the selected directories:

 n (HTML Action) - in the Submit Action pre-page, when submitting from the Workspace or Depot
tree

 n (HTML Window) - when launching an HTML Tool while using depot syntax to specify a file or
folder with the %d argument type, or multiple files or folders with the %D argument type

p4vjs.selectedFiles()
Returns an array of the selected files:

 n (HTML Action) - in the Submit Action pre-page, when submitting from the Workspace or Depot
tree

 n (HTML Window) - when launching an HTML Tool while using workspace syntax to specify a file
with the %f argument type, or multiple files with the %F argument type

p4vjs.setP4VErrorDialogEnabled(true|false)
Enables/disables the display of server errors in popup windows. (By default, display of server errors is
enabled.)

p4vjs.setSelection(selectionList)
Given a list of paths and files, selects them in the depot pane.

p4vjs.useDarkTheme()
Returns true if P4V is in dark theme mode.

29

Call P4VJS functions

Call P4VJS functions
Every P4VJS method (P4VJS.<method>) is implemented as a JavaScript promise. It does not return
a value. This means that you need to provide a promise consumer, which is a callback method that
gets called when the request is processed. This section explains how to handle execution of the promise
as:

 n A callback method

 n An inline unnamed callback method

If the application requires synchronous behavior, you can use the keyword await, which makes
JavaScript wait until the promise settles. You cannot use await in a regular synchronous function. To
use await, you have to make the function that calls it async. If a function returns a value, changing it
to async affects the function's return value. As an asynchronous function, it now returns a promise
hosting the return value.

Note
You cannot use await in top-level functions.

For more information on JavaScript promises, see https://promisesaplus.com.

Following are implementation examples:

 n Asynchronous named

Only p4vjs.p4(..) supports a callback argument (this is the function to be called, with the
return value as the parameter).

p4vjs.loadServerInfoCallBack(serverInfo){

….

}

var loadcallback = loadServerInfoCallBack;

p4vjs.p4(‘info’,’’,loadcallback);

 n Asynchronous anonymous

p4vjs.functionName(arguments).then(function(retvalue) {

….

….

});

 n Synchronous

30

https://promisesaplus.com/

Call P4VJS functions

async function outerfunction() {

 var myVar = await p4vjs.functionName(arguments);

}

Note
function outerfunction() now returns a promise. If handling the return value is
required, it needs to be handled as an asynchronous function.

31

Deploy custom HTML pages
You typically develop custom HTML Tabs and HTML Windows locally. Next, you move the files to an
HTTP server for deployment.

Note
P4VJS.HTMLTabs, and P4VJS.HTMLWindows are added to P4V, and live in harmony with your
local definitions for HTMLTabs, and HTMLWindows.

P4VJS.HTMLActions is added to P4V, unless you have a local definition for a deployed HTMLAction.
The local definition overrides a global definition to make sure developers can fix and test
their actions before deploying them globally.

To deploy custom HTML tabs, windows, or actions

 1. In the Edit HTML Tab or Edit HTML Window dialog, respectively, in the URL field, change the
specifier for each HTML Tab or HTML Window from file:///… to http://….

 2. Test the custom tabs or windows to make sure the deployed version works in P4V.

 3. Export the definition file and copy it to your web server. Test the URL in a browser to make sure it
points to the XML definition file. P4V recognizes the following properties:

 n P4VJS.HTMLTabs: A URL search path to the definition of custom HTML Tabs

 n P4VJS.HTMLWindows: A URL search path to the definition of custom HTML Windows

 n P4VJS.HTMLActions: A URL search path to the definition of custom HTML Actions

Both properties support a set of URLs separated by :::. For example:

$ p4 property -n P4VJS.HTMLTabs -l

 P4VJS.HTMLTabs =

http://internal.company.com:8002/htmltabs.xml:::http://external.compa

ny.com:8002/htmltabs.xml

P4V tries to download the internal htmltabs.xml first. If it fails, it attempts to download
htmltabs.xml using the external URL.

 4. Move the definition file to the HTTP server and set the properties to point to this file.

When running, P4V should now connect to this server. Deployed tabs and windows are defined
per connection. Each server determines which tabs and windows are provided for this connection.
Because deployment is driven by properties, different users can be offered different tools.

32

Changes after deployment

Note
P4Admin does not have the concept of deployed tabs or windows per connection. However,
you can distribute your tabs and windows by exporting them from your development machine
and then importing them onto your users' machines.

 5. In P4V, make sure the menu items for the now deployed custom HTML Tabs or HTML Windows
are available from the View or Tools menu, respectively.

