O
HelixCore

Helix Core Server User Guide

2020.2
November 2020

PERFORCE

Copyright © 2014-2020 Perforce Software, Inc..
Allrights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sellit, or sellany documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License Statements" on page 203.

https://www.perforce.com/

Howtousethisgquide 1
Syntax CONVENLIONS 11
Feedback 11
Other documentation el 12
Earlier versions of this guide 12

What's newinthis guide 13
2020, 2 .. 13
2020 L 13
20710, L 13
20710 L 13

Installation . . 14
On Linux and OS X . 14
ON WINAOWS . 14

OVeIVIOW 15
Fundamental parts of Helix Core Server 15
File management 16
ChangelistS 17
Parallel development ... 17

Shared filles .l 17
Branching: branches versus streams 17
S UMY 18
Organizing your work: jobs and labels 18
Scripting and reporting ...l 19

Tutorial ... 20
Read me first .. 20
Make binaries executable, on UNIXand OS X 20
Create aworking direCtOrY . .. L 21
Start up the shared Server . 21
Start upthe command line client 22
Verify the connection tothe server . . 22
Create astream depot 23

Create your first stream ... 25

Define a client workspace and bindittothe stream 27
Populate a mainline stream .. 30
Bt files il 32
Delete files ... o 34
Sync files from the depot to your client workspace 35
Populate child streams ... Ll 36
Basictasks 37
Overview of initial tasKs 38
Overview oOf recurmting tasks 38
INitial taSKS . 39
Create aworking direCtory 40
Logintothe shared server e 40
Start up ashared server .. 40
Start up the command line client and verify the connectiontotheserver 41
Create astream depot 42
Create amainline stream ... 43
Define aworkspace and bind it tothe stream 44
Populate the mainline stream 45
Recurring file-level tasks ... 46
SYNC fIleS il 48
A fIleS il 48
Add files outside of Helix server and then use p4 reconcile-k 50
Edit files and check in Changes 51
Delete files . 51
Revert files, todiscard Changes 52
Rename and movefiles 52
DI fileS L. 52
Res0IVe CONTliCS 53
Changelist-related tasks L 53
Submit a pending changelist 54
Create numbered changelists 55
Submit a numbered changelist 56
Undo asubmitted change 56
Shelve changelists 56

Display information about changelists 58

Move files between changelists 59

Delete changelists .. 59
Otherrecurring tasks .. 60
Configure client behavior L 60
Configure stream behavior 60
Branch and populate child streams 60
Propagate Changes 60
Configure clients 63
Configure the client proCess 64
Usingthe command line 64
Using config files 65
Using environment variables ... 66
Using the Windows registry or OS X system settings ... 67
Configure for IPV6 networks 67
Configure forUnicode ... 68
Configure a client workspace il 69
How Helix server manages files inaworkspace ... 70
Define a Client WOrKSPaCe ... oo L 70
Configure workspace options 72
Configure submit Options 73
View a stream as of a specific changelist 74
Configure line-ending settings 74
Change the location and/or layout of your workspace 75
Manage WorKSPaCeS . il 76
Delete aclient Workspace il 77
Configure Workspace VIeWsS .. 77
SpPeCifY MaPPINGS il 78
Use wildcards in workspace VIeWsS L 79
Map part of the depot 80
Map files to different locations inthe workspace 80
Map files to different filenames 80
Rearrange parts of filenames 81
Exclude files and direCtonies 81
Map a single depot path to multiple locations inaworkspace 81
Restrict access by changelist ...l 82
Avoid mapping conflicts 82

Automatically prune empty directories from aworkspace 83

Map different depot locations to the same workspace location _............................... 83

Deal with spaces in filenames and directories 84
Map Windows workspaces across multiple drives 84
Use the same workspace from different computers 85
Streams . 86
AboUt Streams . 86
Configure @ stream ... 87
StreaM tY DS . 88
Merge dOWN, COPY UP ..o e e 89
Stream types - most stable toleast stable 90
Task streams il 90
Virtual streams L 93
Stream views and paths . 93
Stream paths and inheritance 95
Stream ParentView Examples 99
Update Streams 105
Edit astream .. 106
Resolve astream . 106
Revert astream il 106
Submit, shelve, and unshelve astream 106
Resolve conflicts 108
How conflicts OCCUr 108
How toresolve conflicts 109
Your, theirs, base, and merge files ... 109
Options forresolving conflicts 110
Accepting yours, theirs, Or Merge 111
Editingthe merge file 111
Merging to resolve conflicts 112
Full list of resolve OptioNs 112
Resolving branched files, deletions, moves and filetype changes 114
Resolve command-line Options 115
Resolve reporting Commands 116
Codeline management 118
Organizing the depot 118

Branching streams (introduction) 119

A shortcut: pd populate 120

Branching streams (Merge) L 120
When to branCh L 121
Branching Streams .. 121

Merge CRaNgES .. L 122
Merging between unrelated files 123
Merging specific file revisions 124
Re-merging and re-resolving files L 124
Reporting branches and merges ... 124

Less common tasks 126

Work Offline ... 126
Ignoring groups of files whenadding 127

LOCKING fIleS L 127
Preventing multiple resolves by lockingfiles 127
Preventing multiple checkouts 128

S eCUNI Y 129

SSL-encrypted CoNNECIONS L 129
Connecting to services that require plaintext connections 131

P asSSWOIAS . L 131
Setting PasSSWOrASl 131
USINg YOUr PasSWOId 132

Connection time limitS . . 132
Logging in and logging OUt ... 133
Working on multiple computers 133

Labels .. 134

Tagging files with alabel ... L 134

Untagging filles ... 135

Previewing tagging resUlS 135

Listing files tagged by alabel 135

Listing labels that have been applied to files 135

Using a label to specify file revisions L 135

Deleting labels 136

Creating alabel for future Use 136

Restricting files that can be tagged L 137

Static versus automatic labels 137

Static 1abelS ... 138

Automatic labels il 139
Automatic labels: superior performance 140
Preventing inadvertent tagging and untagging of files 141
Usinglabels on edge SEIVers 141
Using labels With Git ... L 141
JOBS 143
Creating, editing, and deletingajob 143
Searching JObS .. 144
Searching Job texXt . il 145
Searching specific flelds L 145
Using comparison Operators 146
Searching date flelds L 147
FiXING JODS 147
Linking automatically 148
Linking manually .. 148
Linking jobs to changelists il 149
Scripting and reporting 150
Common options used in scriptingand reporting 150
Scripting with Helix serverforms 151
File reporting 152
Displaying file status 153
Displaying file revision history 154
Listing Open files .. 154
Displaying file locations 155
Displaying file CONteNtS L 155
Displaying annotations (details about changes tofile contents) _............................ 156
Monitoring changes to files L 157
Changelist reporting 157
Listing changelists .. 157
Listing files and jobs affected by changelists 158
Label reporting L 159
Branch and integration reportingl 159
JOD rePOrING . 160

LisSting JODS .o 160

Listing jobs fixed by changelists 161

System configuration reporting L 161
DS playiNg USerS 161
Displaying WOrKSPaCEes o 162
LiSting AEPOtS 162

SamPle SCHIPt .. L 162

Helix server file types L 165

File type modifiers . il 166

Specifying how files are stored in Helix server 168

Assigning file types for Unicode files 169
Choosing the fille tyPe ... o L 169
Helix server file type detectionand Unicode 170

Overriding file types 171

Preserving timestamps 171

Expanding RCS KeyWords L. 171

Helix servercommand syntax 173

Command-line SYNLAX 173
Specifying filenames onthe command line 176
Helix server Wildeards 177
Restrictions on filenames and identifiers 177
Specifying file reviSioNS 179
Reporting CommMaNds ... L 182

Using Helix server forms ... 183

Gl oS S aNY 184

License Statements 203

How to use this guide

This getting started guide covers basic tasks for users and administrators, includes a Tutorial, and
assumes your organization is using Streams rather than custom branching.

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Mustbe usedinthe command exactly as shown.

italics A parameter for which you must supply specific information. For example, for a
serverid parameter, supply the ID of the server.

-a -b Both a and b are required.

{-a | - Eitheraorbis required. Omit the curly braces when you compose the command.

b}

[-a -b] Anycombination of the enclosed elements is optional. None is also optional.
Omit the brackets when you compose the command.

[-a | - Anyone ofthe enclosed elements is optional. None is also optional. Omit the
b] brackets when you compose the command.

Previous argument can be repeated.

m p4 [g-opts] streamlog [-1 -L -t -m max] streaml

means 1 or more stream arguments separated by a space

m Seealsotheuseon . .. inCommand alias syntax in the Helix Core P4
Command Reference
Tip
. . . has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

Feedback

How can we improve this manual? Email us at manual@perforce.com.

https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

Tip
You can also search for Support articles in the Perforce Knowledgebase.

Earlier versions of this guide
2020.1, 2018.2, 2018.1, 2017.2, 2017.1, 2016.2, 2015.2, 2015.1, 2014.2, 2014.1

12

https://www.perforce.com/support/self-service-resources/documentation
https://community.perforce.com/s/
https://www.perforce.com/manuals/v20.1/p4guide/Content/P4Guide/about.html
https://www.perforce.com/manuals/v18.2/p4guide/Content/P4Guide/about.html
https://www.perforce.com/manuals/v18.1/p4guide/index.html#P4Guide/about.html
https://www.perforce.com/manuals/v17.2/p4guide/index.html#P4Guide/about.html
https://www.perforce.com/manuals/v17.1/p4guide/index.html#P4Guide/about.html
https://www.perforce.com/manuals/v16.2/p4guide/index.html
https://www.perforce.com/manuals/v15.2/p4guide/index.html
https://www.perforce.com/manuals/v15.1/p4guide/index.html
https://www.perforce.com/manuals/v14.2/p4guide/index.html
https://www.perforce.com/manuals/v14.1/p4guide/index.html

What's new in this guide

What'’s new in this guide

2020.2

It is now possible to choose whether a release, development, or mainline stream inherits views from its
parent stream. For example, you might want to your release streams to remain unaffected when the
parent stream updates certain files, such as libraries that might affect builds. See "Stream ParentView
Examples" on page 99.

It is now possible to integrate stream spec changes across streams. This can be useful fornoinherit
streams as well as for custom, propagatable fields.

The p4 istat command has the —As and —A £ options to report the integration status of the stream spec
and the stream files.

See the Release Notes at https://www.perforce.com/perforce/r20.2/user/relnotes. txt.

2020.1

See the Release Notes at https://www.perforce.com/perforce/r20.1/user/relnotes. txt.

2019.2

Various bug fixes. See the Release Notes at https://www.perforce.com/perforce/r19.2/user/relnotes.txt.

2019.1

Improved control when updating a stream spec with the "Private editing of streams" feature. See "Update
streams" on page 105.

For a complete list of what's new in this release, see the release notes.

13

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_istat.html
https://www.perforce.com/perforce/r20.2/user/relnotes.txt
https://www.perforce.com/perforce/r19.2/user/relnotes.txt
https://www.perforce.com/perforce/r19.2/user/relnotes.txt
https://www.perforce.com/perforce/r19.1/user/relnotes.txt

Installation

This chapter tells you how to install the Helix server Command-Line Client (p4) and the Helix Core
server (p4d, also referred to as Helix server) on your computer.

Instructions vary by operating system.

On Linux and OS X
On Windows

On Linuxand OS X

On Linux and OS X, download the server and command line client binaries into the /usr/local/bin
directory.

1. Change into the download directory.
$ ed /usr/local/bin

2. Download the executable files from the Perforce website.
https://www.perforce.com/downloads

3. Make the server and client binaries executable, if they aren’t already. For example, on Linux:

$ chmod +x p4d
S chmod +x p4

On Windows

To install the Helix server (p4d) and Helix server command-line client (p4) on Windows, download and
run the Helix server Windows installer from the Downloads page of the Perforce web site:

https://www.perforce.com/downloads

The Helix server installer walks you through the steps to install the Helix server (p4d . exe), the Helix
server command-line client (p4 . exe), and other Helix server Windows components.

14

https://www.perforce.com/downloads
https://www.perforce.com/downloads

Overview

This chapter provides an overview of the Helix server version control system.

Tip
Before reading this guide, read the "Basic concepts" chapter of Solutions Overview: Helix Version
Control System.

This guide documents the command-line client only. For documentation on other clients, see the Perforce
documentation website.

Fundamental parts of Helix Core server 15
File management . 16
Changelists .l 17
Parallel development 17

Shared fileS .. 17

Branching: branches versus streams ... 17
SO CUNI Y il 18
Organizing your work: jobs and labels 18
Scripting and reporting 19

Fundamental parts of Helix Core server

Helix serveris an enterprise version management system in which you connect to a shared versioning
server.

You sync files from a shared repository called the depot to get the latest version.
You edit files on your computer in your workspace (also known as a "client").
You manage files with the help of changelists.

You have the option of submitting to the depot any changes you make locally to make them available to
other users.

The Helix Core server, also known as Helix server, or p4d, manages depots, which contain every
revision of every file under version management. Files are organized into directory trees. The server also
maintains a database of metadata that tracks the files and client activity: logs, user permissions,
configuration values.

Helix serverclients provide an interface that allows you to check files in and out of the depot, resolve
conflicts, and track change requests.

Helix server includes a number of clients: a command-line client, a graphical user interface client, and
various plug-ins that work with commercial IDEs and productivity software.

15

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/support/self-service-resources/documentation

File management

Helix server also supports a decentralized (“distributed”) workflow. See the "Basic concepts" chapter of
Solutions Overview: Helix Version Control System, and Using Helix Core Server for Distributed

Application Programming Interfaces (APIs)

Seripting with

GGt Ruby, Perl, PHP, Python Java

Integrations with Eclipse, Visual Studio, ...

@ 3
HelixSwarm HelixTeamHub
£
Visual Client P4V Command-Line Client P4

N

‘..

Helix Core depot Helix4Git repos
with versioned files in depot of
and metadata type graph

Helix Versioning Engine

Versioning (DVCS).

File management

You use Helix server clients to manage a special area of your computer, called a workspace. Directories
in the depot are mapped to directories in your workspace, which contain local copies of managed files.

You always work on managed files in your workspace:

1

2
3.
4

16

You populate your local workspace by syncing files from the depot.
You check the files out of the depot (and into your workspace).
You make changes to the files.

You check them back into the depot, also known as submitting.

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html
http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html

Changelists

5. If the changes you try to submit conflict with changes that other users, working in parallel with
you, have already submitted, you must resolve conflicts as needed.

Changelists

The unit of file submission is the changelist; it is the means by which you check files in and out of the
depot. A changelist must contain at least one file and may contain tens of thousands. A changelist is
numbered and allows you to track all changes with respect to the contents of the depot: file
modifications, the addition of a file, or the deletion of afile.

A changelist is the simplest way to organize your work. A changelist also represents the atomic unit of
work in Helix server: if a changelist includes several files, changes for all the files are committed to the
depot or none of the changes are. For example, if a network connection between the client and the server
fails during changelist submission, the entire submit fails.

Parallel development

As with all version management systems, Helix server is designed to let multiple users work on the same
files, codelines, or digital assets in parallel and then reconcile differences later. When conflicts occur, the
system resolves them if the user cannot.

Helix server permits parallel development at two levels:

m At the file level, with shared files

m At the codeline level, with branching.

Shared files

Parallel development also happens when multiple users check the same file(s) out of the depot, work on
them in parallel, and check them back into the depot by submitting them. At the time of submission, Helix
server reports whether there are conflicts with other users' changes to the same file or files, and requires
that any conflicts be resolved.

Branching: branches versus streams

In the course of a collaborative development project, you may find it useful to split off the codeline into
multiple codelines, each having a distinct intended purpose. For example, when a certain milestone is
reached in development, you may choose to copy the code—also known as branching it—into a new
codeline for testing, thereby creating a QA branch. After it passes all tests, it is copied up to the Beta test
line where it is subjected to real-world use. Later, you may choose to merge one or more of these new
branches back into the main codeline.

17

Security

Streams: branches with additional intelligence
Streams are like branches, but with additional intelligence built in.

Streams:

m provide clues of where and how to do branching and merging
m guide merging and branching actions that support stability and innovation

m are ideal forimplementing the mainline branching model, in which less stable streams merge
changes to keep up to date with their parents, then copy work to the parent when the work is
stable enough to promote.

m eliminate much of the work needed to define branches, create workspaces, and manage merges

m enable the system to generate views for associated workspaces, eliminating the need for you to
update views manually to reflect changes to your stream structure.

When you create a stream, you specify its type, information about the files it is associated with, its
relationship to other streams, and how files are to be treated for branching and merging. The system uses
the information you provide to encourage merging best practices and to track parallel development.

The stream type tells the system how stable the stream is relative to other streams.

The stream’s path information tells the system:

= which files to populate the workspace with
m which files child streams are allowed to branch

= which changelist to lock the files at.

Parent labeling specifies how the stream relates to other streams in the system, helping to determine
how change flows through the system.

Note
This guide assumes the reader is using streams, but notes where instructions differ for branch users.

Security

The Helix server command line client supports a number of security-related features, mostly having to do
with SSL encryption.

Organizing your work: jobs and labels

In addition to using changelists and streams to organize your work, you can use two other methods: jobs
and labels.

18

Scripting and reporting

m Jobs provide lightweight issue tracking that integrates well with third party defect tracking and
workflow systems. They allow you to track the status of a bug or an enhancement request. Jobs
have a status and a creator and are associated with changelists that implement the bug fix or the
enhancement.

m Labels are sets of tagged file revisions that allow you to handle a heterogeneous group of files as
one unit. While a changelist refers only to the contents of a given set of files at the time they were
submitted, a label can refer to a group of file revisions from different points in time. You might want
to use labels to define the group of files contained in a particular release, to sync a set of files, to
populate a workspace, or to specify a set of file revisions to be branched. You can also use a label
as an alias for a changelist number, which makes it easier to remember the changelist and easier
torefertoit in issuing commands.

Scripting and reporting
You can use client commands in scripts and for reporting purposes. For example, you could:

m merge and then resolve multiple files in one script

m use the UNIX Stream Editor (sed) in conjunction with a Helix server client command to create a
job

m issue a command reporting all labels containing a specific file revision (or range)

19

This section walks you through a tutorial to help you get familiar with the most common tasks.

Read me first 20
Make binaries executable, on UNIX and OS X 20
Create a working directory L 21
Start up the shared server 21

Start up the command lineclient .. . 22

Verify the connection to the server .. . 22
Create a stream depot 23
Create your first stream 25
Define a client workspace and bind it to the stream 27
Populate a mainline stream 30
Edit files 32
Delete files L 34
Sync files from the depot to your client workspace 35
Populate child streams ... 36

Read me first

This tutorial is for users not experienced with Helix server. After working through this tutorial, you should
understand the following:

m the basics of starting up a shared server and command line client
m getting a shared server and client communicating with each other
m adding, editing, deleting, and syncing files on your client computer

m checking those files into the server.
The sections that follow take you — step-by-step — through the tutorial.
Important

Before running this tutorial install the shared server and command client binaries onto the same
computer. See "Installation" on page 14 for instructions.

Make binaries executable, on UNIX and OS X

On UNIX and OS X, make the server and client binaries executable, if they aren’t already.

20

Create a working directory

$ ed /usr/local/bin
$ chmod +x p4d
$ chmod +x p4

Create a working directory

Create a working directory in which to perform the rest of the steps in this tutorial, and then change to that
directory. In this example, we create a directory called tutorial in the user's home directory.

On Unix and OS X

$ mkdir /Users/bruno/tutorial
$ ed /Users/bruno/tutorial

On Windows

$ mkdir C:\Users\bruno\tutorial
$ e¢d C:\Users\bruno\tutorial

Start up the shared server

1. Make a subdirectory in which to start up the server and client.

When started, the server creates a large number of database files; it’s best not to clutter your
working directory with these files, so we will start up the server and client in a designated
directory.

On Unix and OS X

$ mkdir /Users/bruno/server
On Windows

S mkdir C:\Users\bruno\server

2. Start up the shared server.

Start up the shared server, using the —r dir option to specify the directory created in the
previous step and the -p port option to set the hostname:port number to

localhost: 1666, the required setting for running the shared server and the client on same
computer.

On UNIX and OS X

$ p4d -r /Users/bruno/server -p localhost:1666
On Windows

21

Start up the command line client

$ p4d -r C:\Users\bruno\server -p localhost:1666

This produces the following output:

Perforce db files in 'server' will be created if missing...
Perforce Server starting...

Because the shared server runs in the foreground, you must open a new terminal window in
which to run subsequent commands.

Start up the command line client

1. Change to your working directory.
This is the working directory you created in "Create a working directory" on the previous page.
On UNIX and OS X

$ ed /Users/bruno/tutorial

On Windows
$ ed C:\Users\bruno\tutorial

2. Set the PAPORT environment variable

The serveris running as 1localhost on port 1666. For the client to communicate with the
server, you must set the client’s P4APORT variable to localhost:1666.