 6. Remove pre- or post-page from the local Submit Action.

Changes after deployment
After you have deployed your HTML Action, you can work locally on improvements without disturbing
what you have already deployed. This is because your local definition of your Action takes precedence
over a deployed definition.

The steps are:

 1. Copy the deployed version to your machine.

 2. Point the local Submit Action to the copied implementation.

 3. Improve the implementation locally.

 4. Deploy that improved version.

 5. Remove pre- or post-page from the local Submit Action.

Next step
Continue with "Walkthrough of development and deployment" below.

Walkthrough of development and deployment
The walkthrough illustrates the steps to make your locally developed HTML pages available to your end-
users.

Developing your HTML tools locally
You can develop three kinds of HTML Tools, "HTML Tabs" on page 19, "HTML Windows" on page 20,
and "HTML Actions" on page 23. The process for all three is similar. We use an HTML Window as an
example, which in this case is a custom Submit dialog.This walkthough mentions where HTML Tabs and
HTML Actions differ from HTML Windows.

From the Tools menu, we select Manage Tools > HTML Windows.

The Manage HTML Windows dialog appears.

Using the Edit button, we specify a local file in the Url: field.

33

Setting up a web server

In this case, submitdialog.html represents our custom Submit dialog.

We make sure that each HTML Tool has a URL that points to a local file on our development machine.

Setting up a web server

 1. We copy the files associated with the tools we developed onto a web server so that, when we are
ready, we can make the tools available to our end-users.

 2. We verify that we can see the files on the web server by using a web browser.

 3. We make sure to copy onto the web server the submitdialog.html shown in the the Url:
field of Manage HTML Window dialog.

34

Testing the pages on the web server

Testing the pages on the web server

 1. In the Manage HTML Window dialog, we click edit on each tool, and change value in the the
URL: field from a file URL to a web URL.

 2. When we select a tool, we can see that the URL has been changed:

 3. We verify the Url: field shows an http-based URL.

 4. We can now test our pages deployed onto the webserver before publishing the tools.

Copy the configuration onto the web server

 1. We export the configuration file for the definitions we want our end-users to be able to use. In this
case, we export to the web server our custom Submit window, along with the windows for Edit
Workspace, Edit Job, and Edit Stream. We keep Edit Branch on our local computer
because we are still developing this window.

35

Deploy your tools onto the web server

 2. We make a copy of the exported configuration and version it. This allows us to add new tools
incrementally.

 3. We copy the configuration file onto the web server.

 4. We can use a web browser to verify the URL of the configuration file.

Deploy your tools onto the web server
We deploy our HTML tool using one of the following properties.

36

Deployed tools listed first

 n P4VJS.HTMLWindows for HTML Windows

 n P4VJS.HTMLTabs for HTML Tabs

 n P4VJS.HTMLActions for HTML Actions
In our example we set the P4VJS.HTMLWindows property at the command prompt.

p4 property -n P4VJS. -l
P4VJS.HTMLWindows = http://mycompany:8787/windowtools.xml

We restart P4V.

We open the Tools menu and see two sets of tools The first set are available to our end-users. The
second set is local to our development computer.

We can delete our local HTML Windows and use the deployed ones.

Note
P4Admin does not have the concept of deployed tabs or windows per connection. However, you can
distribute your tabs and windows by exporting them from your development machine and then
importing them onto your users' machines.

We can also continue developing new tools locally.

Deployed tools listed first
Any HTML Tab menus that we make available to our end-users are listed in the View menu before our
local Tab menus.

Any HTML Window menus that we make available to our end-users are listed in the Tools menu before
the local Window menus.

The entire deployed set is shown first, then the local set.

Folders are not shared between the two sets of tools.

Shortcuts for HTML Tools
Shortcuts for HTML Tools are a request. If another command uses the same shortcut at runtime, the
shortcut request will not succeed for that particular tool.

The shortcut lookup order for P4V, tools, and HTML Tools:

 1. P4V commands and Custom Tools

 2. Locally defined HTML Tabs

 3. Locally defined HTML Windows

 4. Deployed HTML Tabs

 5. Deployed HTML Windows

37

Controlling access to HTML tools

Local HTML Actions overwrite deployed Actions, otherwise we could not develop or improve HTML
Actions after they are deployed.

Note
P4Admin does not have the concept of deployed tabs or windows per connection. However, you can
distribute by exporting them from your development machine and then importing them onto your users'
machines.

Controlling access to HTML tools
The administrator controls the availability of HTML tools per connection.

The HTML tools property values are defined per connection, and different users or groups can have
different properties. The deployed properties only apply to a specific connection, as defined by the port
and the user.

If an end-user establishes a different connection, that user might gain access to different HTML Tools or
to no HTML Tools.

38

Assign shortcut keys for P4V
For information on configuring shortcut keys in P4V, see Shortcut preferences in the P4V User Guide.

It is possible to define conflicting shortcut keys for HTML Tools. P4V resolves the binding using the
following path, executing the first match:

 1. Deployed commands and Custom Tools

 2. Locally defined HTML Tabs

 3. Locally defined HTML Windows

 4. Deployed HTML Tabs

 5. Deployed HTML Windows

39

https://www.perforce.com/manuals/p4v/Content/P4V/configuring.preferences.shortcuts.html
http://www.perforce.com/perforce/doc.current/manuals/p4v/index.html

Glossary

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depot in which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

B

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

40

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the 'p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

C

change review

The process of sending email to users who have registered their interest in changelists that include
specified files in the depot.

41

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. Uses the Perforce file revision model, not
the graph model. The default depot name is depot. See also default depot, stream depot, and graph
depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

42

Glossary

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

43

Glossary

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site has in a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depot is the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

44

Glossary

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/

diff

(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflict is
a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate', and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide" on "Extensions".

45

Glossary

F

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file that is not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

46

Glossary

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same
projects using their preferred tools.

graph depot

A depot of type graph that is used to store Git repos in the Helix server. See also Helix4Git and
classic depot.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

heartbeat

A process that allows one server to monitor another server, such as a standby server monitoring the
master server (see the p4 heartbeat command).

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

47

Glossary

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

hybrid workspace

A workspace that maps to files stored in a depot of the classic Perforce file revision model as well as
to files stored in a repo of the graph model associated with git.

I

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

J

job

A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work
to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

48

Glossary

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server’s metadata.

L

label

A named list of user-specified file revisions.

label view

The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy

A method used by Helix server to make internal copies of files without duplicating file content in the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file

A file that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

49

Glossary

list access

A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot

Any depot located on the currently specified Helix server.

local syntax

The syntax for specifying a filename that is specific to an operating system.

lock

1. A file lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

M

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

50

Glossary

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

O

opened file

A file you have checked out in your client workspace as a result of a Helix Core server operation
(such as an edit, add, delete, integrate). Opening a file from your operating system file browser is not
tracked by Helix Core server.

owner

The Helix server user who created a particular client, branch, or label.

51

Glossary

P

p4

1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d

The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP

The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

52

Glossary

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depot located on another Helix server accessed by the current Helix server.

replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before it is submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

53

Glossary

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

54

Glossary

S

server data

The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root

The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4ROOT environment variable or use the p4d -r
flag.

service

In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelist is new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A "branch" with built-in rules that determines what changes should be propagated and in what order
they should be propagated.

stream depot

A depot used with streams and stream clients. Has structured branching, unlike the free-form
branching of a "classic" depot. Uses the Perforce file revision model, not the graph model. See also
classic depot and graph depot.

55

Glossary

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide" on "Triggers".)

56

Glossary

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation. The three types of
users are standard, service, and operator.

V

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

W

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; %%0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

57

Glossary

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

58

License statements

License statements
For complete licensing information pertaining to , see the license file at .

59

	How to use this developer guide
	Syntax conventions
	Feedback
	Other documentation

	Get started with P4VJS
	Examples that run in demo mode
	List of examples for P4V
	Run the demo examples
	Definitions of the demo tabs
	Tab demos
	Window demos

	Example for P4Admin - HTML Alert
	P4Admin Alert API
	Appending to the list of alerts

	Access editing tools

	Add custom HTML Tools to P4V and P4Admin
	HTML Tabs
	Next step

	HTML Windows
	Next step

	HTML Actions
	Run the example of pre and post submit
	P4VJS and the examples
	P4VJS functions for Submit
	Replacing the Submit dialog is possible
	Next step

	Supported p4 commands
	Supported functions
	Call P4VJS functions
	Deploy custom HTML pages
	To deploy custom HTML tabs, windows, or actions
	Changes after deployment
	Next step

	Walkthrough of development and deployment
	Developing your HTML tools locally
	Setting up a web server
	Testing the pages on the web server
	Copy the configuration onto the web server
	Deploy your tools onto the web server
	Deployed tools listed first
	Shortcuts for HTML Tools
	Controlling access to HTML tools

	Assign shortcut keys for P4V
	Glossary
	License statements