On UNIX and OSX with the bash shell:

$ export P4PORT=localhost:1666
On Windows

$ p4 set P4PORT=localhost:1666
3. Start up the command line client.

$ p4

This produces the following output, followed by a list of help commands.

Perforce -- the Fast Software Configuration Management System.

P4 is Perforce's client tool for the command line.

Verify the connection to the server

To verify a connection, runthe p4 info command.

22

Create a stream depot

$ p4 info

If PAPORT is set correctly, information like the following is displayed:

User name: bruno

Client name: dhcp-133-nl101

Client host: dhcp-133-n101.dhcp.perforce.com
Client unknown.

Current directory: /Users/bruno/tutorial
Peer address: 127.0.0.1:49917

Client address: 127.0.0.1

Server address: localhost:1666

Server root: /Users/bruno/server

Server date: 2016/03/01 16:15:38 -0800 PST
Server uptime: 00:03:26

Server version: P4D/DARWINS0X86 64/2015.2/1340214 (2016/02/03)
Server license: none

Case Handling: insensitive

The Server address: field shows the host to which p4 connected and also displays the host and
port number on which the Helix server is listening. If PAPORT is set incorrectly, you receive a message
like the following:
Perforce client error:

Connect to server failed; check S$P4PORT.

TCP connect to perforce:1666 failed.

perforce: host unknown.

If you get the "host unknown" error, speak to your administrator.

Create a stream depot

Note
For an introduction to streams, see the "Streams" on page 86 chapter.

Create a stream depot in which the stream you create in the next step will reside.

1. At the command line, type the following:

$ p4 depot -t stream JamCode

23

Create a stream depot

The -t option specifies the type of depot to create, in this case a stream depot. JamCode is the
name of the depot you're creating.

2. Notice that the depot specification opens in your text editor:

A Perforce Depot Specification.

#

Depot: The name of the depot.

Owner: The user who created this depot.

Date: The date this specification was last modified.
Description: A short description of the depot (optional).

Type: Whether the depot is 'local', 'remote',

'stream', 'spec', 'archive', 'tangent',

or 'unload'. Default is 'local'.

Address: Connection address (remote depots only) .

Suffix: Suffix for all saved specs (spec depot only).
StreamDepth: Depth for streams in this depot (stream depots only) .
Map: Path translation information (must have ... in it).
SpecMap: For spec depot, which specs should be recorded
(optional) .

#

Use 'p4 help depot' to see more about depot forms.

Depot: JamCode

Owner: bruno

Date: 2018/02/22 13:20:06

Description:

Created by bruno.

Type: Stream
StreamDepth: //JamCode/1
Map: JamCode/ . ..

3. Regarding the StreamDepth: field, see "Working with stream depots" in Helix Core P4
Command Reference.

4. Save the file and exit the editor.

5. Notice that the command line now shows: Depot JamCode saved.

24

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_depot.html#Working_with_stream_depots
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Create your first stream

Create your first stream

A stream is where you store your work. The first stream is always a mainline stream. To learn more about
streams, see "Streams" on page 86.

Tip

Helix Core server allows a stream to be re-parented to any other stream with the same depot root.
Although it is possible to have multiple mainline streams in a stream depot, we recommend that you
create only one mainline for each stream depot. Having a single mainline stream in a stream depot:

m avoids the possibility of accidentally re-parenting a child stream to a different mainline than that
from which the stream originated

m simplifies the visual representation in Helix Visual Client (P4V)

To create the stream:

1. Issuethep4 streamcommand, specifying the stream depot name followed by the stream

name.

Here, we name the streammain, soits full nameis //JameCode/main, and we use the -t
option to specify the stream type as mainline:

$ p4 stream -t mainline //JamCode/main

Helix server opens the stream spec in an editor:

A Perforce Stream Specification.

#

Stream:
path.

Update:
Access:
Owner:
Name:

Parent:
mainline.
Type:

#
'mainline’',
#

'task'.

Description:

25

The stream field is unique and specifies the depot

The date the specification was last changed.

The date the specification was originally created.
The user who created this stream.

A short title which may be updated.

The parent of this stream, or 'none' if Type is

Type of stream provides clues for commands run

between stream and parent. Five types include

'release', 'development' (default), 'virtual' and

A short description of the stream (optional).

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html

Create your first stream

Options: Stream Options:
allsubmit/ownersubmit [un]locked
[no] toparent [no]fromparent

mergedown/mergeany

Paths: Identify paths in the stream and how they are to be
generated in resulting clients of this stream.

Path types are share/isolate/import/import+/exclude.
Remapped: Remap a stream path in the resulting client view.

Ignored: Ignore a stream path in the resulting client view.

#
Use 'p4 help stream' to see more about stream specifications and

command.

Stream: //JamCode/main

Owner: bruno
Name : main
Parent: none
Type: mainline
Description:

Created by bruno.

Options: allsubmit unlocked notoparent nofromparent mergedown
Paths:
share

A stream spec defines the stream’s name and location, its type, its parent stream, the files in the
workspace view of workspaces bound to it, and other configurable behaviors. Note that the
stream name is composed of the stream depot name followed by the stream name. You edit the
stream spec'’s fields to configure the stream’s behavior, as explained in "Configure a stream" on
page 87.

Save the file and exit the editor.
Notice that the command line now shows Stream //JamCode/main saved.

To verify that your mainline stream has been created, issue the p4 streams command to display a
list of streams.

$ p4 streams //JamCode/...

26

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_streams.html

Define a client workspace and bind it to the stream

This produces the following output:

Stream //JamCode/main mainline none 'main'

Define a client workspace and bind it to the stream

A client workspace is the set of directories on your local computer where you work on the file revisions
that Helix server manages. At minimum, you should assign your workspace a name and specify a
workspace root where you want local copies of depot files stored. The client workspace name defaults to
the hostname of the computer on which your client is running. For details, see "Configure a client
workspace" on page 69.

Before you can work in a stream, you must associate your workspace with the stream. When you
associate a workspace with a stream, Helix server generates the workspace view based on the structure
of the stream. Workspace views are a crucial concept in Helix server and are discussed in detail in
"Configure workspace views" on page 77.

To create a workspace and bind it to a stream:

1. Set the PACLIENT environment variable to desired workspace name.
On UNIX and OS X

$ export P4CLIENT=bruno_ws
On Windows

$ set P4CLIENT=bruno_ws
2. Usethep4 client command to bind your workspace to the stream.

$ p4 client -S //JamCode/main
The - S option specifies the name of the associated stream.

Helix server opens the client specification (spec) in an editor:

A Perforce Client Specification.

#

Client: The client name.

Update: The date this specification was last modified.

Access: The date this client was last used in any way.

Owner: The Perforce user name of the user who owns the
client

workspace. The default is the user who created the
client workspace.

Host: If set, restricts access to the named host.

27

Define a client workspace and bind it to the stream

A short description of the client (optional).
The base directory of the client workspace.
Up to two alternate client workspace roots.
Client options:
[no]allwrite

[no]clobber [no]compress

[un]locked [no]lmodtime [no]rmdir
submitunchanged/submitunchanged+reopen
revertunchanged/revertunchanged+reopen
leaveunchanged/leaveunchanged+reopen

Text file line endings on client:

Type of client: writeable/readonly.

Client's participation in backup enable/disable. If

specified backup of a writable client defaults to

Description:

Root:

AltRoots:

Options:

#

#

SubmitOptions:
#

#

#

LineEnd:
local/unix/mac/win/share.
Type:

Backup:

not

#

enabled.

ServerlID:

View:

ChangeView:

changelists.
Stream:
dedicated.

#

dedicated

#

#

#

StreamAtChange:

of a
#
#

set.

If set, restricts access to the named server.
Lines to map depot files into the client workspace.

Lines to restrict depot files to specific

The stream to which this client's view will be

(Files in stream paths can be submitted only by
stream clients.) When this optional field is set, the
View field will be automatically replaced by a stream
view as the client spec is saved.

A changelist number that sets a back-in-time view

stream (Stream field is required).

Changes cannot be submitted when this field is

28

Define a client workspace and bind it to the stream

Use 'p4 help client' to see more about client views and options.

Client:

Owner:

Host:

Description:

Root:

Options:

normdir

SubmitOptions:

LineEnd:

Stream:

View:

bruno ws

bruno

dhcp-133-n101.dhcp.perforce.com

Created by bruno.

/Users/bruno/tutorial

noallwrite noclobber nocompress unlocked nomodtime

submitunchanged

local

//JamCode/main

//JamCode/main/... //bruno ws/...

At this point you have the option to configure the workspace root directory and any other desired
settings. The workspace root is the highest-level directory of the workspace under which the
managed source files reside. For more information, see "Define a client workspace" on page 70.
Once you've done this, save any changes and quit the editor.

For information about configuring other settings, see "Configure workspace views" on page 77.

Verify that your workspace has been created, withthe p4 clients command.

$ p4 clients -S //JamCode/main

This produces the following output:

Client bruno ws 2016/02/22 root /Users/bruno/tutorial 'Created by

bruno.'

Next, populate the mainline stream with files.

29

Populate a mainline stream

Populate a mainline stream

Now that you've created a stream, you can populate it with files. There are two ways to populate a
mainline stream:

m Add files from the local filesystem.

m Branch files from another depot.

In this tutorial, we demonstrate populating by adding files. For information on populating by branching
from another depot, see "Branch from other depots" on page 45.

To add files to the mainline stream, copy the files and folders to the workspace root directory and then
mark them for add with the p4 add command.

1.

Copy the files and folders to the workspace root directory.

In this example, we add all files residing in a directory named
/Users/bruno/repository.

On UNIX and OSX

$ cp /Users/bruno/repository/* /Users/bruno/tutorial

On Windows

$ copy C:\Users\bruno\repository* C:\Users\bruno\tutorial
Change into the client workspace root directory.

On UNIX and OSX

$ cd /Users/bruno/tutorial

On Windows

$ ed C:\User\bruno\tutorial

Mark the files for add.

$ p4 add *

This creates a default changelist, which you will use when you submit to the depot the file
you added to your workspace. For more information on changelists, see "Changelist-related
tasks" on page 53.

Submit the added files.

To populate the stream, submit the default changelist in which the files are open for add.

$ p4 submit

Helix server opens the change specification inan editor:

A Perforce Change Specification.

#

30

Populate a mainline stream

Change:

Date:

Client:
only

User:

Status:

Type:

Description:
ImportedBy:
Identity:

Jobs:

#

only.)

Files
added

#

#

Change: new

Client: bruno ws

User: bruno

Status: new

Description:

The change number. 'new' on a new changelist.
The date this specification was last modified.

The client on which the changelist was created. Read-

The user who created the changelist.

Either 'pending' or 'submitted'. Read-only.

Either 'public' or 'restricted'. Default is 'public'.
Comments about the changelist. Required.

The user who fetched or pushed this change to this server.
Identifier for this change.

What opened jobs are to be closed by this changelist.

You may delete jobs from this list. (New changelists

What opened files from the default changelist are to be

to this changelist. You may delete files from this list.

(New changelists only.)

<enter description here>

Files:
//JamCode/main/filel.cc # add
//JamCode/main/filel.h # add
//JamCode/main/filel.txt # add
//JamCode/main/file2.cc # add

//JamCode/main/file2.h # add

31

Edit files

//JamCode/main/file2.txt # add
//JamCode/main/file3.cc # add
//JamCode/main/file3.h # add

//JamCode/main/file3.txt # add

Enter a description under Description and then save your changes, to store the files you added in
the Helix server depot. Something like the following output is displayed:

Change 1 created with 9 open file(s).
Submitting change 1.

Locking 9 files

add //JamCode/main/filel.cc#l
add //JamCode/main/filel.h#1
add //JamCode/main/filel.txt#1l
add //JamCode/main/file2.cc#l
add //JamCode/main/file2.h#l
add //JamCode/main/file2.txt#l
add //JamCode/main/file3.cc#l
add //JamCode/main/file3.h#l
add //JamCode/main/file3.txt#1
Change 1 submitted.

The files you added are now stored in the Helix server depot.

Edit files

Now that the files are stored in the depot, you or others can check them out of the depot to edit them. To
open files for edit, issue the p4 edit command, followed by the names(s) of the files you want to edit:

$ p4 edit filel.txt
This displays output like the following:

//JamCode/main/filel.txt#l - opened for edit

Now you can edit the file in the editor of your choice and make changes. After you’'ve made the desired
changes, you submit the changelist associated with the file(s):

S p4 submit

This open achange specification inan editor:

#
Change: The change number. 'new' on a new changelist.
Date: The date this specification was last modified.

32

Edit files

Client:
only

User:

Status:

Type:

Description:
ImportedBy:
Identity:

Jobs:

#

only.)

Files:
added

#

#

Change: new

Client: bruno ws

User: bruno

Status: new

Description:

The client on which the changelist was created. Read-

The user who created the changelist.

Either 'pending' or 'submitted'. Read-only.

Either 'public' or 'restricted'. Default is 'public'.
Comments about the changelist. Required.

The user who fetched or pushed this change to this server.
Identifier for this change.

What opened jobs are to be closed by this changelist.

You may delete jobs from this list. (New changelists

What opened files from the default changelist are to be

to this changelist. You may delete files from this list.
(New changelists only.)

<enter description here>

Files:

//JamCode/main/filel.txt # edit

Enter a description under Description and then save your changes, to store the edits you made in

the Helix server depot.

Something like the following output is displayed:

Change 2 created with 1 open file(s).

Submitting change 2.

Locking 1 files

edit //JamCode/main/filel.txt#2

Change 2 submitt

33

ed.

Delete files

Delete files

Deleting files is more complicated than just deleting them from your filesystem. To mark files for delete,
issuethep4 delete command. In this case, we choose to delete just the header files.

S p4 delete *.h

Helix server displays the following:

//JamCode/main/filel.h#1 - opened for delete

//JamCode/main/file2.h#l - opened for delete

//JamCode/main/file3.h#l - opened for delete

As in "Edit files" on page 32, you issue the p4 submit command to have the deletion affect files in the
depot:

$ p4 submit

Helix server opens the change specification inan editor:

A Perforce Change Specification.

#

Change: The change number. 'new' on a new changelist.

Date: The date this specification was last modified.

Client: The client on which the changelist was created. Read-
only

User: The user who created the changelist.

Status: Either 'pending' or 'submitted'. Read-only.

Type: Either 'public' or 'restricted'. Default is 'public'.

Description: Comments about the changelist. Required.

ImportedBy: The user who fetched or pushed this change to this server.
Identity: Identifier for this change.

Jobs: What opened jobs are to be closed by this changelist.

You may delete jobs from this list. (New changelists
only.)

Files: What opened files from the default changelist are to be
added

to this changelist. You may delete files from this list.
(New changelists only.)

Change: new

34

Sync files from the depot to your client workspace

Client: jschaffer ws
User: jschaffer
Status: new

Description:

<enter description here>

Files:
//JamCode/main/filel.h # delete
//JamCode/main/file2.h # delete
//JamCode/main/file3.h # delete

Enter a description under Description and then save your changes, to store the changes you made
in the Helix server depot. Something like the following output is displayed:

Change 3 created with 3 open file(s).

Submitting change 3.

Locking 3 files

delete //JamCode/main/filel.h#2

delete //JamCode/main/file2.h#2

delete //JamCode/main/file3.h#2

Change 3 submitted.

Sync files from the depot to your client workspace

Syncing (retrieving files from the depot) — with the p4 sync command — specifies the files and
directories you want to retrieve from the depot. You do this to obtain the latest changes —be they edits,
adds, or deletes—that have been made by others and then submitted to the depot.

You can only sync files that are mapped in your workspace view. For more information on workspace
views, see "Configure workspace views" on page 77.

$ p4 sync
By passingin ..., we request to sync all files in the current directory.

Suppose that another user has made changes to filel.ccand £ile3. cc. A sync request, would
yield output like the following:

//JamCode/main/filel.cc#3 - updating

/Users/bruno/workspace/tutorial/filel.cc

35

Populate child streams

//JamCode/main/file3.cc#5 - updating

/Users/bruno/workspace/tutorial/file3.cc

Populate child streams

After populating the mainline, you can branch files for development and for release. For example, to
create a development stream that is a clone of its mainline parent, issue the following command:

$ p4 stream -t development -P //JamCode/main //JamCode/dev

Helix server displays the stream specification with the type set to development. Save the specification.
To populate the stream with the files from the mainline, issue the following commands:

$ p4 populate -d "From main" -S //JamCode/dev -r
$ p4 sync

36

This chapter describes tasks you commonly perform when setting up and using your version control

system. It discusses both tasks you perform just once when getting your system set up, and tasks you

may perform one or more times during the lifetime of your installation.

Overview of initial tasks
Overview of recurring tasks
Initial tasks
Create a working directory
Log in to the shared server
Start up a shared server
Start up the command line client and verify the connection to the server
Create a stream depot
Create a mainline stream
Define a workspace and bind it to the stream
Populate the mainline stream
Recurring file-level tasks
Sync files
Add files
Add files outside of Helix server and then use p4 reconcile -k
Edit files and check in changes
Delete files
Revert files, to discard changes
Rename and move files
Diff files

Changelist-related tasks
Submit a pending changelist
Create numbered changelists
Submit a numbered changelist
Undo a submitted change
Shelve Changelists ... L
Display information about changelists
Move files between changelists
Delete changelists

Other recurring tasks
Configure client behavior
Configure stream behavior
Branch and populate child streams
Propagate changes

37

Overview of initial tasks

Overview of initial tasks

This section gives you an overview of the tasks for setting up your command client and shared server.
The tasks in this workflow should be performed once, and in the order presented in the following table:

Step Task Stream or classic Link
user
1 Create a working directory Both "Create a working directory" on
page 40
2 Log in to the shared server Both "Log in to the shared server" on
or start up a shared server page 40 or "Start up a shared
server" on page 40
3 Start up the command line Both "Start up the command line
client and verify the client and verify the connection
connection to the server to the server" on page 41
4 Create a stream depot Stream "Create a stream depot" on
page 42
5 Create a mainline stream Stream. Classic users, "Create a mainline stream" on
see "Organizing the page 43
depot" on page 118.
6 Define a workspace Both "Define a workspace and bind it
to the stream" on page 44
7 Bind the workspace to the Stream "Define a workspace and bind it
stream to the stream" on page 44
8 Populate the mainline Stream. Classic users "Populate the mainline stream"

stream populate a codeline.

on page 45

Overview of recurring tasks

This section gives you an overview of the tasks you perform during the lifetime of your installation,
divided between file-level tasks and other tasks. You may perform them one or more times, or never.

The following table summarizes file-level recurring tasks:

Task

Stream or classic
user

Link

Sync files from the

depot

38

Both

"Sync files" on page 48

Initial tasks

Task Stream or classic Link
user

Edit files Both "Edit files and check in changes" on
page 51

Rename and move Both "Rename and move files" on page 52

files

Diff files Both "Diff files" on page 52

Revert files Both "Revert files, to discard changes" on
page 52

Add files Both "Add files" on page 48

Delete files Both "Delete files" on page 51

Resolve conflicts Both "Resolve conflicts" on page 108

The following table summarizes other recurring tasks:

Task Stream or classic Link

user
Work with changelists Both "Changelist-related tasks" on page 53
Configure client behavior Both "Configure clients" on page 63
Configure stream behavior Stream "Configure a stream" on page 87
Branch and populate child Stream "Branch and populate child streams" on
streams page 60
Propagate changes between Stream "Propagate changes" on page 60

streams

Initial tasks

You perform the tasks in this section once, in the order presented.
Create a working directory 40
Log in to the shared server il 40
Start up a shared Server 40
Start up the command line client and verify the connection to the server 41
Create a stream depot 42
Create a mainline stream 43
Define a workspace and bind it to the stream 44
Populate the mainline stream 45

Create a working directory

Create a working directory

Create a working directory and then change to the directory. In this example, we create a working
directory called work in the user's home directory.

$ mkdir /Users/bruno/work

$ ed /Users/bruno/work

Log in to the shared server

Typically, your administrator starts up a shared server for you. If you need to start up your own shared
server, see "Start up a shared server" below.

Your admin provides you with a user id, a password, and the server's address. You then follow these
steps:

1. Setthe P4APORT environment variable to the server address the admin gave you.

Suppose the serveris running as serverl on port 1666. To enable the client to communicate
with the server, set the client’'s P4PORT variable to serverl:1666.

On UNIX and OSX

$ export P4PORT=serverl:1666
On Windows

S p4 set P4PORT=serverl:1666
2. Logintothe server withthe p4 login command.
$ p4 login
Helix server displays the following:
Enter password:

3. Enterthe password your admin gave you.

Helix server displays the following:

User bruno logged in.

Start up a shared server

Download into your computer's /usr/local/bin directory the server (p4d) and client (p4) binaries,
as described in "Installation" on page 14. Then, follow these steps:

40

Start up the command line client and verify the connection to the server

Make the server and client binaries executable, if they’re not already

$ chmod +x /usr/local/bin/p4d
$ chmod +x /usr/local/bin/p4

Make a subdirectory in which to start up the server and client.

When started, the server creates a large number of database files. It’s best not to clutter your

working directory with these files, so we will start up the server and client in a different directory.
Create a directory:

$ mkdir /Users/bruno/server

Start up the shared server, usingthe —x dir option to specify the directory created in the
previous step.

$ p4d -r /Users/bruno/server

This produces the following output:

Perforce db files in 'server' will be created if missing...

Perforce Server starting...

Start up the command line client and verify the connection to
the server

1.

2.

Start up the command line client:
$pa

To verify a connection, issue the p4 info command. If PAPORT is set correctly, information
like the following is displayed:

User name: bruno

Client name: bruno ws

Client host: computer 12

Client root: c:\bruno ws

Current directory: c:\bruno ws

Peer address: 10.0.102.24:61122

Client address: 10.0.0.196

Server address: ssl:example.com:1818
Server root: /usr/depot/p4dd

Server date: 2020/09/28 15:03:05 -0700 PDT
Server uptime: 752:41:33

41

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_info.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4PORT.html

Create a stream depot

Server version: P4D/FREEBSD/2012.1/406375 (2020/08/25)
ServerID: Master

Server license: P4Admin <pdadm> 20 users (expires 2021/01/01)
Server license-ip: 10.0.0.2

Case handling: sensitive

The Server address: field shows the host to which p4 connected and also displays the
host and port number on which the Helix server is listening. If PAPORT is set incorrectly, you
receive a message like the following:

Perforce client error:

Connect to server failed; check $P4PORT.
TCP connect to perforce:1666 failed.
perforce: host unknown.

3. Ifthe host:port value is perforce:1666, PAPORT has not been set. Set P4APORT and try to
connect again.

4. If your installation requires SSL, make sure your P4PORT is of the form
ssl:hostname:port.

5. You will be asked to verify the server’s fingerprint the first time you attempt to connect to the
server. If the fingerprint is accurate, usethe p4 trust command to install the fingerprint into a
file (pointed to by the PATRUST environment variable) that holds a list of known/trusted Helix
server and their respective fingerprints. If PATRUST is unset, this fileis . p4trust inthe user's
home directory. For more information, see "SSL-encrypted connections" on page 129.

6. If yourinstallation requires plain text (in order to support older Helix server applications), set
P4PORT to tcp: hostname: port.

Create a stream depot

Typically your administrator will create a stream depot for you and provide you with the depot name.

However, if you are creating a stream depot yourself, type the following:

S p4 depot -t stream depotname

The -t option of the p4 depot command specifies the type of depot to create, in this case a stream
depot.

Helix server opens the depot specification in an editor:

A Perforce Depot Specification.

#

Depot: The name of the depot.

Owner: The user who created this depot.

Date: The date this specification was last modified.
Description: A short description of the depot (optional).

42

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_trust.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4TRUST.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_depot.html

Create a mainline stream

Type:

Address:
Suffix:

Map:
SpecMap:

#
#
#
#
#
StreamDepth:
#
#
#
#

Whether the depot is 'local', 'remote',

'stream', 'spec', 'archive', 'tangent',

or 'unload'. Default is 'local'.

Connection address (remote depots only) .

Suffix for all saved specs (spec depot only).

Depth for streams in this depot (stream depots only).
Path translation information (must have in it).

For spec depot, which specs should be recorded (optional).

Use 'p4 help depot' to see more about depot forms.

Depot:

Owner:

Date:

Description:

Type:

StreamDepth:

Map:

JamCode

bruno

2016/02/22 13:20:06

Created by bruno.

stream

//JamCode/1

JamCode/ . ..

Adjust the value of other fields and save the specification.

Create a mainline stream

When you create a stream, you assign it to one of the "Stream types" on page 88. To create a mainline

stream:

1. Issuethep4 stream, command, specifying the depot followed by the stream name.

For example:

$ p4

stream -t mainline //JamCode/main

43

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html

Define a workspace and bind it to the stream

The stream specification form is displayed.

2. Change options in the spec to assign the stream the characteristics you want and save the spec.
For details on the stream spec, see "Configure a stream" on page 87.

3. To verify that your mainline stream has been created, issue the p4 streams command.

For example:

$ p4 streams //JamCode/...

Define a workspace and bind it to the stream

Before you can work in a stream, you must define a workspace associated with the stream. When you
associate a workspace with a stream, Helix server generates the workspace view based on the structure
of the stream. Stream users never need edit the workspace view (and cannot manually alter it). If the
structure of the stream changes, Helix server updates the views of workspaces associated with the
stream on an as-needed basis.

Note
Users of a non-stream classic depot define a workspace by issuingthe p4 client command

without passing the - S option, and edit the workspace view manually by editing the View: fieldin
the client spec. See "Configure workspace views" on page 77.

Your Helix server administrator might have already configured a client workspace for your computer. If
so, the Client field in the client spec displays the Client workspace name when the user issues the p4
client command.

If not, to create a workspace for a stream:

1. Issuethep4 client command, using the —S option to specify the name of the associated
stream.

For example:

$ p4 client -S //JamCode/main
The workspace specification form is displayed.

2. Configure the workspace Root directory and any other desired settings, and save the
specification. For details, see "Define a client workspace" on page 70.

3. Verify that your workspace has been created by usingp4 clients.

For example:

$ p4 clients -S //JamCode/main

The next step is "Populate the mainline stream” on the facing page.

44

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_streams.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_client.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_clients.html

Populate the mainline stream

Populate the mainline stream

Note
Users of a non-stream classic depot populate a branch. See "Codeline management" on page 118.

There are two ways to populate a mainline stream:

m "Add files" below from the local filesystem. It does not preserve file history and is the most typical
way.

= "Branch from other depots" below. If you have existing non-stream classic depots and you need to
preserve file history, use this way.

Add files

If you do not need to preserve file history, add the files. To add files to the mainline stream:

1. Create the workspace root directory if it does not exist.

For example:

C:\bruno ws> ed C:\Users\bruno\p4clients
C:\Users\bruno\p4clients> mkdir bruno_projectX main
Copy the files and folders to the workspace root directory.

Change into the client workspace root directory, and use the p4 reconcile command to
detect files not under Helix server control and open them for add by using the p4 add command.

C:\Users\bruno\p4clients> c¢d bruno_projectX main

C:\Users\bruno\p4clients\bruno projectX main> p4 add

To verify that the files are set up to be added correctly, issue the p4 opened command.
To populate the stream, submit the changelist in which the files are open.

For details on working with changelists, see "Changelist-related tasks" on page 53.

Branch from other depots

You can branch files from other stream depots, classic depots, or remote depots into a stream. If you
populate the mainline by branching, Helix server preserves the connection between the revision history of
the source and target files. Your workspace must be set to one associated with the target stream
(example: p4 set PACLIENT=bruno_projectX main)

To populate the mainline by branching, issue the p4 copy command, specifying source and target.
Example:

$ p4 copy -v //mysourcedepot/mainline/... //ProjectX/main/...

45

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_reconcile.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_add.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_opened.html

Recurring file-level tasks

In this example, the —wv option performs the copy on the server without syncing the newly-created files to
the workspace. This can be a significant time-saver if there are many files being copied. You can then
sync only the files you intend to work with from the new location.

p4d displays a series of “import from” messages listing the source and target files, and opens the file(s)
in a pending changelist. To preview the results of the operation without opening files, specify the -n
option.

To populate the stream with the files from the mainline, issue the following commands:

1. To verify that the files are set up to be added correctly, issue the p4 opened command.

2. Topopulate the stream, p4 submi t the changelist in which the files are open.

If you are populating an empty stream, you can simplify this process by usingp4 populate. For
example:

$ p4 populate //mysourcedepot/mainline/... //ProjectX/main/...

does the same thingas p4 copy -vfollowedby ap4 submit.

Tip
To preview what the result of the command would be, first use p4 populate -n, and, if the
result is what you want, use p4 populate without the —n preview.

To undo an erroneous copy operation, issuethe p4d revert command. For example:

$ p4 revert //ProjectX/main/...

Recurring file-level tasks

This section describes tasks you perform during the lifetime of your installation that occur at the file level.

Before we look at the tasks in detail, here’s a table that provides a snapshot of the sequence in which you
perform the most common file-related tasks.

For details on working with changelists, see "Changelist-related tasks" on page 53.

Here are the basic steps for working with files. In general, to change files in the depot (file repository), you
open the files in changelists and submit the changelists with a description of your changes. Helix server
assigns numbers to changelists and maintains the revision history of your files. This approach enables
you to group related changes and find out who changed a file and why and when it was changed.

Task Description

Syncing Issuethe p4 sync command, specifying the files and directories you want to
(retrieving files retrieve from the depot. You can only sync files that are mapped in your client
from the depot) workspace view.

46

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_submit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_revert.html

Recurring file-level tasks

Task Description

Add files to the
depot

1. Create the file in the workspace.
2. Open the file for add in a changelist (p4 add).
3. Submit the changelist (p4 submit).

Edit files and
check in
changes

1. If necessary, sync the desired file revision to your workspace (p4
sync).

2. Open the file for edit in a changelist (p4 edit).
3. Make your changes.

4. Submit the changelist (p4 submit). Todiscard changes, issue the p4
revert command.

Delete files from

1. Open the file for delete in a changelist (p4 delete). Thefile is deleted

the depot from your workspace.

2. Submit the changelist (p4 submit). The file is deleted from the depot.
Discard Revert the files or the changelist in which the files are open. Reverting has the
changes following effects on open files:

Add no effect - the file remains in your workspace.

Edit the revision you opened is resynced from the depot, overwriting
any changes you made to the file in your workspace.

Delete thefileis resynced to your workspace.

Files are added to, deleted from, or updated in the depot only when you successfully submit the pending
changelist in which the files are open. A changelist can contain a mixture of files open for add, edit and

delete.

For details on working with changelists, see "Changelist-related tasks" on page 53.

Also in this section:

SYNC fIleS 48
Add files 48
Add files outside of Helix server and then use p4 reconcile-k ._...._...._.. .. 50
Edit files and checkinchanges 51
Delete filesl 51
Revert files, to discard changes 52
Rename and move files 52
DI files L 52
Resolve conflicts 53

47

Sync files

Sync files

Syncing—with the p4 sync command—adds, updates, or deletes files in the client workspace to bring
the workspace contents into agreement with the depot. If a file exists within a particular subdirectory in
the depot, but that directory does not exist in the client workspace, the directory is created in the client
workspace when you sync the file. If a file has been deleted from the depot, p4 sync deletes it from
the client workspace.

Example Sync files from the depot to a client workspace
The command below retrieves the most recent revisions of all files in the client view from the depot

into the workspace. As files are synced, they are listed in the command output.
C:\bruno ws> p4 sync
//Acme/dev/bin/bin.linux24x86/readme.txt#l - added as c:\bruno
ws\dev\bin\bin.linux24x86\readme.txt
//Acme/dev/bin/bin.ntx86/glut32.d11#1l - added as c:\bruno
ws\dev\bin\bin.ntx86\glut32.dl1l
//Acme/dev//bin/bin.ntx86/jamgraph.exe#2 - added as c:\bruno
ws\dev\bin\bin.ntx86\jamgraph.exe

[...]

Note
You cannot sync files that are not in your workspace view. See "Configure workspace views" on
page 77 for more information.

To sync revisions of files prior to the latest revision in the depot, use revision specifiers. For example, to
sync the first revision of Jamfile, which has multiple revisions, issue the following command:

$ p4 sync //Acme/dev/jam/Jamfile#l

To sync groups of files or entire directories, use wildcards. For example, to sync everything in and below
the jam folder, issue the following command:

$ p4 sync //Acme/dev/jam/. ..

The Helix server tracks which revisions you have synced. For maximum efficiency, Helix server does
not re-sync an already-synced file revision. To re-sync files you (perhaps inadvertently) deleted manually,
specify the — £ option when you issue the p4 sync command.

Add files

To add files to the depot, create the files in your workspace, then issue the p4 add command. The p4
add command opens the files for add in the default pending changelist. The files are added when you
successfully submit the default pending changelist.

48

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_add.html

Add files

To open multiple files for add, use a single p4 add command with wildcards.

To add files recursively, use the Helix server . . . wildcard.

A similar approachis tousethe p4 reconcile -a * command. The p4 reconcile command opens
files for add, delete, or edit to reconcile a workspace with changes made outside of Helix server.

Example Add files

Bruno has created two text files that he must add to the depot. To add all the text files at once, he uses
the * wildcard when he issues the p4 add command.

C:\bruno ws\Acme\dev\docs\manuals> p4 add *.txt
//Acme/dev/docs/manuals/installnotes.txt#l - opened for add

//Acme/dev/docs/manuals/requirements.txt#l - opened for add

Now the files he wants to add to the depot are open in his default changelist. The files are stored in the
depot when the changelist is submitted.

Example Add files with multiple *
Using the * wildcard in more than one place is possible.

C:\bruno ws\Acme\dev\docs\manuals> p4 add *World*.*
//Acme/dev/docs/manuals/World.html#1l - opened for add
//Acme/dev/docs/manuals/WorldWorld. java#l - opened for add
//Acme/dev/docs/manuals/TwoWorldsApart.json#l - opened for add

Example Add files with ...
Using . . . allows you to add files in the specified directory and its subdirectories.

C:\bruno ws\Acme\dev\docs\manuals> p4 add admin-guide/...
//Acme/dev/docs/manuals/admin-guide/readme. txt#l - opened for add
//Acme/dev/docs/manuals/admin-guide/subdirectoryl/procedurel .html#l -
opened for add

You can also issue the command without specifying any directory, in which case it applies to the
current directory and its subdirectories:

C:\bruno ws\Acme\dev\docs\manuals> p4 add
//Acme/dev/docs/manuals/admin-guide/readme.txt#1 - opened for add

//Acme/dev/docs/manuals/admin-guide/subdirectoryl/procedurel .html#l -
opened for add

//Acme/dev/docs/manuals/developer-guide/readme.txt#1 - opened for add

49

https://doc-ondemand.bnr.perforce.com//cmdref/main/latest/Content/CmdRef/p4_reconcile.html

Add files outside of Helix server and then use p4 reconcile -k

Example Submit a changelist to the depot

Bruno is ready to add his files to the depot. He types p4 submit and sees the following form in a
standard text editor:

Change: new
Client: bruno ws
User: bruno
Status: new
Description:
<enter description here>
Type: public
Files:
//Acme/dev/docs/manuals/installnotes.txt # add
//Acme/dev/docs/manuals/requirements. txt # add

Bruno changes the contents of the Description: field to describe his file updates. When he’s
done, he saves the form and exits the editor, and the new files are added to the depot.

You must enter a description inthe Description: field. You can delete lines from the Files : field.
Any files deleted from this list are moved to the next default changelist, and are listed the next time you
submit the default changelist.

If you are adding a file to a directory that does not exist in the depot, the depot directory is created when
you successfully submit the changelist.

For details on working with changelists, see "Changelist-related tasks" on page 53.

Add files outside of Helix server and then use p4 reconcile -k

In certain situations, you may need to copy a very large number of files into your workspace from another
user's workspace. Rather than doing this via Helix server, you may, for performance reasons, choose to
copy them directly — via a snapshot, for example — from the other user's workspace into yours.

Once you've done this, you will need to:

m Inform Helix server that these files now exist on your client.

That is, you want to update your client’s have list to reflect the actual contents of your workspace.
Seethep4 have pagein Helix Core P4 Command Reference for details on have lists.

m Ensure that your workspace view contains mappings identical to those contained in the
workspace view of the client you copied from

This ensures that Helix server doesn’t think these files are new.

Todothis, runthep4 reconcile -k command.

50

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_submit.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Edit files and check in changes

You can also ignore groups of files when adding. See "Ignoring groups of files when adding” on page 127
for details.

Edit files and check in changes

You must open a file for edit before you attempt to edit the file. When you open a file for edit—with the p4
edit command —Helix server enables write permission for the file in your workspace and adds the files
to a changelist. If the file is in the depot but not in your workspace, you must sync it before you open it for
edit.

Example Open a file for edit
Bruno wants to make changes to command. ¢, so he syncs it and opens the file for edit.

C:\bruno ws\dev> p4 sync //Acme/dev/command.c

//depot/dev/command.c#8 - added as c:\bruno ws\dev\command.c

C:\bruno ws\dev> p4 edit //Acme/dev/command.c
//Acme/dev/command.c#8 - opened for edit

He then edits the file with any text editor. When he’s finished, he submits the file to the depot with p4
submit.

Delete files

To delete files from the depot, you open them for delete by issuing the p4 delete command, then
submit the changelist in which they are open. When you delete a file from the depot, previous revisions
remain, and a new head revision is added, marked as “deleted.” You can still sync previous revisions of
the file.

When you issue the p4 delete command, the files are deleted from your workspace but not from the
depot. If you revert files that are open for delete, they are restored to your workspace. When you
successfully submit the changelist in which they are open, the files are deleted from the depot.

Example Delete a file from the depot
Bruno deletes vendor . doc from the depot as follows:

C:\bruno ws\dev> p4 delete //Acme/dev/docs/manuals/vendor.doc
//Acme/dev/docs/manuals/vendor.doc#l - opened for delete

The file is deleted from the client workspace immediately, but it is not deleted from the depot until he
issues thep4 submit command.

51

Revert files, to discard changes

Revert files, to discard changes

To remove an open file from a changelist and discard any changes you made, issue the p4 revert
command. When you revert afile, Helix server restores the last version you synced to your workspace. If
you revert a file that is open for add, the file is removed from the changelist but is not deleted from your
workspace.

Example Revert a file
Bruno decides not to add his text files after all.

C:\bruno ws\dev> p4 revert *.txt
//Acme/dev/docs/manuals/installnotes.txt#none - was add, abandoned

//Acme/dev/docs/manuals/requirements. txt#none - was add, abandoned

To preview the results of a revert operation without actually reverting files, specify the —n option when
youissue thep4 revert command.

Rename and move files

To rename or move files, you must first open them for add or edit, and then use the p4 move command:

C:\bruno ws> p4 move source file target file

To move groups of files, use matching wildcards in the source _file and target_file specifiers. To move
files, you must have Helix server wri te permission for the specified files. For information about using
wildcards with Helix server files, see "Helix server wildcards" on page 177.

For details about Helix server permissions, see the Helix Core Server Administrator Guide.

When you rename or move a file usingp4 mowve, the versioning service creates an integration record
that links it to its deleted predecessor, preserving the file’s history. Integration is also used to create
branches and to propagate changes.

Note
The p4 mowve command is renaming a file within the same directory, or moving a file between

folders within the same directory tree. To learn how to restructure the depot by moving an entire
branch, see the Knowledge Base article, "Renaming Depot Directories".

Diff files

Helix server allows you to diff (compare) revisions of text files. By diffing files, you can display:

m Changes that you made after opening the file for edit
m Differences between any two revisions

m Differences between file revisions in different branches

52

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://community.perforce.com/s/article/3478

Resolve conflicts

To diff afile that is synced to your workspace with a depot revision, issuethe p4 diff
filename# revcommand. If you omit the revision specifier, the file in your workspace is compared
with the revision you last synced, to display changes you made after syncing it.

To diff two revisions that reside in the depot but not in your workspace, use thep4 dif£f2 command.
To diff a set of files, specify wildcards in the filename argument when you issuethep4 diff2
command.

Thep4 diff command performs the comparison on your computer, but thep4 dif£2 command
instructs the Helix server to perform the diff and to send the results to you.

The following table lists some common uses for diff commands:

To diff ECET B Use this command

The workspace file The head revision p4 diff fileorpd4d diff
filet#thead

The workspace file Revision 3 p4 diff file#3

The head revision Revision 134 p4 diff2 file file#134

File revision at File revision at changelist p4 diff2 file@32 file@1l77

changelist 32 177

The workspace file A file shelved in pending p4 diff file@=123

changelist 123

Allfiles inrelease 1 Allfiles in release 2 p4 diff2 //Acme/rell/...

//Acme/rel2/. ..

By default, the p4 diff command launches Helix server's internal diff application. To use a different
diff program, set the PADIFF environment variable to specify the path and executable of the desired
application. To specify arguments for the external diff application, use the —d option. For details, refer to
the Helix Core P4 Command Reference.

Resolve conflicts

When you and other users are working on the same set of files, conflicts can occur. Helix server enables
your team to work on the same files simultaneously and resolve any conflicts that arise.

"Resolve conflicts" on page 108 explains in detail how to resolve file conflicts.

Changelist-related tasks

To change files in the depot, you open them in a changelist, make any changes to the files, and then
submit the changelist. A changelist contains a list of files, their revision numbers, and the operations to
be performed on the files. Unsubmitted changelists are referred to as pending changelists.

53

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Submit a pending changelist

Submission of changelists is an all-or-nothing operation; that is, either all of the files in the changelist are
updated in the depot, or, if an error occurs, none of them are. This approach guarantees that code
alterations that affect multiple files occur simultaneously.

Helix server assigns numbers to changelists and also maintains a default changelist, which is numbered
when you submit it. You can create multiple changelists to organize your work. For example, one
changelist might contain files that are changed to implement a new feature, and another changelist might
contain a bug fix. When you open afile, it is placed in the default changelist unless you specify an
existing changelist number on the command line using the —c option. For example, to edit a file and
submit it in changelist number 4, usep4 edit -c 4 filename. To open afileinthe default
changelist, omit the —c option.

You can also shelve changelists in order to temporarily preserve work in progress for your own use, or for
review by others. Shelving enables you to temporarily cache files in the shared server without formally
submitting them to the depot.

The Helix server might renumber a changelist when you submit it, depending on other users' activities; if
your changelist is renumbered, its original number is never reassigned to another changelist.

You can restrict a changelist from public view by changing the Type : field from public to
restricted. Ingeneral, if a changelist is restricted, only those users with 1ist access to at least
one of the files in the changelist are permitted to see the changelist description.

To control what happens to files in a changelist when you submit the changelist to the depot, see
"Configure submit options" on page 73.

Also in this section:

Submit a pending changelist 54
Create numbered changelists 55
Submit a numbered changelist 56
Undo a submitted change 56
Shelve changelists 56
Display information about changelists 58
Move files between changelists 59
Delete changelists 59

Submit a pending changelist

To submit a pending changelist, issue the p4 submit command. When you issue thep4 submit
command, a form is displayed, listing the files in the changelist. You can remove files from this list. The
files you remove remain open in the default pending changelist until you submit them or revert them.

To submit specific files that are open in the default changelist, issuethe p4 submit filename
command. To specify groups of files, use wildcards. For example, to submit all text files open in the
default changelist, typep4 submit "*".txt. (Use quotation marks as an escape code around the
* wildcard to prevent it from being interpreted by the local command shell).

54

Create numbered changelists

After you save the changelist form and exit the text editor, the changelist is submitted to the Helix server,
and the files in the depot are updated. After a changelist has been successfully submitted, only a Helix
server administrator can change it, and the only fields that can be changed are the description and user
name.

If an error occurs when you submit the default changelist, Helix server creates a numbered changelist
containing the files you attempted to submit. You must then fix the problems and submit the numbered
changelist using the —c option.

Helix server enables write permission for files that you open for edit and disables write permission when
you successfully submit the changelist containing the files. To prevent conflicts with Helix server's
management of your workspace, do not change file write permissions manually.

Before committing a changelist, p4 submi t briefly locks all files being submitted. If any file cannot be
locked or submitted, the files are left open in a numbered pending changelist. By default, the files ina
failed submit operation are left locked unless the submi t . unlocklocked configurable is set. Files
are unlocked even if they were manually locked prior to submit if submit fails when
submit.unlocklockedis set.

Create numbered changelists

To create a numbered changelist, issue the p4 change command. This command displays the
changelist form. Enter a description and make any desired changes; then save the form and exit the
editor.

All files open in the default changelist are moved to the new changelist. When you exit the text editor, the
changelist is assigned a number. If you delete files from this changelist, the files are moved back to the
default changelist.

Example Working with multiple changelists

Bruno is fixing two different bugs, and needs to submit each fix in a separate changelist. He syncs the
head revisions of the files for the first fix and opens the file for edit in the default changelist:

C:\bruno ws> p4 sync //JamCode/dev/jam/*.c
[list of files synced...]

C:\bruno ws> p4 edit //JamCode/dev/jam/*.c
[list of files opened for edit...]

Now he issues the p4 change command and enters a description in the changelist form. After he
saves the file and exits the editor, Helix server creates a numbered changelist containing the files.

C:\bruno ws\dev\main\docs\manuals> p4 change

[Enter description and save form]

55

Submit a numbered changelist

Change 777 created with 33 open file(s).

For the second bug fix, he performs the same steps, p4 sync,p4 edit,andp4 change. Now
he has two numbered changelists, one for each fix.

The numbers assigned to submitted changelists reflect the order in which the changelists were
submitted. When a changelist is submitted, Helix server might renumber it, as shown in the following
example:

Example Automatic renumbering of changelists

Bruno has finished fixing the bug that he’s been using changelist 777 for. After he created that
changelist, he submitted another changelist, and two other users also submitted changelists. Bruno
submits changelist 777 withp4 submit -c 777, and sees the following message:

Change 777 renamed change 783 and submitted.

Submit a numbered changelist

= To submit a numbered changelist, specify the —c option when you issue thep4 submit
command.

= To submit the default changelist, omit the —c option.

m Using parallel submits can significantly improve performance.

Seethep4 submit command inthe Helix Core P4 Command Reference.

Undo a submitted change

One of the fundamental benefits of version control is the ability to undo an unwanted change, either to
undo the effects of a bad changelist or to roll back to a known good changelist.

You use the p4 undo command to accomplish this. For details, referto the p4 undo command
description in the Helix Core P4 Command Reference.

Shelve changelists

The Helix server shelving feature enables you to temporarily make copies of your files available to other
users without checking the changelist into the depot.

Shelving is useful for individual developers who are switching between tasks or performing cross-
platform testing before checking in their changes. Shelving also enables teams to easily hand off
changes and to perform code reviews.

56

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_submit.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Shelve changelists

Example Shelving a changelist
Earl has made changes to command . ¢ on a UNIX platform, and now wants others to be able to view
and test his changes.

$ p4 edit //Acme/dev/command.c

//Acme/dev/command.c#9 - opened for edit

$ p4 shelve

Change 123 created with 1 open file(s).
Shelving files for change 123.

edit //Acme/dev/command.c#9

Change 123 files shelved.

A pending changelist is created, and the shelved version of command. . c is stored in the server. The
file command . c remains editable in Earl’s workspace, and Earl can continue to work on the file, or
can revert his changes and work on something else.

Shelved files remain open in the changelist from which they were shelved. (To add a file to an existing
shelved changelist, you must first open that file in that specific changelist.) You can continue to work on
the files in your workspace without affecting the shelved files. Shelved files can be synced to other
workspaces, including workspaces owned by other users. For example:

Example Unshelving a changelist for code review
Earl has asked for code review and a cross-platform compatibility check on the version of

command . c that he shelved in changelist 123. Bruno, who is using a Windows computer, types:
C:\bruno ws\dev> p4 unshelve -s 123 //Acme/dev/command.c
//Acme/dev/command.c#9 - unshelved, opened for edit

and conducts the test in the Windows environment while Earl continues on with other work.

When you shelve afile, the version on the shelf is unaffected by commands that you perform in your own
workspace, even if you revert the file to work on something else.

Example Handing off files to other users

Earl’s version of command . ¢ works on UNIX, but Bruno’s cross-platform check of command. ¢
has revealed a bug. Bruno can take over the work from here, so Earl reverts his workspace and works
on something else:

$ p4 revert //Acme/dev/command.c

//Acme/dev/command.c#9 - was edit, reverted

57

Display information about changelists

The shelved version of command . c is still available from Earl’s pending changelist 123, and Bruno
opens it in a new changelist, changelist 124.

$ p4 unshelve -s 123 -c 124 //Acme/dev/command.c
//Acme/dev/command.c#9 - unshelved, opened for edit

When Bruno is finished with the work, he can either re-shelve the file (in his own changelist 124, not
Earl’s changelist 123) for further review — with the p4 reshelve command — or discard the
shelved file and submit the version in his workspace by usingp4 submit.

Thep4 submit command has a —e option that enables the submitting of shelved files directly from a
changelist. All files in the shelved change must be up to date and resolved. Other restrictions can apply in
the case of files shelved to stream targets; see the Helix Core P4 Command Reference for details. (To
avoid dealing with these restrictions, you can always move the shelved files into a new pending
changelist before submitting that changelist.)

Example Discarding shelved files before submitting a change

The Windows cross-platform changes are complete, and changelist 124 is ready to be submitted.
Brunouses p4 shelve -dtodiscardthe shelved files.

C:\bruno ws\dev> p4 shelve -d -c 124
Shelve 124 deleted.

All files in the shelved changelist are deleted. Bruno can now submit the changelist.

C:\bruno ws\dev> p4 submit -c 124
Change 124 submitted.

Bruno could have shelved the file in changelist 124, and let Earl unshelve it back into his original
changelist 123 to complete the check-in.

Display information about changelists

To display brief information about changelists, use the p4 changes command. To display full
information, use the p4 describe command. The following table describes some useful reporting
commands and options:

Command Description

p4 Displays a list of all pending, submitted, and shelved changelists, one line per
changes changelist, and an abbreviated description.

p4 Limits the number of changelists reported on to the last specified number of
changes - changelists.

m count

58

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Move files between changelists

Command Description

p4 Limits the list to those changelists with a particular status; for example, p4
changes - changes -s submittedlists only already submitted changelists.

s status

p4 Limits the list to those changelists submitted by a particular user.

changes -

u user

p4 Limits the list to those changelists submitted from a particular client workspace.
changes -

c

workspace

p4 Displays full information about a single changelist. If the changelist has already
describe been submitted, the report includes a list of affected files and the diffs of these

changenum files. (You can use the —s option to exclude the file diffs.)

p4 If a changelist was renumbered, describe the changelist in terms of its original
describe change number.
-0

See at "Create numbered changelists" on page 55, where "Example: Automatic
renumbering of changelists" shows a case where you can use either p4
describe 783 orp4 describe -0 777.

changenum

For more information, see "Changelist reporting" on page 157.

Move files between changelists

Move files between changelists

To move files from one changelist to another, issue thep4 reopen -c changenumfilenames
command, where changenum specifies the number of the target changelist. If you are moving files to the
default changelist, usep4 reopen -c default filenames.

Delete changelists

To delete a pending changelist, you must first remove all files and jobs associated with it and then issue
thep4 change -d changenumcommand. Related operations include the following:

m To move files to another changelist, issue the p4 reopen -c changenumcommand.

= Toremove files from the changelist and discard any changes, issuethe p4 revert -c
changenum command.

Changelists that have already been submitted can be deleted only by a Helix server administrator. See
Deleting changelists and editing changelist descriptions in the Helix Core Server Administrator Guide.

59

https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/superuser.basic.delete_changelists.html

Other recurring tasks

Other recurring tasks
Configure client behavior 60
Configure stream behavior 60
Branch and populate child streams 60
Propagate changes 60

Configure client behavior

You can configure many aspects of the behavior of both the client workspace and the client binary
running on your computer.

"Configure clients" on page 63 discusses client configuration in detail.

Configure stream behavior

You can configure a stream’s characteristics — such as its location, its type, and the files in its view,
among other things.

"Configure a stream" on page 87 discusses stream configuration in detail.

Branch and populate child streams

After populating the mainline — as described in "Populate the mainline stream" on page 45 — you can
branch files for development and for release. For example, to create a development stream that is a clone
of its mainline parent, issue the following command:

$ p4 stream -t development -P //Acme/main //Acme/dev

Helix server displays the stream specification with the type set to development. Save the specification.
To populate the stream with the files from the mainline, issue the following commands:

$ p4 populate -d "From main" -S //Acme/dev -r
$ p4 sync

Propagate changes

Streams enable you to isolate stable code from work in progress, and to work concurrently on various
projects without impediment. Best practice is to periodically update less stable streams from streams
that are more stable (by merging), then promote changes to the more stable stream (by copying). Merging
and copying are streamlined forms of integration. In general, propagate change as follows:

60

Propagate changes

= Forcopying and branching, use p4 copy orp4 populate.
= Formerging, use p4 merge.

m Foredge cases not addressed by p4 merge orp4 copy,usep4 integrate.

The preceding guidelines apply to classic Helix server as well.

Merge changes from a more stable stream

To update a stream with changes from a more stable stream, issue the p4 merge -S source-
stream command, resolve as required, and submit the resulting changelist. By default, you cannot
copy changes to a more stable stream until you have merged any incoming changes from the intended
target. This practice ensures that you do not inadvertently overwrite any of the contents of the more
stable stream.

Assuming changes have been checked into the mainline after you started working in the development
stream (and assuming your workspace is set to a development stream), you can incorporate the changes
into the development stream by issuing the following commands:

$ p4 merge

$ p4 resolve

S p4 submit -d "Merged latest changes"

Copy changes to a more stable stream

After merging, your stream is up to date with its more stable parent or child. Assuming you've finalized
the changes you want to make in the development stream, you can now promote its new content with no
danger of overwriting work in the target stream. The copy operation simply propagates a duplicate of the
source to the target, with no resolve required. For example, (and assuming your workspace is set to a
mainline parent stream) to promote changes from the development stream to its parent mainline, issue
the following commands:

S p4 copy --from //Acme/dev

S p4 submit -d "Check my new feature in"

Compare changes between streams

Usingthep4 interchanges command, you can compare changes between streams to look for
outstanding merges. Suppose you have a mainline stream //Acme /main and its child, a development
stream, / /Acme /dev. The following command tells you which changes exist in / /Acme /dev but
not in its parent stream:

$ p4 interchanges -S //Acme/dev

The following command tells you which changes exist in the parent of / /Acme /dewv but not in
//Acme/dev:

$ p4 interchanges -S -r //Acme/dev

61

Propagate changes

Propagate change across the stream hierarchy

You might need to propagate a specific change between two streams that do not have a parent-child
relationship in the stream hierarchy. For example, to obtain an in-progress feature or bug fix from a peer
development stream. To merge from or copy to such a stream, you can re-parent your stream by editing
its specification and setting the Parent : field to the desired source or target. This practice is not

considered optimal but might be necessary.

Alternatively, you can use the —P option with the p4 merge command to do a one-off merge of the
streams.

62

Configure clients

You can configure many aspects of the behavior of a command-line client, including which server port it
listens on, the current client workspace name, and how files are mapped from the depot to the client
workspace.

In Helix server, the word "client" can refer to either:
m The client process — the running client binary (p4)

m The client workspace — the location on your computer where you work on file revisions managed
by Helix server

This chapter discusses configuring both.

Configure the client process 64
Usingthe command line 64
Using config files L 65
Using environment variables i 66
Using the Windows registry or OS X system settings 67
Configure for IPV6 networks 67
Configure for UniCOde L 68

Configure a client workspace 69
How Helix server manages files inaworkspace 70
Define aclient workspace il 70
Configure workspace OptioNS 72
Configure submit Options 73
View a stream as of a specific changelist 74
Configure line-ending settings 74
Change the location and/or layout of yourworkspace ... 75
Manage WOrKSPACES 76
Delete aclient Workspacel 77

Configure workspace Vviews . .. 77
SPECITY MaPPINGS .. 78
Use wildcards in workspace VIeWS L 79
Map part of the depot 80
Map files to different locations inthe workspace 80
Map files to different filenames 80
Rearrange parts of fillenames 81
Exclude files and directories e 81
Map a single depot path to multiple locations inaworkspace 81
Restrict access by changelist e 82
Avoid mapping conflicts ... 82
Automatically prune empty directories fromaworkspace, 83
Map different depot locations to the same workspace location 83
Deal with spaces in filenames and directories 84
Map Windows workspaces across multiple drives 84
Use the same workspace from different computers 85

63

Configure the client process

Configure the client process

This guide refers to client settings using environment variables. For example, set P4CLIENT.

Tip
You can specify settings such as port, user, and workspace names by using any of the following:
1. On the command line, using options.

2. Inthe configuration file(s) specified by a PACONFIG environment variable, where each config
file can be specific to a workspace.

3. Inthe PAENVIRO configuration file, which is for variables that remain constant for all the
workspaces on a given computer.

4. Userenvironment variables.

System environment variables (on Windows, system-wide environment variables are not
necessarily the same thing as user environment variables)

6. Inthe userregistry or settings set by issuing the p4 set command.

7. Inthe system registry or system settings set by issuingthep4 set -scommand.
where (1) the command line overrides (2) PACONFIG, and (2) PACONFIG overrides (3) PAENVIRO,
and so on.

The output of p4 set lists the values of the variables (and if a given variable was set by config,
enviro, set,orset -s).

To configure your computer to connect to the Helix server, you specify the name of the host where the
server is running, and the port on which it is listening. The default host is perforce and default port is
1666. If the server is running on your own computer, specify Llocalhost as the host name. If the
server is running on port 1666, you can omit the port specification.

You can specify these settings as described in the sections below. For details about working offline
(without a connection to a Helix server), see "Work offline" on page 126.

Also in this section:

Using the command line 64
Using config files 65
Using environment variables 66
Using the Windows registry or OS X system settings 67
Configure for IPv6 networks 67
Configure for Unicode 68

Using the command line

To specify these settings on the command line, use the —p option. For example:

64

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4CONFIG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ENVIRO.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_set.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4CONFIG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4CONFIG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ENVIRO.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_set.html

Using config files

$ p4 -p tcp:localhost:1776 sync //JamCode/dev/jam/Jambase

Settings specified on the command line override any settings specified in config files, environment
variables, the Windows registry, or OS X system settings. For more details about command-line options,
refer to the discussion of global options in the Helix Core P4 Command Reference.

Using config files

Config files are text files containing settings that are in effect for files in and below the directory where the
config file resides. Config files are useful if you have multiple client workspaces on the same computer.
By specifying the settings in config files, you avoid the inconvenience of changing system settings every
time you want to work with a different workspace.

To use config files, you define the PACONF IG environment variable, specifying a file name (for example,

.p4config). When you issue a command, Helix server searches the current working directory and its
parent directories for the specified file and uses the settings it contains (unless the settings are
overridden by command-line options).

Each setting in the file must be specified on its own line, using the following format:

setting=value

Note
Make sure there are no spaces. Forexample, setting = wvalue will not work.

The following settings can be specified in a config file:

Setting Description

PA4CHARSET Character set used for translation of Unicode files.

PACOMMANDCHARSET Non-UTF-16 or UTF-32 character set used by Command-Line Client
when PACHARSET is set toa UTF-16 or UTF-32 character set.

PACLIENT Name of the current client workspace.

PADIFF The name and location of the diff program used by p4 resolve and
p4 diff.

P4EDITOR The editor invoked by those Helix server commands that use forms.

P4HOST Hostname of the client computer. Only useful if the Hos t : field of the
current client workspace has been setinthep4 client form.

P4IGNORE A list of files to ignore when usingthe p4 add andp4 reconcile
commands.

P4ALANGUAGE This environment variable is reserved for system integrators.

65

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using environment variables

Setting Description

PAMERGE The name and location of the third-party merge program to be used by
p4 resolve's merge option.

P4PASSWD Supplies the current Helix server user's password for any Helix server
command.
P4PORT The protocol, host and port number of the Helix server (including proxies

or brokers) with which to communicate.

P4ATRUST The location of a file of known (trusted) Helix server. You manage the
contents of this file withthe p4 trust command. By default, this file
is .p4trust inyour home directory.

P4USER Current Helix server user name.

For details about these settings, refer to the Helix Core P4 Command Reference.

Example Using config files to handle switching between two workspaces

Ona switches between two workspaces on the same computer. The first workspace is ona-ash. It
has a client root of / tmp/user/ona and connects to the Helix server using SSL at
ssl:ida:1818. The second workspace is called ona-agave. Its client root is
/home/ona/p4-ona, and it uses a plaintext connection to a Helix server at
tcp:warhol:1666.

Ona sets the PACONFIG environment variable to . p4settings. She creates afile called
.pdsettingsin /tmp/user/ona containing the following text:

P4PORT=ssl:1da:1818
P4CLIENT=ona-ash

She creates asecond . pdsettings filein /home/ona/p4-ona. It contains the following text:

P4PORT=tcp:warhol:1666
PACLIENT=ona-agave

Any work she does on files under / tmp/user/ona is managed by the Helix server at
ssl:ida: 1818 and work she does on files under /home/ona/p4-ona is managed by the
Helix serverat tcp:warhol:1666.

Using environment variables

To configure connection settings using environment variables, set P4APORT to
protocol: host: port, as in the following examples:

66

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using the Windows registry or OS X system settings

If the server and listens supports set EEEEEE to

runs on to port encryption protocol

your computer 1666 nothing (plaintext) localhost:1666
perforce 1666 SSL ssl:perforce:1666
houston 3435 nothing (plaintext) tcp:houston:3435
example.com 1818 SSL ssl:example.com:1818

If you do not specify a protocol in your P4APORT setting, tcp : (plaintext communication over TCP/IP)is
assumed. If the Helix server has been configured to support SSL, you can encrypt your connection to
Helix server by using ss1 : as the desired protocol.

Other protocols (for example, tcp4 : to require a plaintext IPv4 connection, or ss164 : to require an
encrypted connection, but to prefer the use of the IPv6 transport instead of IPv4) are available for use in
mixed networking environments.

See "Configure for IPv6 networks" below, and the Helix Core Server Administrator Guide, for details.

Using the Windows registry or OS X system settings

On Windows and OS X computers, you can store connection settings in the registry (or system settings)
by usingthe p4 set command. For example:

$ p4 set P4PORT=ssl:tea.example.com:1667
There are two ways you can configure client settings in the registry:

m pd set setting=value: forthe current local user.

m pd set -s setting=value: forall users onthe local computer. Can be overridden by any
registry settings made for the local user. Requires administrative privileges.

To see which settings are in effect, use the p4 set command without arguments. For details about the
p4 set command, see the Helix Core P4 Command Reference.

Configure for IPvé networks

Helix server supports connectivity over IPv6 networks as well as over IPv4 networks.

Depending on the configuration of your LAN or WAN, your system administrator might recommend
different port settings. Your administrator might also recommend that you setthe net . rfc3484
configurable to 1, either from the command line orina P4ACONF IG file:

$ p4 configure set net.rfc3484=1

67

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#net.rfc3484
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4CONFIG.html

Configure for Unicode

Doing so ensures RFC3484-compliant behavior if the protocol value is not explicitly specified. For
example, if the client-side configurable net . rfc3484 is setto 1, and PAPORT is set to
example.com:1666, or tcp:example.com:1666,0orssl:example.com:1666, the
user’s operating system automatically determines, for any given connection, whether to use IPv4 or IPv6
when communicating with the versioning server.

For more information, see IPv6 support and mixed networks in the Helix Core Server Administrator Guide
and P4PORT in Helix Core P4 Command Reference.

Configure for Unicode

The Helix server can be run in Unicode mode to activate support for file names or directory names that
contain Unicode characters, and Helix server identifiers (for example, user names) and specifications (for
example, changelist descriptions or jobs) that contain Unicode characters.

In Unicode mode, the Helix server also translates Unicode files and metadata to the character set
configured on the user’'s computer, and verifies that the Unicode files and metadata contain valid UTF-8
characters.

Note

If you only need to manage textual files that contain Unicode characters, but do not need the features
listed under "Configure for Unicode" above, you do not need to run Helix server in Unicode mode.
Your system administrator will tell you if your site is using Unicode mode or not. For these
installations, assign the Helix server ut£16 file type to textual files that contain Unicode
characters. You do not have to set the PACHARSET or PACOMMANDCHARSET environment
variables. See "Assigning file types for Unicode files" on page 169 for details.

To correctly inter-operate in Unicode mode, and to ensure that such files are translated correctly by the
Helix server when the files are synced or submitted, you must set PACHARSET to the character set that
corresponds to the format used on your computer by the applications that access them, such as text
editors or IDEs. These formats are typically listed when you save the file using the Save As... menu
option.

Values of PACHARSET that begin withut£16 orut£32 further require that you also set
P4COMMANDCHARSET toanonut£16 orut£32 character set in which you want server output
displayed. “Server output” includes informational and error messages, diff output, and information
returned by reporting commands.

For a complete list of valid PACHARSET values, issue the commandp4 help charset.

For further information, see the Helix Core Server Administrator Guide.

Setting PACHARSET on Windows

To set PACHARSET for all users on a computer, you need Windows administrator privileges. Issue the
following command:

C:\bruno ws> p4 set -s PACHARSET=character _ set
To set PACHARSET for the user currently logged in:

68

https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4PORT.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/install-linux-non-package-ipv6.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4PORT.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Configure a client workspace

c:\bruno ws> p4 set PACHARSET=character_ set

Your computer must have a compatible TrueType or OpenType font installed.

Setting PACHARSET on UNIX

You can set PACHARSET from a command shell orin a startup script such as . kshre, .cshrc, or
.profile. Todetermine the proper value for PACHARSET, examine the setting of the LANG or
LOCALE environment variable. Common settings are as follows

If LANG js... Set PACHARSET to
en_US.ISO_8859-1 iso8859-1
ja_JP.EUC eucjp
ja_JP.PCK shiftjis

In general, for a Japanese installation, set PACHARSET to eucjp, and for a European installation, set
PACHARSET toiso08859-1.

Configure a client workspace

A Helix server client workspace is a set of directories on your computer where you work on file revisions
that are managed by Helix server. Each workspace is given a name that identifies the client workspace
to the Helix server. If no workspace name is specified (by setting the PACLIENT environment variable)
the default workspace name is the name of your computer. To specify the effective workspace name, set
the PACLIENT environment variable. You can have multiple workspaces on your computer.

All files within a Helix server client workspace share a root directory, called the client workspace root.
The workspace root is the highest-level directory of the workspace under which the managed source files
reside.

If you configure multiple workspaces on the same computer, keep workspace locations separate to avoid
inadvertently overwriting files. Ensure that client roots are located in different folders and that their
workspace views do not map depot files to overlapping locations on your computer.

Although Windows-based systems do not have a root directory, Helix server supports — via the concept
of a null root — workspaces spread across multiple drives and/or a disjoint folder with only ¢ : \ as the
root.

Also in this section:

How Helix server manages files inaworkspace 70
Define a client workspace 70
Configure workspace options 72
Configure submitoptions 73

69

How Helix server manages files in a workspace

View a stream as of a specific changelist 74
Configure line-ending settings 74
Change the location and/or layout of your workspace 75
Manage workspaces 76
Delete a client workspace 77

How Helix server manages files in a workspace

Helix server manages the files in a client workspace as follows:

m Files in the workspace are created, updated, and deleted as determined by your changes.

m Write permission is enabled when you edit a file, and disabled when you submit your changes.

The state of your workspace is tracked and managed by Helix server. To avoid conflicts with the file
management performed by Helix server applications, do not manually change read-only permission
settings on files. Helix server has commands that help you determine whether or not the state of your
client workspace corresponds to Helix server’s record of that state; see "Work offline" on page 126 for
details.

Files in the workspace that you have not put under Helix server control are ignored by Helix server. For
example, compiled objects, libraries, executables, and developers’ temporary files that are created while
developing software but not added to the depot are not affected by Helix server commands.

By default, when you create a client workspace, the entire depot is mapped to your workspace. You can
refine this mapping to view only a portion of the depot and to change the correspondence between depot
and workspace locations, by refining the workspace view, as described in "Configure workspace views"
on page 77.

Define a client workspace

The following procedure explains how to define a client workspace. Note that no files are synced when
you create a client specification. To find out how to sync files from the depot to your workspace, see
"Sync files" on page 48. For details about relocating files on your computer, see "Change the location
and/or layout of your workspace" on page 75.

Tip
The client storage type cannot be changed after the client workspace is created. For example, a

readonly client cannot be changed into awriteable client.

To define a client workspace:

70

Define a client workspace

Specify the workspace name by setting PACLIENT; for example, on a UNIX system:

$ export P4CLIENT=bruno_ws

Issuethep4 client command.

Important
Stream users must pass inthe S _streamname optiontothe p4 client commandto

specify the name of the stream to which Helix server should bind the workspace.

Helix server displays the client specification form in your text editor. (For details about Helix
server forms, see "Using Helix server forms" on page 183.)

Specify (at least the minimum) settings and save the specification.
The minimum settings you must specify to configure a client workspace are:
= Workspace name

The workspace name defaults to your computer’'s hostname, but your computer can
contain multiple workspaces. To specify the effective workspace, set PACLIENT.

= Workspace root

The client workspace root is the top directory of your client workspace, where Helix server
stores your working copies of depot files. Be sure to set the workspace root, or you might
inadvertently sync files to your computer’s root directory.

Note

For Windows users: when specifying a workspace root, you must include the drive
letter. In addition, root is null on Windows when the client workspace is eitheron a
disjoint drive with only ¢ : \ as the root and/or is spread over multiple drives.

If the workspace root directory does not exist, you must create it before the Helix server
application can make use of it.

The @, #, *, and % characters have specific meaning to Helix server; if you have file or
folder names that use these characters, see "Restrictions on filenames and identifiers" on
page 177 for details.

m Workspace view

By default, the entire depot is mapped to your workspace. You can define a workspace
view (also referred to as a client view) to determine which files in the depot are mapped to
your workspace. This enables Helix server to construct a one-to-one mapping between
individual depot and workspace files. You can map files to have different names and
locations in your workspace than they have in the depot.

For users of streams, Helix server generates the workspace view from the contents of the
stream spec’s Paths : field. Users of classic Helix server branches configure the
workspace view by editing the contents of the client spec’s View: field.

71

Configure workspace options

For details on configuration of workspace views, see "Configure workspace views" on
page 77.

Configure workspace options

The following table describes the client spec Options: in detail:

Option Description Default

[no]lallwrite Specifies whether unopened files are always writable. By noallwrite
default, Helix server makes unopened files read-only. To
avoid inadvertently overwriting changes or causing syncs
tofail, specify noallwrite.

A setting of allwrite leaves unopened files writable by
the current user; it does not set filesystem permissions to
ensure that files are writable by any user of a multiuser
system.

Ifallwrite and noclobber are both set, Helix
server performs a safe sync, comparing the content in
your client workspace against what was last synced. If the
file was modified outside of Helix server control, an error
message is displayed and the file is not overwritten.

[no] clobber Specifies whetherp4 sync overwrites writable but noclobber
unopened workspace files. (By default, Helix server does
not overwrite unopened files if they are writable.)

Ifallwrite and noclobber are both set, Helix
server performs a safe sync, comparing the content in
your client workspace against what was last synced. If the
file was modified outside of Helix server control, an error
message is displayed and the file is not overwritten.

[no]compress Specifies whether data is compressed when it is sent nocompress
between your computer and the Helix server.

[un] locked Specifies whether other users can use, edit, or delete the unlocked
client workspace specification. A Helix server
administrator can override the lock with the - £ (force)
option.

If you lock your client specification, be sure to set a
password for the workspace’s owner using the p4
passwd command.

72

Configure submit options

Option Description Default
[no]modtime For files without the +m (modtime) file type modifier, if nomodtime
modtime is set, the modification date (on the local (date and time

filesystem) of a newly synced file is the datestamp on the of sync).
file when the file was submitted to the depot. If
nomodtime is set, the modification date is the date and
time of sync.

Ignored for files
with the +m file
type modifier.
For files with the +m (modtime) file type, the modification

date (on the local filesystem) of a newly synced file is the

datestamp on the file when the file was submitted to the

depot, regardless of the setting of modtime or

nomodtime on the client.

[no] rmdir Specifies whetherp4 sync deletes empty directories in normdir
aworkspace if all files in the directory have been removed.

Configure submit options

To control what happens to files in a changelist when you submit the changelist to the depot, set the
SubmitOptions: field. Valid settings are as follows.

Option Description

submitunchanged All open files (with or without changes) are submitted to the
depot.

This is the default behavior of Helix server.

submitunchanged+reopen All open files (with or without changes) are submitted to the
depot, and all files are automatically reopened in the default
changelist.

revertunchanged Only those files with content, type, or resolved changes are
submitted to the depot. Unchanged files are reverted.

revertunchanged+reopen Only those files with content, type, or resolved changes are
submitted to the depot and reopened in the default changelist.
Unchanged files are reverted and not reopened in the default
changelist.

leaveunchanged Only those files with content, type, or resolved changes are
submitted to the depot. Any unchanged files are moved to the
default changelist.

73

View a stream as of a specific changelist

Option Description

leaveunchanged+reopen Only those files with content, type, or resolved changes are
submitted to the depot. Unchanged files are moved to the
default changelist, and changed files are reopened in the
default changelist.

This option is similar to submi tunchanged+reopen,
except that no unchanged files are submitted to the depot.

View a stream as of a specific changelist

The StreamAtChange option in the client spec lets you use the version of the stream specified as of
a particular changelist to generate a workspace view. This is helpful when you want to see what the
stream view was at a particular point in time, especially if your stream spec changes a lot (for example, if
you frequently change what you’re importing or what you’re deciding to share). When you use the
StreamAtChange option, you cannot submit changes to the files in the stream, since your
workspace view is not up to date.

To set a stream workspace to use the version of the stream specified as of a particular changelist, do the
following:

1. Open the stream’s workspace specification form for editing.
$ p4 client

2. Use one of the following alternatives:

a. Editthe formto set StreamAtChange : to the changelist you want to view the stream as
of. Or,

b. Issue this command:

$ p4 client -S //Ace/main@12546

For more information, see the Helix Core P4 Command Reference.

Alternatively, you can issue the following command to sync a stream using the stream’s view as of a
specific changelist:

$ p4 switch [-r -v] stream@change

This command both sets the StreamAtChange value and syncs to the same change.

Configure line-ending settings

To specify how line endings are handled when you sync text files, set the LineEnd: field. Valid
settings are as follows:

74

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Change the location and/or layout of your workspace

Option Description

local Use mode native to the client (default)

unix UNIX-style (and Mac OS X) line endings: LF

mac Mac pre-OS X: CR only

win Windows- style: CR, LF

share The share option normalizes mixed line-endings into UNIX line-end format. The

share option does not affect files that are synced into a client workspace; however,
when files are submitted back to the Helix server server, the share option converts all
Windows-style CR/LF line-endings and all Mac-style CR line-endings to the UNIX-style
LF, leaving lone "LF's untouched.

When you sync your client workspace, line endings are set to LF. If you edit the file on a
Windows computer, and your editor inserts CR’s before each LF, the extra CR’s do not
appear in the archive file.

The most common use of the share option is for users of Windows computers who
mount their UNIX home directories as network drives; if you sync files from UNIX, but
edit the files on a Windows computer.

The share option implicitly edits the file(s) during a submit. As a consequence, if you
have set the LineEnd field to share in your client spec, the p4 resolve
command may prompt you to edit the file before resolving.

For detailed information about how Helix server uses the line-ending settings, see the Support
Knowledgebase article, “CR/LF Issues and Text Line-endings”.

Change the location and/or layout of your workspace

To change the location of files in your workspace, issue thep4 client command and change either
or both of the Root : and View: fields. Before changing these settings, ensure that you have no files
checked out (by submitting or reverting open files).

If you're using streams, you must change the Paths : field in the stream spec, rather than the View:
field, in the client spec.

If you intend to modify both fields, perform the following steps to ensure that your workspace files are
located correctly:

1. Toremove the files from their old location in the workspace, issue the p4 sync ..#none
command.

2. Change the Root : field. (The new client workspace root directory must exist on your computer
before you can retrieve files intoit.)

75

https://community.perforce.com/s/article/3096

Manage workspaces

3. Tocopy thefiles to their new locations in the workspace, performap4 sync. (If you forget to
performthe p4 sync ..#none before you change the workspace view, you can always
remove the files from their client workspace locations manually).

4. Users of streams, change the Paths : field in the stream spec. Users of classic Helix server
branches, change the View : field in the client spec.

5. Again, performap4 sync. This time, syncing changes the layout of the workspace. The files in
the client workspace are synced to their new locations.

Manage workspaces

This section discusses various approaches to managing your stream workspaces.
Using one workspace for multiple streams

When working with multiple streams, you have two choices:

m Switch one workspace between multiple streams; the workspace is appropriately populated
whenever you switch from one stream to another. While this requires some extra processing, it is
the right choice when you don’'t need to work on different streams at the same time and you don’t
want to have multiple streams on disk at the same time.

m Establish a distinct workspace for each stream. This is the right choice if you want to move
quickly between different streams or if you want to have multiple streams on disk at the same
time.

Note that distinct workspaces must have distinct workspace roots — that is, distinct local folders.
To change the stream associated with a workspace, issue the following command:

$ p4 switch streamname

To get aworkspace view and a set of files as of a specific changelist, issue the following command:

$ p4 switch stream@change
Narrowing the scope of workspaces with virtual streams

For large projects, even consistently-organized streams may not sufficiently restrict workspace views. In
large organizations, there are often many groups who are concerned with only a small subset of a
project’s files. In classic Helix server, these users would manually restrict their workspace’s view to
include only the desired subset. Streams offer an analog; use a virtual stream as a filter:

For example, if ongoing development work is occurringin an / /Ace/dev stream:

Stream: //Ace/dev
Parent: //Ace/main
Type: development
Paths:

share

76

Delete a client workspace

Then a user who is working only with the documentation for the product (rather than all of the assets
associated with the project) could create a virtual stream that includes only those files under
//Ace/dev/docs/. . ., as follows:

Stream: //Ace/devdocs
Parent: //Bce/dev
Type: virtual
Paths:

share docs/...
The user can then can switch his or her workspace to the devdocs virtual stream with the following
command:
$ p4 switch //Ace/devdocs

When using the devdocs workspace, the user's workspace view is automatically updated to include
only the material in / /Ace/dev/docs/ . . . and any changes he or she makes in

/ /Ace/devdocs are automatically made directly in the original / /Ace /dev codeline without the
need to manually runp4 copy orp4 merge.

For details on virtual streams, see "Virtual streams" on page 93.

Delete a client workspace

To delete a workspace, issuethep4 client -d clientname command. Deleting a client
workspace removes Helix server's record of the workspace but does not remove files from the
workspace or the depot.

When you delete a workspace specification:

1. Revert (or submit) any pending or shelved changelists associated with the workspace.
2. Delete existing files from a client workspace (p4 sync .. .#none). (optional)

3. Delete the client spec.

If you delete the client spec before you delete files in the workspace, you can delete workspace files
using your operating system’s file deletion command.

Configure workspace views

By default, when you create a client workspace, the entire depot is mapped to your workspace. You can
refine this mapping to view only a portion of the depot and to change the correspondence between depot
and workspace locations.

Helix server generates workspace views automatically from the stream spec for all workspaces bound to
that stream. When you bind a workspace to a stream, Helix server generates the workspace view based
on the depot mapping entries in the stream spec’s Paths : field. If the structure of the stream changes,
Helix server updates the views of workspaces associated with the stream on an as-needed basis.

77

Specify mappings

For details on all stream spec fields, see "Configure a stream" on page 87.

Note
Non-stream users can update the client workspace view by

1. Invokingthe p4 client command, which opens the client spec.

2. Editing the View: field in the client spec.

However, a user with a stream client cannot change the client view by invokingthe p4 client
command. To change the client view, the stream spec Paths : field would need to be changed.
However, such a change would affect all clients in that stream.

See also "Private editing of streams" in p4 stream.

To modify a workspace view, issue the p4 stream command. Helix server displays the stream
specification form, which lists mappings in the Paths : field.

Suppose your stream spec contains the following entries under Paths ::

Paths:

import ...

isolate apps/bin/...
share apps/xp/...

exclude tests/...

Switching your workspace to this stream gives you this workspace view:

//Acme/XProd/apps/bin/... //bruno ws/apps/bin/...
//Acme/XProd/apps/xp/... //bruno ws/apps/xp/...
-//Acme/XProd/tests/. .. //bruno ws/tests/...

The sections below provide details about specifying the workspace view. For more information, see the
description of views in the Helix Core P4 Command Reference.

Specify mappings
Views consist of multiple mappings. Each mapping has two parts.

m The left-hand side specifies one or more files in the depot and has the form:
//depotname/file specification

m The right-hand side specifies one or more files in the client workspace and has the form:
//clientname/file_specification

The left-hand side of a workspace view mapping is called the depot side, and the right-hand side is the
client side.

78

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_client.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_client.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Use wildcards in workspace views

To determine the location of any workspace file on your computer, substitute the client workspace root
for the workspace name on the client side of the mapping. For example, if the workspace root is
C:\bruno_ws, thefile //JamCode/dev/jam/Jamfile resides inC: \bruno
ws\dev\jam\Jamfile.

Later mappings override earlier ones. In the example below, the second line overrides the first line,
mapping the files in / /Acme /dev/docs/manuals/ up two levels. When files in
//Acme/dev/docs/manuals/ are synced, they residein c: \bruno_ws\docs\.

View:

//Bcme/dev/ . .. //bruno _ws/dev/...
//Acme/dev/docs/ . .. //bruno_ws/docs/. ..

Use wildcards in workspace views

To map groups of files in workspace views, you use Helix server wildcards. Any wildcard used on the
depot side of a mapping must be matched with an identical wildcard in the mapping’s client side. You can
use the following wildcards to specify mappings in your client workspace:

Wildcard Description

& Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

%1 - Positional specifiers for substring rearrangement in filenames.
$%9

In the following simple workspace view, all files in the depot’s dewv stream are mapped to the
corresponding locations in the client workspace:

//JamCode/dev/... //bruno ws/dev/...

For example, the file / /JamCode /dev/jam/Makefile is mapped to the workspace file
C:\bruno_ws\dev\jam\Makefile.

Note
To avoid mapping unwanted files, always precede the . . . wildcard with a forward slash.

The mappings in workspace views always refer to the locations of files and directories in the depot; you
cannot refer to specific revisions of a file in a workspace view.

79

Map part of the depot

Map part of the depot

If you are interested only in a subset of the depot files, map that portion. Reducing the scope of the
workspace view also ensures that your commands do not inadvertently affect the entire depot. To restrict
the workspace view, change the left-hand side of the View: field to specify the relevant portion of the

depot.

Example Mapping part of the depot to the client workspace
Dai is working on the Jam project and maintaining the web site, so she sets the View: field as
follows:

View:
//JamCode/dev/jam/. .. //dai-beos-locust/jam/. ..
//JamCode/www/live/. .. //dai-beos-locust/www/live/. ..

Map files to different locations in the workspace

Views can consist of multiple mappings, which are used to map portions of the depot file tree to different
parts of the workspace file tree. If there is a conflict in the mappings, later mappings have precedence
over the earlier ones.

Example Multiple mappings in a single workspace view
The following view ensures that Microsoft Word files in the manuals folder reside in the workspace in a
top-level folder called wordfiles:

View:
//depot/. .. //bruno ws/...

//Acme/dev/docs/manuals/*.doc //bruno ws/wordfiles/*.doc

Map files to different filenames

Mappings can be used to make the filenames in the workspace differ from those in the depot.

Example Files with different names in the depot and the workspace
The following view maps the depot file RELNOTES to the workspace file rnotes . txt:

View:
//depot/. .. //bruno ws/...
//JamCode/dev/jam/RELNOTES //bruno ws/dev/jam/rnotes.txt

80

Rearrange parts of filenames

Rearrange parts of filenames

Positional specifiers $%0 through $%9 can be used to rearrange portions of filenames and directories.

Example Using positional specifiers to rearrange filenames and directories

The following view maps the depot file / /depot/allfiles/readme. txt tothe workspace
file filesbytype/txt/readme:

View:

//depot/allfiles/%$%1.%%2 //bruno ws/filesbytype/%$%2/%%1

Exclude files and directories

Exclusionary mappings enable you to explicitly exclude files and directories from a workspace. To
exclude afile or directory, precede the mapping with a minus sign (=). White space is not allowed
between the minus sign and the mapping.

Example Using views to exclude files from a client workspace

Earl, who is working on the Jam project, does not want any HTML files synced to his workspace. His
workspace view looks like this:

View:
//JamCode/dev/jam/. .. //earl-dev-beech/jam/. ..
-//JamCode/dev/jam/....html //earl-dev-beech/jam/....html

Map a single depot path to multiple locations in a workspace

Helix server includes a "one-to-many" mapping feature, with which you can map a single depot path to
multiple locations in a client workspace.

Important
This feature is currently only available for users of classic Helix server branches.

One-to-many mapping is not available for streams.

Consider the following scenario: A company has a website whose content is divided into categories such
as products, documentation, and technical support. The content for each of these categories is managed
in its own location in the workspace.

However, all of these websites display the same logo. Consequently, all three of the locations in the
workspace must contain the same image file for the logo.

You might try to map the depot path like this:

81

Restrict access by changelist

View:
//Acme/images/logo.png //bruno ws/products/images/logo.png
//Acme/images/logo.png //bruno ws/documentation/images/logo.png
//Acme/images/logo.png //bruno ws/support/images/logo.png

When you sync the client, the depot file will only be mapped to the suppoxrt location in the workspace.
By default, in a situation in which a workspace view attempts to map a depot path to multiple locations in
a client, only the last location is mapped.

To enable the one-to-many mapping feature, prepend & to the mapping line for each additional client
location you want to map to:

View:
//Acme/images/logo.png //bruno ws/products/images/logo.png
&//Acme/images/logo.png //bruno ws/documentation/images/logo.png
&//Acme/images/logo.png //bruno ws/support/images/logo.png

When you sync the client, the depot file maps to all three locations.

Important
Mapping lines prepended with & are read-only, so in the example above //bruno

ws/documentation/logo.pngand //bruno ws/support/logo.png areread only.

Restrict access by changelist

You can restrict access to depot paths to a particular point in time by providing the depot path names and
changelist numbers in the ChangeView field of the client specification. Files specified for the
ChangeView field are read-only: they can be opened but not submitted. For example:

ChangeView:
//depot/path/...@1000
In this example, revisions of the files in / /depot/path/ . . . are not visible if they were submitted

after changelist 1000. Files submitted up to and including changelist 1000 are visible but read-only. You
can specify multiple paths.

You may specify ChangeView entries in either depot syntax or client syntax.

Avoid mapping conflicts

When you use multiple mappings in a single view, a single file can inadvertently be mapped to two
different places in the depot or workspace. When two mappings conflict in this way, the later mapping
overrides the earlier mapping.

82

Automatically prune empty directories from a workspace

Example Erroneous mappings that conflict
Joe has constructed a view as follows:

View:
//Acme/projl/. .. //joe/project/...
//Acme/proj2/... //joe/project/...

The second mapping / /Acme/proj2/. .. mapsto //joe/project and conflicts with the
first mapping. Because these mappings conflict, the first mapping is ignored; no files in
//Acme/projl are mapped into the workspace: //Acme/projl/£file. cis not mapped,
evenif //Acme/proj2/£file. c does not exist.

Automatically prune empty directories from a workspace

By default, Helix server does not remove empty directories from your workspace. To change this
behavior, issuethe p4 client commandandinthe Options: field, change the option normdir
tormdir.

For more about changing workspace options, see "Configure workspace options" on page 72.

Map different depot locations to the same workspace
location

Overlay mappings enable you to map files from more than one depot directory to the same place in a
workspace. To overlay the contents of a second directory in your workspace, use a plus sign (+) in front
of the mapping.

Example Overlaying multiple directories in the same workspace

Joe wants to combine the files from his projects when they are synced to his workspace, so he has
constructed a view as follows:

View:

//Acme/projl/. .. //joe/project/...

+//Acme/proj2/. .. //joe/project/. ..
The overlay mapping //Acme/proj2/... mapsto //joe/project, and overlays the first
mapping. Overlay mappings do not conflict. Files (even deleted files)in / /Acme /pro;j2 take
precedence over files in //Acme/projl.If //Acme/proj2/£file. cis missing (as opposed

to being present, but deleted), then / /Acme /projl/£file. cis mapped into the workspace
instead.

Overlay mappings are useful for applying sparse patches in build environments.

83

Deal with spaces in filenames and directories

Deal with spaces in filenames and directories

Use quotation marks to enclose files or directories that contain spaces.

Example Dealing with spaces in filenames and directories
Joe wants to map files in the depot into his workspace, but some of the paths contain spaces:

View:
"//Acme/Release 2.0/..." //joe/current/. ..
"//Acme/Release 1.1/..." "//joe/Patch Release/..."
//Acme/webstats/2011/. .. "//joe/2011 Web Stats/..."

By placing quotation marks around the path components on the server side, client side, or both sides
of the mappings, Joe can specify file names and/or directory components that contain spaces.

For more information, see "Restrictions on filenames and identifiers" on page 177.

Map Windows workspaces across multiple drives

To specify a workspace that spans multiple Windows drives, use aRoot : of null and specify the
drive letters (in lowercase) in the workspace view. For example:

Client: bruno ws

Update: 2011/11/29 09:46:53

Access: 2011/03/02 10:28:40

Owner: bruno

Root: null

Options: noallwrite noclobber nocompress unlocked nomodtime normdir

SubmitOptions: submitunchanged

LineEnd: local

View:
//Acme/dev/. .. "//bruno ws/c:/Current Release/..."
//Acme/release/... "//bruno ws/d:/Prior Releases/..."
//Acme/www/ . . . //bruno ws/d:/website/...

84

Use the same workspace from different computers

Use the same workspace from different computers

By default, you can only use a workspace on the computer that is specified by the Hos t : field. If you
want to use the same workspace on multiple computers with different platforms, delete the Host : entry
and setthe A1tRoots : field in the client specification. You can specify a maximum of two alternate
workspace roots. The locations must be visible from all computers that will be using them, for example
through NFS or Samba mounts.

Helix server compares the current working directory against the main Root : first, and then against the
twoAltRoots: if specified. The first root to match the current working directory is used. If no roots
match, the main root is used.

Note
If you are using a Windows directory in any of your workspace roots, specify the Windows directory
as your main client Root : and specify your other workspace root directories inthe A1tRoots :

field.

In the example below, if user bruno’s current working directory is located under /usr/bruno, Helix
server uses the UNIX path as his workspace root, rather than ¢ : \bruno_ws. This approach allows
bruno to use the same client specification for both UNIX and Windows development.

Client: bruno ws
Owner: bruno
Description:

Created by bruno.
Root: c:\bruno ws
AltRoots:

/usr/bruno/

To find out which client workspace root is in effect, issue the p4 info command and check the
Client root: field.

If you edit text files in the same workspace from different platforms, ensure that the editors and settings
you use preserve the line endings. For details about line-endings in cross-platform settings, see
"Configure line-ending settings" on page 74.

85

This chapter describes how to configure streams, how to propagate changes between them, and how to
update them.

About streams

Streams are like branches, but with additional intelligence built in.

Streams:

m provide clues of where and how to do branching and merging
m guide merging and branching actions that support stability and innovation

m are ideal forimplementing the mainline branching model, in which less stable streams merge
changes to keep up to date with their parents, then copy work to the parent when the work is
stable enough to promote.

m eliminate much of the work needed to define branches, create workspaces, and manage merges

m enable the system to generate views for associated workspaces, eliminating the need for you to
update views manually to reflect changes to your stream structure.

When you create a stream, you specify its type, information about the files it is associated with, its
relationship to other streams, and how files are to be treated for branching and merging. The system uses
the information you provide to encourage merging best practices and to track parallel development.

The stream type tells the system how stable the stream is relative to other streams.
The stream’s path information tells the system:

= which files to populate the workspace with

= which files child streams are allowed to branch

= which changelist to lock the files at.

Parent labeling specifies how the stream relates to other streams in the system, helping to determine
how change flows through the system.

Note
If you are using Helix server branches and want to use streams instead, see the Support
Knowledgebase article, "Migrating from Classic to Stream Depot".

86

https://community.perforce.com/s/article/2477

Configure a stream

Configure a stream

To configure a stream, you edit its associated stream spec. A stream spec names a path in a stream
depot to be treated as a stream. A spec defines the stream’s location, its type, its parent stream, the files
in its view, whether it inherits its parent stream's view, and other configurable behaviors. You create a
stream with the p4 stream command.

Note
Files an be imported from the parent stream or from other streams in the system.

You can update the entries in a stream spec to change the stream’s characteristics. See "Update
streams" on page 105

The following is a sample stream spec:

$ p4 stream -o //Acme/dev

A Perforce Stream Specification.

#

Use *'pd help stream'* to see more about stream specifications and
command.

Stream: //Acme/dev

Update: 2020/11/06 10:57:04

Access: 2020/11/06 10:57:04

Owner: bruno

Name : //Acme/dev

Parent: //Acme/main

Type: development

Description:

Our primary development stream for the project.

Options: allsubmit unlocked toparent fromparent mergeany

87

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.htm

Stream types

ParentView: inherit

Paths:
share
import boost/... //3rd party/boost/1.53.0/artifacts/original/...
import boost/lib/linux26x86 64/... //3rd _
party/boost/1.53.0/artifacts/original/lib/linuxx86 64/gcc44libc212/. ..
import boost/lib/linux26x86/... //3rd
party/boost/1.53.0/artifacts/original/lib/linuxx86/gccd44libc212/. ..
import protobuf/... //3rd party/protobuf/2.4.1/artifacts/patch-
1/...
import gtest/... //3rd party/gtest/1.7.0/artifacts/original/...
import icu/... //3rd party/icu/53.1/artifacts/original/...
import p4-bin/lib.ntx64/vsll/pdapi vs2012 dyn.zip
//builds/pl5.1/p4-bin/bin.ntx64/pdapi vs2012 dyn.zip
import p4/... //depot/pl5.1/p4/...
exclude p4/lbr/...

exclude p4/server/...

Remapped:
p4/doc/... p4/relnotes/...

Ignored:
... ./~tmp. txt

For a description of each field in the stream spec, see "Form Fields" in the p4 stream topic of Helix Core
P4 Command Reference.

Also in this section:

Stream types

You assign stream types in a stream hierarchy according to the stream’s expected usage, stability, and
flow of change:

88

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Merge down, copy up

Description

Development m code that changes frequently

m experiment without destabilizing the mainline stream

Mainline m code that changes somewhat frequently, but is more stable than code in
development streams

m itis common to implement new features in the mainline.

Release = the most stable code and the closest to being released

m enable you to put existing features in the final state

Task m lightweight short-lived streams

m see "Task streams" on the facing page

Virtual m filtered view of a stream

m see "Virtual streams" on page 93

Merge down, copy up

A release stream is more stable than its mainline stream parent.

A development stream is less stable than its mainline stream parent.

i rel2.3
pE

@ main =

i
P dev-2.1M2

Merging incorporates another stream’s changes into your stream, and can require you to resolve
conflicts.

Copying duplicates the source stream to the target. Changes are merged down (to streams of lesser
stability) and copied up (to streams of greater stability).

89

Stream types - most stable to least stable

Stream types - most stable to least stable

Stream Type | Stability Merge Copy

release Highly stable to parent from parent

mainline Stable per your policy (for from child (from to child (to release, or
example, all code builds) release, or to from development)

development)

development Unstable from parent to parent

task Unstable from parent to parent

virtual N/A; used tofilter streams N/A N/A

Also in this section:

Task streams

Task streams are lightweight short-lived streams used for bug fixing or new features that only modify a
small subset of the stream data. Since branched (copied) files are tracked in a set of shadow tables that
are later removed, repository metadata is kept to a minimum when using this type of stream and server

performance is optimized.

They are branches that work just like development streams, but task streams remain semi-private until
branched back to the parent stream. Designed as lightweight branches, they are most effective when
anticipated work in the branch will only affect a small number of files relative to the number of files in the

branch.

Note
DVCS does not support task streams.

Task streams are intended to be deleted or unloaded after use. Because you cannot re-use task stream
names even after the stream has been deleted, most sites adopt a naming convention that is likely to be

unique for each task, such as user-datesjobnumber.

Workflow example

Working within task streams is similar to working in a development stream. The following is an example

of a typical workflow.

Suppose that we have an existing stream depot named Ace and a defined development stream named

//Ace/dev.

90

Task streams

With the workspace associated with the development stream, we create a task stream and then use p4
populate to populate it from the development stream.

$ p4 stream -t task -P //Ace/dev //Ace/fixbugl

$ p4 populate -r -S //Ace/fixbugl

2 files branched (change 818).

Only a workspace that is associated with a task stream can see the full branch in the task stream. The
stream appears as a sparse branch to other workspaces, which see only those files and revisions that
you changed within the task stream. Most other metadata for the task stream remains private. Because
the workspace is still associated with the development stream, we don't see any files in the newly
created task stream:

$ p4 files //Ace/fixbugl/...

//Ace/fixbugl/... - no such file(s).

Therefore, we associate the workspace with the task stream, and then we see the full branch in the task
stream:

$ p4 client -s -S //Ace/fixbugl

$ p4 files //Ace/fixbugl/...

//Ace/fixbugl/src.cpp#l - branch change 818 (text)

//Ace/fixbugl/src.h#l - branch change 818 (text)

We now start work in the task stream and submit content changes:

$ p4 add //Ace/fixbugl/foo

//Ace/fixbugl/foo#l - opened for add

$ p4 submit -d "Add new file to task stream"

$ p4 sync //Ace/fixbugl/src.cpp

$ p4 edit //Ace/fixbugl/src.cpp
//Ace/fixbugl/src.cpp#l - opened for edit

S pd4 submit -d 'Update to src.cpp in task stream'

We see any changes:

$ pd4 files //Ace/fixbugl/...

//Ace/fixbugl/foo#l - add change 819 (text)
//Ace/fixbugl/src.cpp#2 - edit change 820 (text)
//Ace/fixbugl/src.h#l - branch change 818 (text)

Content changes in a task stream are promoted when the file action is not a branch or copy. We now
associate the workspace with the development stream, and we see that the changes have been
promoted from the task stream:

91

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_populate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_populate.html

Task streams

$ p4 client -s -S //Ace/dev

S pd files //Ace/fixbugl/...

//Ace/fixbugl/foo#l - add change 819 (text)
//Ace/fixbugl/src.cpp#2 - edit change 820 (text)

Before we copy changes from the task stream to the development stream, we merge down any changes
from the development stream:

$ pd4 client -s -S //Ace/fixbugl

S pd4 sync —-gq

S p4 merge //Ace/dev/... //Ace/fixbugl/...
//Ace/fixbugl/src.cpp#2 - integrate from //Ace/dev/src.cpp#2
S p4 resolve -—am

S pd4 submit -d 'Merging from dev branch'

Now we copy up changes from the task stream:

$ p4 client -s -S //Ace/dev

$ p4d sync -gq

$ p4 copy //Ace/fixbugl/... //Ace/dev/...

//Ace/dev/foo#l - branch/sync from //Ace/fixbugl/foo#l

S p4 submit -d 'Copy changes from task stream to dev'

Finally, we free up space in Helix server database tables. To do so, we can either delete or unload the
task stream. We cannot work on a task stream after we’ve deleted it, and it cannot be recovered.

$ p4 stream -d //Ace/fixbugl

Stream //Ace/fixbugl deleted.

Alternatively, we can unload the task stream. Unloading gives us the option of recovering the task stream
towork with it again. We unload a task stream usingthe p4 unload commmand. Seep4 unload
in Helix Core P4 Command Reference.

$ p4 unload -s //Ace/fixbugl

Stream //Ace/fixbugl unloaded.

At any time, an unloaded task stream can be reloaded. See p4 reload in Helix Core P4 Command
Reference.

$ p4 reload -s //Ace/fixbugl

Stream //Ace/fixbugl reloaded.

Task streams and depots

A unique feature of task streams is that it can be in a different depot than its parent. However, generally
speaking, the best practice is to use the same depot.

92

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_unload.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_reload.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Virtual streams

To keep a project depot uncluttered by task streams, your Helix server administrator or project lead might
choose to establish a depot for task streams. In this case, create your stream in the task streams depot
as a child of a parent in the project depot.

Task stream reuse

When you submit files in your task stream, archives are created in the corresponding depot root folder.
Make sure that these archive files are incorporated into your backup processes.

When the work has been completed in the task stream, you can delete it. However, because file content
relating to this task stream remains in the archive, it is not possible to create a new task stream with the
same name.

When you promote the task stream's changes to the task stream's parent stream, a lazy copy is created
rather than a full file copy.

inherit ParentView

Task streams and virtual streams can only have inheri t ParentViews.

Virtual streams

Virtual streams can be used to create alternative views of real streams. Virtual streams differ from other
stream types in that a virtual stream is not a separate set of files, but instead a filtered view of its parent
stream. A virtual stream can have child streams, and its child streams inherit its views.

Note
Task streams and virtual streams can only have inheri t ParentViews.

Stream views and paths

A stream specification has a set of field names (see p4 stream). The Paths, Remapped, and
Ignored fields define the stream "view". These fields control the files and paths that compose a
stream and define how those files are propagated.

m A mainline stream has no parent.
m Atask streams or a virtual streams always inherits its view from its parent stream.
m A stream of other types can be set to inherit or not inherit from the parent stream.

= Tonot inherit from the parent stream might be a good choice for a release stream.

To modify the structure of the child, you specify the paths as follows:

93

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html

Stream views and paths

Type Sync? Submit? Integrate Remarks

to/from
Parent?

share Y Y Y (Default) For files that are edited and
propagated between parent and child
streams. All files in a shared path are
branched and, in general, shared paths are the
least restricted.

isolate Y Y N For files that must not be propagated outside
the stream but can be edited within it, such as
binary build results.

import Y N N Files in this path are mapped as in the parent
stream's view (the default) or to <depot_path>
(optional); they are accessible to workspaces
but cannot be submitted or integrated to the
stream.

If <view_path> is used, it does not
necessarily import files from the parent of the
stream it was used on; it imports the view. If
the parent stream has a parent (grandparent)
and the parent's stream view is shared, files
are imported from the grandparent stream. An
example would be the virtual stream created
of arelease or development stream, where
files are imported from the mainline.

If <depot_path> is used (for files that must be
physically present in the stream but are never
changed, such as with third-party libraries), it
may include a changelist or automatic label
specifier (that aliases a changelist) to limit the
imported files to the revisions at that change
or lower; clients of that stream are limited to
seeing revisions at that point in time or lower
within that depot path. Use the syntax
@changelist#, as in:
//depot/1ib3.0/..@455678.

import+ Y Y N Functions like an import path, in that it can
reference an explicitly defined depot path, but
unlike a standard import path, you can submit
changes to the files in an impoxrt+ path.

94

Stream paths and inheritance

Type Sync? Submit? Integrate Remarks

to/from
Parent?

exclude N N N Files in the parent stream that must never be
part of the child stream.

In the following example, files in the sxc path are not submittable (and are imported from the parent
stream’s view), files in the 1ib path are not submittable (and are imported from an explicitly-specified
location in the depot), and files in the db path can be edited and submitted in the stream, but can never be
copied to the parent:

Paths:
share ...
import src/...
import 1lib/... //depot/1ib3.0/...
isolate db/...

The paths are used to generate the mappings for workspaces that are associated with the stream. If the
stream structure changes, the workspace views are updated automatically an cannot be altered
manually. If the stream is locked, only the stream owner (or stream owners, if the Owner : field of the
stream is set to a group) can edit the stream specification.

A stream specification can also remap file locations (so that afile in specified depot location is synced to
a different location in the workspace) and screen out files according to file type. For example, to ensure
that object files and executables are not part of the stream, add the following entries to the stream
specification:

Ignored:

.exe

Also in this section:

Stream paths and inheritance 95
Stream ParentView Examples 99

Stream paths and inheritance

A stream specification defines the paths that the stream contains and the actions allowed on those
paths.

95

Stream paths and inheritance

A child stream might or might not inherit its view from its parent stream. When inheritance is enabled, a
child stream implicitly inherits from its parent stream. Such a child stream inherits folder paths and
behavioral rules from its parent.

Each path is a line in the stream definition. A path contains one or more folders or files. A folder is a path
with a wildcard such as ...

Paths Behavioral Rules

A child normally inherits paths fromits Path types can be inherited from parent streams. When they
parent. However, in the case of a are inherited, you cannot override the effects of the path
release stream, it might be preferable types assigned by parent streams.

to not inherit from the parent stream. Child streams are always as permissive or less permissive

It is common to filter some files from than their parents, but never more permissive. For example,

the parent by excluding them. In this if a parent stream defines a path as isolate, its child
case, the child has fewer paths than streams cannot redefine the path as share to enable
the parent. integrations.

The use of import by a child stream
allows the child stream to import files
from anywhere in the depot. In this
case, the child has more paths than
the parent.

A child stream that inherits its view from its parent cannot add an i solate path unless the folders in
that path are also included in the parent. The following Dev stream can isolate the con£ig/ folder
because that folder is included as a share orisolate pathinMain:

Stream: //Rcme/Main

Parent: none

Path=z: share apps/...
share tests/...
share config/...

Stream: //Lcme/Dewv

Parent: //Acme/Main

Path=z: share apps/...
share tests/...

isplate config/...

Example Simple share
Let’s start with a simple case: two streams, //Ace/main andits child / /Ace/dev.

Stream: //Ace/main
Parent: none

Paths: share

96

Stream paths and inheritance

Stream: //Ace/dev

Parent: //Ace/main

Paths: share ...

In this case, the entire stream path is shared. When you switch your workspace to the / /Ace/main
stream, the workspace view looks like this:

//Ace/main/... //bruno ws/...

The workspace view maps the root of the / /Ace /main stream to your workspace. When you you
switch your workspace to the / /Ace/dev stream, the workspace view is this:

//Ace/dev/... //bruno ws/...

And the branch view for / /Ace/dev/ looks like this:

//Ace/dev/... //Ace/main/...

In other words, the entire dev stream can be synced to workspaces, and the entire stream can be
branched, merged, and copied.

Example Share and import
Let’s look at an example where software components are housed in three separate depots: / /Acme,
//Red, and / /Tango.

The Acme mainline is configured like this:

Stream: //Acme/Main

Parent: none

Paths: share apps/...
share tests/...
import stuff/... //Red/R6.1/stuff/...
import tools/... //Tango/tools/...

If you switch your workspace to the / /Acme /Main stream, this would be your workspace view:

//Acme/Main/apps/... //bruno ws/apps/...

//Acme/Main/tests/... //bruno ws/tests/...
//Red/R6.1/stuff/... //bruno ws/stuff/...
//Tango/tools/. .. //bruno_ws/tools/...

The stream’s Paths field lists folders relative to the root of the stream. Those are the folders you get in
your workspace, beneath your workspace root. The shared folders are mapped to the //Acme /Main
path, and the imported paths are mapped to their locations in the / /Red and / /Tango depots.

97

Stream paths and inheritance

Example Share, isolate, exclude, and import

Let’s say that your team doesn’t want to do development in the mainline. In this example, XProd
feature team has a development stream of their own, defined like this:

Stream: //Acme/XProd

Parent: //Acme/Main

Paths: import ...
isolate apps/bin/...
share apps/xp/...
exclude tests/...

Switching your workspace to the / /Acme /XProd stream gives you this view:

//Acme/Main/apps/. .. //bruno_ws/apps/...
//Acme/XProd/apps/bin/... //bruno ws/apps/bin/...
//Acme/XProd/apps/xp/... //bruno ws/apps/xp/...
//Red/R6.1/stuff/... //bruno ws/stuff/...
//Tango/tools/. .. //bruno ws/tools/...
-//Acme/XProd/tests/... //bruno ws/tests/...

Here we see workspace view inheritance at work. The contents of imported paths are mapped into your
workspace. The shared and isolated paths are mapped to the child stream. These contain the files the
XProd team is working on and will be submitting changes to. The excluded path (marked with a minus
sign in the view) doesn’t appear in the workspace at all.

Because the / /Acme /XProd stream has a parent, it has a branch mapping that can be used by the
copy and merge commands. That branch view consists of the following, with nly one path shared by the
child and parent.

-//Acme/XProd/apps/. .. //Acme/Main/apps/. ..
-//Acme/XProd/apps/bin/... //Acme/Main/apps/bin/. ..
//Acme/XProd/apps/xp/ . . . //Acme/Main/apps/xp/ . . .
-//Acme/XProd/stuff/... //Acme/Main/stuff/...
-//Acme/XProd/tests/. .. //Acme/Main/tests/. ..
-//Acme/XProd/tools/. .. //Acme/Main/tools/. ..

When you work in an / /Acme /XProd workspace, it might appear that you're working in a full branch of
//Acme /Main, but the actual branch is quite small.

Example Child that shares all of the above parent

Let’s suppose that Lisa creates a child stream from / /Acme /XProd. Her stream spec looks like
this:

98

Stream ParentView Examples

Stream: //Acme/LisaDev
Parent: //Acme/XProd

Paths: share ...

Lisa’s stream has the default view template. Given that Lisa’s entire stream path is set to share, you
might expect that her entire workspace will be mapped to her stream. This is not the case because
inherited behaviors take precedence. Sharing applies only to paths that are shared in the parent as well. A
workspace for Lisa’s stream, with its default view template, has this client view:

//Acme/Main/apps/. ..
-//Acme/LisaDev/tests/. ..
//Acme/LisaDev/apps/bin/. ..
//Acme/LisaDev/apps/xp/. ..
//Red/R6.1/stuff/...
//Tango/tools/. ..

//bruno_ws/apps/...
//bruno_ws/tests/...
//bruno ws/apps/bin/...
//bruno ws/apps/xp/...
//bruno ws/stuff/...
//bruno_ws/tools/...

A workspace in Lisa’s stream is the same as a workspace in the XProd stream, with one exception: the
paths available for submit are rooted in / /Acme /LisaDev. If you work in Lisa’'s stream, you expect to

submit changes to her stream.

By contrast, the branch view that maps the / /Acme /Dev stream to its parent is a branch view that
maps only the path that is designated as shared in both streams:

-//Acme/Main/apps/. ..
-//BAcme/LisaDev/tests/. ..
—-//Acme/LisaDev/apps/bin/. ..
//Acme/LisaDev/apps/xp/ . . .
-//Red/R6.1/stuff/...
-//Tango/tools/ ...

The default template allows Lisa to:

//XProd/apps/. ..
//XProd/tests/. ..
//XProd/apps/bin/. ..
//bruno_ws/apps/xp/...
//XProd/stuff/...
//XProd/tools/. ..

m branch her own versions of the paths her team is working on, and

m have aworkspace with the identical view of non-branched files that she would have in the parent

stream.

Stream ParentView Examples

This topic shows:

= how to work with the ParentView field and the -—parentwview option of the p4 streams

command

99

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html

Stream ParentView Examples

m the effect of converting ParentView: inherittoParentView: noinherit

« that in the absence of inheritance, you can still integrate from the parent stream to a child
with ParentView: noinherit

Convert a stream to noinherit

1.

Tip

Create a mainline stream named / /streams/productl.
p4 stream -t mainline //streams/productl
This opens the editor specified by P4AEDITOR, and presents a populated stream spec.

Create a development stream named / /projectX/bruno-dev as a child of mainline
//projectX/main.

p4 stream -t development -P //projectX/main //projectX/bruno-
dev

This opens the editor specified by PAEDITOR, populated with the stream spec with the Parent
and Type fields populated accordingly.

For your current client workspace's stream, preview what would happen if the stream were
converted to ParentView noinheri t, but do not actually perform the conversion or open the
stream spec:

p4 stream parentview -n --noinherit

This time, add the —o option to also print a preview of the converted stream spec.
p4 stream parentview -o -n --noinherit

Assuming you already have a pending changelist 1234, perform the conversion for your current
client workspace's stream.

p4 stream parentview -c 1234 --noinherit
The stream is opened in the current client workspace in the indicated changelist.

To make the changes visible to all users, submit the changelist (as you would with any stream
spec opened for edit). You can also revert the pending stream spec to abandon the conversion.

We recommend that you include the -—source-comments option:

P4 stream parentview -c 1234 --source-comments --noinherit

because it adds source comments to any Paths, Ignored or Remapped fields that are modified
or added as a result of the conversion. These comments are helpful to see how the converted stream
view is calculated based on stream specs in the converted streams' ancestry.

Extended example of a conversion to noinherit

The following is an extended example involving several streams to illustrate a conversion.

Assume we have a stream hierarchy in a stream depot named s txr with a mainline stream and three
development streams:

100

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4EDITOR.html

Stream ParentView Examples

listrimain

Iistridev

ilstridev2

listr/dev3

mainline

Stream: //str/main
Owner: super

Name: main

Parent: none

Type: development
Description:
Mainline

Options: allsubmit unlocked toparent fromparent mergedown
ParentView: inherit
Paths:

share

Ignored:

o (6]

101

Stream ParentView Examples

dev1 child

Stream: //str/devl

Owner: super

Name: devl

Parent: //str/main

Type: development
Description:

Devl child

Options: allsubmit unlocked toparent fromparent mergedown
ParentView: inherit
Paths:

share

Remapped:

docs/... product_docs/...

dev2 grandchild

Stream: //str/devl

Owner: super

Name: dev2

Parent: //str/devl

Type: development

Description:

Dev2 grandchild

Options: allsubmit unlocked toparent fromparent mergedown
ParentView: inherit

Paths:

share

Remapped:

import ssl libs/... //depot/libs/ssl libs/v1.0/...

dev3 child of dev2

Stream: //str/dev2
Owner: super

Name: dev3

Parent: //str/dev2
Type: development
Description:
Created by super.
Options: allsubmit unlocked toparent fromparent mergedown
ParentView: inherit
Paths:

share

102

Stream ParentView Examples

client workspace view of dev3

Because all the streams are ParentView inherit, the client workspace view for workspaces of
//str/dev3is the inherited result of all streams back to the //stxr/main mainline stream:

Stream: //str/dev3

View:

//str/dev3/... //super client/...
//depot/libs/ssl/1.0a/... //super_client/ssl libs/...
//str/dev3/docs/... //super_ client/product-docs/...
-//str/...%%1.0 //super_ client/...%%1l.0

The view reflects all that has been inherited:

= The mainline //str/main has an Ignored entry for files endingin * . o
m lts child, //str/devl, remaps the docs path to a different name, product-docs.

m The next stream, //str/dev2, adds a Paths line to import an SSL library from a non-streams
location.

s Finally, //str/dev3 has Paths share

converting dev3 to noinherit

A user of stream //str/dev3 converts the stream from ParentView: inheritto
ParentView: noinherit, including source comments, and submits the resulting converted
spec:

p4 stream parentview --source-comments --noinherit
p4 submt -So -d "Converting dev3 to noinherit"

After conversion:

m the client workspace view for a workspace of / /str/dev3 remains unchanged

m the Paths field of //str/dev3 does change:

103

Stream ParentView Examples

Stream: //str/dev3

Update: 2020/11/05 11:30:02

Access: 2020/11/05 11:42:21

Owner: super

Name: dev3

Parent: //str/dev2

Type: development

Description:

Created by super.

Options: allsubmit unlocked toparent fromparent mergedown
ParentView: noinherit

Paths:

import ssl libs/... //depot/libs/ssl/1.0a/... ## merge from
//str/dev2@8

share

Remapped:

docs/... product-docs/... ## copy from //str/dev1@9
Ignored:

* o ## copy from //str/mainQ7

where

m the ParentView field is now noinherit

m The Paths, Ignored and Remapped fields in //stxr/dev3 have been updated based on
the contents of the fields in all ancestor streams

m The comments indicate from which stream the changes originated, and if they were copied or
merged into the resulting stream

integrating a stream spec from its parent

Suppose another user modifies the Paths field of / /stxr/dev2 by changing the SSL library version
froml.0atol.1.1h:

Paths:
share
import ssl libs/... //depot/libs/ssl/1.1.h/...

Because dev3 was convertedto ParentView: noinherit, its client workspace view does not
inherit this change and still reflects the original import path of 1 . Oa.

Tomake / /str/dev3 reflect this change, perform a stream spec integration from its parent,
//str/dev2:

p4 integrate -r -As -S //str/dev3

Stream spec //str/dev3@5 - integrate field Paths from
//str/dev2@10

Resolve any differences with the p4 resolve command. In this case, the user chooses to accept the
changes from / /str/dev2 with at, which means "accept theirs":

104

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_resolve.html

Update streams

p4 resolve -So
//str/dev3 Paths - resolving //str/dev2@1l0
Paths resolve:

at: import ssl _libs/... //depot/libs/ssl/1.1.h/...
ay: import ssl libs/... //depot/libs/ssl/1.0a/... ## merge from
//str/dev2@8

am: merge of both
Accept(a) Skip(s) Help(?) am: at
//str/dev3 Paths - copy from //str/dev2@10

The stream spec is open (for integrate) in the current client workspace, and the user can inspect what the
client view would be with the new spec:

View:

//str/dev3/... //super client/...

//depot/libs/ssl/1.1.h/... //super client/ssl libs/...
//str/dev3/docs/... //super client/product-docs/...
-//str/...%%1.0 //super_ client/...%%1l.0

The client workspace view for the client of / /str/dev3 now reflects the change made to the Paths
field of stream //str/dev2.

Because //str/dev3 has anoinherit ParentView, no implicit inheritance occurred. Instead, we
performed an explicit integration and resolve. To make the changes to / /str/dewv3 visible to all users,
the user submits the pending change. This affects all client workspaces of the / /stxr/dev3 stream.

Update streams
As part of maintaining your version control application, you might:
m modify the paths of the stream to:
« change the version of an included library by modifying the target of an import path
» change the scope of a path to widen or narrow the scope included
m Change restrictions on who can submit to the stream
To do this, modify the stream specification:

= (new in 2019.1 and recommended) use the Private editing of streams feature of p4 stream. This
includes the =So, —=S1i, or —Sx options of p4 edit, p4 submit, p4 revert, and p4 resolve. These
options give you control of when your changes will affect other users. We recommend that you:

m isolate your work in progress so that other users of the stream are not impeded

m make edits to the stream spec visible through a changelist (see "Changelist
reporting" on page 157)

= (priorto 2019.1 and still supported) use the p4 stream command, which immediately updates
all workspace views derived from that stream

105

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_edit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_submit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_revert.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_resolve.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html

Edit a stream

The table below shows the recommended commands.

Edit a stream

Recommended Still Supported
p4 edit -So p4 stream edit

Puts your client’s stream spec into the "opened" state,
isolating any edits made to fields that affect view
generation. While the spec is open, these fields are
marked with the comment "#open" to indicate that they
are open and isolated to your client. Changes made to
these fields affect your client’s view only. Other clients'
views are not affected.

Resolve a stream

Recommended Still Supported

p4 resolve -So p4 stream resolve

Resolves changes that have been submitted to the stream
spec since you opened it. You cannot submit changes to
the stream spec until newer changes have been resolved.

Revert a stream

Recommended Still Supported

version of the stream.

p4 revert-So p4 stream revert reverts any pending
changes made to the open stream spec,
returning your client to the latest submitted

your client to the latest submitted version of the stream.

Reverts any pending changes made to the open stream spec, returning

Submit, shelve, and unshelve a stream

placeholder for what we want to say about ??7?:
p4 submit
p4 shelve

106

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_edit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_resolve.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_revert.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_stream.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_submit.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_shelve.html

Submit, shelve, and unshelve a stream

p4 unshelve

107

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_unshelve.html

Resolve conflicts

In settings where multiple users are working on the same set of files, conflicts can occur. Helix server
enables your team to work on the same files simultaneously and resolve any conflicts that arise. For
example, conflicts occur if two users change the same file (the primary concern in team settings) or you
edit a previous revision of a file rather than the head revision.

When you attempt to submit a file that conflicts with the head revision in the depot, Helix server requires
you to resolve the conflict.

Merging changes from a development stream to a release stream is another typical task that requires you
toresolve files.

To prevent conflicts, Helix server enables you to lock files when they are edited. However, locking can
restrict team development. Your team needs to choose the strategy that maximizes file availability while
minimizing conflicts. For details, see "Locking files" on page 127.

How conflicts OCCUr ... 108
How to resolve conflicts 109
Your, theirs, base, and merge files 109
Options for resolving conflicts 110

Accepting yours, theirs, Or Merge ... L 111

Editingthe merge file 111

Merging to resolve CONfliCtS 112
Full list of resolve options 112
Resolving branched files, deletions, moves and filetype changes 114
Resolve command-line options il 115
Resolve reporting commands 116

How conflicts occur

Conflicts can occur in a number of ways, for example:

1. Brunoopens //JamCode/dev/jam/command . c#8 for edit.

2. Gale subsequently opens the same file for edit in her own client workspace.
3. Bruno and Gale both edit //Jamcode/dev/jam/command. c#8.
4

Bruno submits a changelist containing / / JamCode /dev/jam/command . ¢, and the submit
succeeds.

5. Gale submits a changelist with her version of / /Acme /dev/jam/command. c. Her submit
fails.

If Helix server accepts Gale’s version into the depot, her changes will overwrite Bruno’s changes. To
prevent Bruno’s changes from being lost, Helix server rejects the changelist and schedules the
conflicting file to be resolved. If you know of file conflicts in advance and want to schedule a file for
resolution, sync it. Helix server detects the conflicts and schedules the file for resolution.

108

How to resolve conflicts

How to resolve conflicts

Toresolve afile conflict, you determine the contents of the files you intend to submit by issuing the p4
resolwve command and choosing the desired method of resolution for each file. After you resolve
conflicts, you submit the changelist containing the files.

Note
If you open a file for edit, then sync a subsequently submitted revision from the depot, Helix server
requires you to resolve to prevent your own changes from being overwritten by the depot file.

By default, Helix server uses its diff program to detect conflicts. You can configure a third-party diff
program. For details, see "Diff files" on page 52.

To resolve conflicts and submit your changes, perform the following steps:
1. Sync thefiles (forexample p4 sync //Acme/dev/jam/. . .). Helix serverdetects any
conflicts and schedules the conflicting files for resolve.

2. Issuethep4 resolwve command and resolve any conflicts. See "Options for resolving
conflicts" on the facing page for details about resolve options.

3. Test the resulting files (for example, compile code and verify that it runs).

Submit the changelist containing the files.

Note

If any of the three file revisions participating in the merge are binary instead of text, a three-way merge
is not possible. Instead, p4 resolve performs atwo-way merge: the two conflicting file versions
are presented, and you can choose between them or edit the one in your workspace before submitting
the changelist.

Your, theirs, base, and merge files

Thep4 resolwve command uses the following terms during the merge process:

File Description

revision

yours The revision of the file in your client workspace, containing changes you made.

theirs The revision in the depot, edited by another user, that yours conflicts with. (Usually
the head revision, but you can schedule a resolve with another revision using p4
sync.)

base The file revision in the depot that yours and theirs were edited from (the closest

common ancestor file).

merge The file generated by Helix server from theirs, yours, and base.

109

Options for resolving conflicts

File Description
revision
result The final file resulting from the resolve process.

Options for resolving conflicts

To specify how a conflict is to be resolved, you issue the p4 resolve command, which displays a
dialog for each file scheduled for resolve. The dialog describes the differences between the file you
changed and the conflicting revision. For example:

C:\bruno ws> p4 resolve //Acme/dev/jam/command.c

c:\bruno ws\dev\main\jam\command.c - merging //Acme/dev/jam/command.c#9

Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept (a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e:

The differences between each pair of files are summarized by p4 resolwve. Groups of lines (chunks)
inthe yours, theirs, and base files can differ in various ways. Chunks can be:

m Diffs: different between two of the three files: yours, theirs, or base

m Conflicts: different in all three files
In the preceding example:

m Four chunks are identical in theirs and base but are different in yours.
m Two chunks are identical in yours and base but are different in theirs.
m One chunk was changed identically in yours and theirs.

m One chunk is different in yours, theirs, and base.

Helix server's recommended choice is displayed at the end of the command line. Pressing Enter or
choosing Accept performs the recommended choice.

You can resolve conflicts in three basic ways:

m Accept afile without changing it (see "Accepting yours, theirs, or merge" on the next page)
m Edit the merge file with a text editor (see "Editing the merge file" on the next page)

m Merge changes selectively using a merge program (see "Merging to resolve conflicts" on
page 112)

The preceding options are interactive. You can also specify resolve options onthe p4 resolve
command line, if you know which file you want to accept. For details, see "Resolve command-line
options" on page 115. To re-resolve a resolved but unsubmitted file, specify the — £ option when you
issuethepd4 resolwve command. You cannot re-resolve a file after you submit it. The following
sections describe the resolve options in more detail.

110

Accepting yours, theirs, or merge

Also in this section:

Accepting yours, theirs, ormerge 111
Editing the merge file 111
Merging to resolve conflicts 112

Accepting yours, theirs, or merge

To accept a file without changing it, specify one of the following options:

Option Description Remarks

a Accept m |[f theirs is identical to base, accept yours.
;ﬁ(e:ommended m If yours is identical to base, accept theirs.
m If yours and theirs are different from base, and there are no
conflicts between yours and theirs; accept merge.
m Otherwise, there are conflicts between yours and theirs, so skip
this file.
ae Accept edit If you edited the merge file (by selecting e fromthe p4 resolve
dialog), accept the edited version into the client workspace. The
version in the client workspace is overwritten.
am Accept merge Accept merge into the client workspace as the resolved revision. The
version in the client workspace is overwritten.
at Accept theirs Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.
ay Accept yours Accept yours into the client workspace as the resolved revision,

ignoring changes that might have been made in theirs.

Accepting yours, theirs, edit, or merge overwrites changes, and the generated merge file might not be
precisely what you want to submit to the depot. The most precise way to ensure that you submit only the
desired changes is to use a merge program or edit the merge file.

Editing the merge file

To resolve files by editing the merge file, choose the e option. Helix server launches your default text
editor, displaying the merge file. In the merge file, diffs and conflicts appear in the following format:

>>>> ORIGINAL file#n (text from the original version)
==== THEIR file#m(text from their file)

111

Merging to resolve conflicts

==== YOURS file(text from your file)

<<LKLKL

To locate conflicts and differences, look for the difference marker >>>> and edit that portion of the text.
Examine the changes made to theirs to make sure that they are compatible with your changes. Make
sure you remove all conflict markers before saving. After you make the desired changes, save the file. At
thep4 resolwve prompt, choose ae.

By default, only the conflicts between the yours and theirs files are marked. To generate difference
markers for all differences, specify the —wv option when you issue the p4 resolwve command.

Merging to resolve conflicts

A merge program displays the differences between yours, theirs, and the base file, and enables you to
select and edit changes to produce the desired result file. To configure a merge program, set PAMERGE
to the desired program. To use the merge program during a resolve, choose the m option. For details
about using a specific merge program, consult its online help.

After you merge, save your results and exit the merge program. Atthe p4 resolwve prompt, choose
am.

Full list of resolve options

Thep4 resolve command offers the following options:

Option Action Remarks

? Help Display helpforp4 resolve.

a Accept Accept the auto-selected file:

automatically o)
m [f theirs is identical to base, accept yours.

m If yours is identical to base, accept theirs.

m |f yours and theirs are different from base, and there are no
conflicts between yours and theirs, accept merge.

m Otherwise, there are conflicts between yours and theirs, so skip
this file.

ae Accept edit If you edited the mergefile (by selecting e fromthe p4 resolve
dialog), accept the edited version into the client workspace. The version
in the client workspace is overwritten.

am Accept Accept merge into the client workspace as the resolved revision. The
merge version in the client workspace is overwritten.

112

Full list of resolve options

Option Action Remarks

at Accept theirs Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.

ay Accept yours Accept yours into the client workspace as the resolved revision,
ignoring changes that might have been made in theirs.

d Diff Show diffs between merge and yours.

dm Diff merge Show diffs between merge and base.

dt Diff theirs Show diffs between theirs and base.

dy Diff yours Show diffs between yours and base.

=) Edit merged Edit the preliminary merge file generated by Helix server.

et Edit theirs Edit the revision in the depot that the client revision conflicts with
(usually the head revision). This edit is read-only.

ey Edit yours Edit the revision of the file currently in the workspace.

m Merge Invoke the command PAMERGE base theirs yours merge. To use this
option, you must set PAMERGE to the name of a third-party program
that merges the first three files and writes the fourth as a result.

s Skip Skip this file and leave it scheduled for resolve.

Note

The merge file is generated by the Helix server, but the differences displayed by dy, dt, dm, and d
are generated by your computer’s diff program. To configure another diff program to be launched when
you choose a d option during a resolve, set PADIFF. For more details, see "Diff files" on page 52.

Example Resolving file conflicts
To resolve conflicts between his work on a Jam README file and Gale’s work on the same file, Bruno

types p4 resolve //Acme/dev/jam/README and sees the following:
Diff chunks: 0 yours + 0 theirs + 0 both + 1 conflicting
Accept (a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e: e
Bruno sees that he and Gale have made a conflicting change to the file. He types e to edit the merge
file and searches for the difference marker >>>>. The following text is displayed:
Jam/MR (formerly "jam - make(l) redux")
/+\
>>>> ORIGINAL README#26
+\ Copyright 1993, 1997 Christopher Seiwald.

113

Resolving branched files, deletions, moves and filetype changes

==== THEIRS README#27

+\ Copyright 1993, 1997, 2004 Christopher Seiwald.
==== YOURS README

+\ Copyright 1993, 1997, 2005 Christopher Seiwald.
<<L<LL

\+/

Bruno and Gale have updated the copyright date differently. Bruno edits the merge file so that the
header is correct, exits from the editor and types am. The edited merge file is written to the client
workspace, and he proceeds to resolve the next file.

When a version of the file is accepted during a resolve, the file in the workspace is overwritten, and the
new client file must still be submitted to the depot. New conflicts can occur if new versions of a file are
submitted after you resolve but before you submit the resolved files. This problem can be prevented by
locking the file before you perform the resolve. For details, see "Locking files" on page 127.

Resolving branched files, deletions, moves and filetype
changes

Beyond reconciling changes to the contents of related files after integration, you can also determine how
other kinds of changes are handled. Consider this example:

m Youeditheader. cc inthe mainline while a coworker deletes it in the release branch (or vice
versa). You integrate fixes in the release branch back to main. During resolve, you can decide
whether header . cc is deleted from the mainline or the action in the release branch is ignored,
preserving header . cc in the mainline.

m A developer implements RCS keywords in source files in a development branch, and changes
their Helix server filetype from text to text+k. The release manager wants to integrate new
features from the development branch to the mainline, but does not want to enable keyword
expansion in the mainline. During resolve, the release manager can choose to ignore the filetype
change.

m Thefileheader. ccis branched frommain to rel. Subsequently, it's renamed to
headerx. ccinmain, and moved in the release branch to the headers subfolder.

Following are simple cases describing how you can resolve non-content changes to related files. After a
source file is branched to a target file, changes are made as describe below, then you integrate the
source to the target. To choose the outcome, you specify the resolve options at (“Accept Theirs”) or ay

(“Accept Yours”) as follows:

m The source is edited and target is deleted: the at option re-adds the source in the target
branch. The ay option causes the file to remain deleted in the target branch.

114

Resolve command-line options

The source is deleted and the target is edited: the at option causes the file to be deleted in
the target branch. The ay option retains the edited content in the target branch.

The target file was moved after being branched: the at option moves the target file to the
source file name and location. The ay option retains the target file name and location.

The filetype of the source file was changed after it was branched: the at option propagates
the change to the target. The ay option leaves the filetype of the target unchanged. If the differing
filetypes do not conflict, you have the option of combining them.

Files have been moved or renamed in conflicting ways: you are prompted to choose a path
and filename. Example:

Resolving move to //Acme/rel/headerx.cc

Filename resolve:

at: //Acme/rel/headerx.cc

ay: //Acme/rel/headers/header.cc

am: //Acme/rel/headers/headerx.cc

By default, the p4 resolwe command resolves all types of change, content and non-content. To
constrain the type of actions that you want to resolve, specify the —A option as follows:

Option What is Resolved

-Aa Resolve attributes setby p4 attribute.

-Ab Integrations where the source is edited and the target is deleted.
-Ac Resolve file content changes as well as actions.

-Ad Integrations where the source is deleted and target is edited.
-Am Renames and moves.

-At Filetype changes.

-AQ Charset changes.

To perform more than one type of resolve, combine the options (for example: —~Abd). By default,
resolving is performed file by file, interactively. To specify the same outcome for a particular action (for
example, propagate all moves), and avoid the prompting, include the desired option on the command line.
Forexample: p4 resolve -Am -at

Resolve command-line options

Thep4 resolve options described below enable you to resolve directly instead of interactively.
When you specify one of these options inthe p4 resolwve command, files are resolved as described
in the following table:

115

Resolve reporting commands

Option Description

-a Accept the auto-selected file.

-ay Accept yours.

-at Accept theirs. Use this option with caution, because the file revision in your client
workspace is overwritten with the head revision from the depot, and you cannot recover
your changes.

-am Accept the recommended file revision according to the following logic:

m |[f theirs is identical to base, accept yours.
m If yours is identical to base, accept theirs.

m If yours and theirs are different from base, and there are no conflicts between
yours and theirs, accept merge.

m Otherwise, there are conflicts between yours and theirs, so skip this file, leaving it
unresolved.

-af Accept the recommended file revision, even if conflicts remain. If this option is used, edit
the resulting file in the workspace to remove any difference markers.

-as Accept the recommended file revision according to the following logic:

m [f theirs is identical to base, accept yours.
m |f yours is identical to base, accept theirs.

m Otherwise skip this file.

Example Automatically accepting particular revisions of conflicting files

Bruno has been editing the documentation files in /doc and knows that some of them require
resolving. Hetypes p4 sync doc/*.guide, and all of these files that conflict with files in the

depot are scheduled for resolve.
Hethentypes p4 resolve -am and the merge files forall scheduled resolves are generated, and

those merge files that contain no line set conflicts are written to his client workspace. He'll still need to
manually resolve any conflicting files, but the amount of work he needs to do is substantially reduced.

Resolve reporting commands

The following reporting commands are helpful when you are resolving file conflicts:

116

Resolve reporting commands

Command Meaning

pé4 diff Diffs the file revision in the workspace with the last revision you synced, to
[filenames] display changes you have made.

p4 diff2 Diffs two depot files. The specified files can be any two file revisions and
filel file2 different files.

When you diff depot files, Helix server uses its own diff program, not the diff
program configured by setting PADIFF.

p4 sync -n Previews the specified sync, listing which files have conflicts and need to
[filenames] be resolved.

p4 resolved Reports files that have been resolved but not yet submitted.

117

Codeline management

This chapter describes the tasks required to maintain groups of files in your depot. The following specific
issues are addressed:

m Depot directory structure and how to best organize your repository
m Moving files and file changes among stream and project directories

= |dentifying specific sets of files using either labels or changelists

This chapter focuses on maintaining a software codebase, but many of the tasks are relevant to
managing other groups of files, such as a web site.

Organizing the depot .. . 118
Branching streams (introduction) 119
A shortcut: P4 popuUlate ... 120
Branching streams (Merge) 120
When to branch 121
Branching streams L 121
Merge Changes 122
Merging between unrelated files 123
Merging specific file revisions 124
Re-merging and re-resolving files 124
Reporting branches and merges 124

Organizing the depot

You can think of a depot as a top-level directory. Consider the following factors as you decide how to
organize your depot:

m Type of content: create depots or mainline streams according to the nature of your projects and
their relationships (for example, applications with multiple components developed on separate
schedules).

m Release requirements: within a project, create streams for each release and merge changes
between branches to control the introduction of features and bug fixes.

= Build management: use labels and changelists to control the file revisions that are built; use
client specifications and views to ensure clean build areas.

A basic and logical way to organize the depot is to create one subdirectory (stream) for each project. For
example, if your company is working on Jam, you might devote one stream to the release presently in
development, another to already-released software, and perhaps one to your corporate web site. Your
developers can modify their workspace views to map the files in their project, excluding other projects
that are not of interest. For example, if Earl maintains the web site, his workspace view might look like
this:

118

Branching streams (introduction)

//JamCode/www/dev/ . .. //earl-web-catalpa/www/development/. ..
//JamCode/www/review/... //earl-web-catalpa/www/review/...
//JamCode/www/live/. .. //earl-web-catalpa/www/live/. ..

And Gale, who'’s working on Jam, sets up her workspace view as:

//Jamcode/dev/jam/... //gale-jam-oak/jam/...

You can organize according to projects or according to the purpose of a stream. For example, to organize
the depot according to projects, you can use a structure like the following:
//Acme/projectl/main/

//Acme/projectl/release 1.0/

//Acme/projectl/release 1.1/

Or, to organize the depot according to the purpose of each stream, you can use a structure like the
following:

//Acme/main/projectl/

//Acme/main/project2/

//Acme/releasel.0/projectl/

//Acme/releasel.0/project2/

//Acme/release?2.0/projectl/

//Acme/release?.0/project2/

Another approach is to create one depot for each project. Choose a structure that makes branching and
merging as simple as possible, so that the history of your activities makes sense to you.

Branching streams (introduction)

If you are branching from a stream that has no history, use the p4 add command to add files toit, then
usep4 copy tocreate the branched streams. For example, to create the mainline structure shown in
the previous section, perform the following steps:

1. Create alocal folder your workspace for the mainline files; for example:

$ mkdir c:\p4dclients\myworkspace\depot\main\

N

Copy the files for Project1 and Project2 to the newly created folder.
Add the files to the depot:

w

$ p4 add //Acme/main/projectl/. ..
$ p4 add //Acme/main/project2/...
$ p4 submit

4. Create release streams:

119

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_add.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_copy.html

A shortcut: p4 populate

$ p4 copy //Acme/main/projectl/...
//Acme/releasel.0/projectl/. ..

$ p4 copy //Acme/main/project2/...
//Acme/releasel.0/project2/...

$ p4 submit

Now you canusethep4 copyandp4 merge commands to propagate changes between main and
release streams.

If there is a historical relationship between the source and target that you need to preserve, "seed" a
stream from another stream usingthe p4 integrate command, .

Also in this section:
A shortcut: pd populate ... 120

A shortcut: p4 populate

If a target stream is completely empty (no files present, not even deleted files), Helix server offers a
command that automates the process of copying the files from an existing source stream and
submitting the associated changelist.

For example, instead of populatinga releasel . 0 branch with the following two commands,

$ p4 copy //Acme/main/projectl/... //Acme/releasel.O/projectl/...
$ p4 submit

you canusethep4 populate command to populate the stream with a single command:

$ p4 populate //Acme/main/projectl/...
//Acme/releasel.0/projectl/...

Branching streams (merge)

Branching is a method of maintaining the relationship between sets of related files. Branches can evolve
separately from their ancestors and descendants, and you can propagate (merge) changes from one
branch to another as desired.

To create a stream, use the p4 merge command. The p4 merge command is also used to
propagate changes between existing sets of files. For details about merging changes, see "Merge
changes" on page 122.

Also in this section:

120

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_merge.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_integrate.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_populate.html

When to branch

When to branch

Create a branch when two sets of files have different submission policies or need to evolve separately.
For example:

m Problem : the development group wants to submit code to the depot whenever their code changes,
regardless of whether it compiles, but the release engineers don’t want code to be submitted until
it’'s been debugged, verified, and approved.

Solution: create a release branch by branching the development codeline. When the development
codeline is ready, it is merged into the release codeline. Patches and bug fixes are made in the
release code and merged back into the development code.

m Problem: a company is writing a driver for a new multi-platform printer. The UNIX device driver is
done and they are beginning work on an OS X driver, using the UNIX code as their starting point.

Solution: create an OS X branch from the existing UNIX code. These two codelines can evolve
separately. If bugs are found in one codeline, fixes can be merged to the other.

One basic strategy is to develop code in a mainline stream and create streams for releases. Make
release-specific bug fixes in the release streams and, if required, merge them back into the mainline
stream.

Branching streams

To branch a stream, use the p4 branch command. When you branch a stream, Helix server records
the relationships between the branched files and their ancestors.

You can create branches using file specifications or branch specifications. For simple branches, use file
specifications. For branches that are based on complex sets of files or to ensure that you have a record of
the way you defined the branch, use branch specifications. Branch specifications can also be used in
subsequent integrations. Branch specifications also can serve as a record of codeline policy.

Using branch specifications

To map a set of files from source to target, you can create a branch mapping and use it as an argument
whenyouissuethe p4 integrate command. To create a branch mapping, issuethe p4 branch
branchname command and specify the desired mapping in the View: field, with source files on the
left and target files on the right. Make sure that the target files and directories are in your client view.
Creating or altering a branch mapping has no effect on any files in the depot or client workspace. The
branch mapping merely maps source files to target files.

To use the branch mapping to create a branch, issuethep4 integrate -b branchname
command; then use p4 submi t to submit the target files to the depot.

121

Merge changes

Branch specifications can contain multiple mappings and exclusionary mappings, just as client views
can. For example, the following branch mapping branches the Jam 1. 0 source code, excluding test
scripts, from the main codeline:

Branch: jamgraph-1.0-dev2release

View:

//depot/dev/main/jamgraph/. .. //depot/release/jamgraph/1.0/. ..

-//depot/dev/main/jamgraph/test/. ..
//depot/release/jamgraph/1.0/test/. ..

//depot/dev/main/bin/glut32.d1l1
//depot/release/jamgraph/1.0/bin/glut32.d11

To create a branch using the preceding branch mapping, issue the following command:

$ p4 integrate -b jamgraph-1.0-dev2release
anduse p4 submi t to submit the changes.

To delete a branch mapping, issuethe p4 branch -d branchname command. Deleting a branch
mapping has no effect on existing files or branches.

As with workspace views, if a filename or path in a branch view contains spaces, make sure to quote the
path:

//depot/dev/main/jamgraph/... "//depot/release/Jamgraph 1.0/..."

Merge changes

After you create branches, you might need to propagate changes between them. For example, if you fix a
bug in a release branch, you probably want to incorporate the fix back into your main codeline. To
propagate selected changes between branched files, you usethe p4 merge andp4 resolve
commands, as follows:

1. Issuethep4 merge command to schedule the files for resolve.
2. Issuethepd4 resolwve command to propagate changes from the source files to the target files.

To propagate individual changes, edit the merge file or use a merge program. The changes are
made to the target files in the client workspace.

3. Submit the changelist containing the resolved files.

Example Propagating changes between branched files

Bruno has fixed a bug in the release 2.2 branch of the Jam project and needs to integrate it back to the
main codeline. From his home directory, Bruno types the following:

122

Merging between unrelated files

$ p4 merge //JamCode/release/jam/2.2/src/Jambase
//JamCode/dev/jam/Jambase

He sees the following message:

//JamCode/dev/jam/Jambase#134 - merge from
////JamCode/release/jam/2.2/src/Jambase#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

//JamCode/dev/jam/Jambase - merging depot/release/jam/2.2/src/Jambase#9
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept (a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his workspace. The
changelist containing the file must be submitted to the depot.

Torunthep4 mergeorp4 copy commands, you must have Helix server wri te permission on the
target files, and read access on the source files. (See the Helix Core Server Administrator Guide for

information on Helix server permissions.)

By default, a file that has been newly created in a client workspace by p4 merge cannot be edited
before being submitted. To edit a newly merged file before submission, resolve it, then issue the p4
edit command.

If the range of revisions being merged includes deleted revisions (for example, a file was deleted from the
depot, then re-added), you can specify how deleted revisions are merged using the =Di option. For
details, refer to the Helix Core P4 Command Reference.

Also in this section:

Merging between unrelated files 123
Merging specific file revisions 124
Re-merging and re-resolving files 124
Reporting branches and merges 124

Merging between unrelated files

If the target file was not branched from the source, there is no base (common ancestor) revision, and
Helix server uses the first (most recently added) revision of the source file as its base revision. This
operation is referred to as a baseless merge.

123

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Merging specific file revisions

Merging specific file revisions

By default, the p4 merge command merges all the revisions following the last-merged source revision
into the target. To avoid having to manually delete unwanted revisions from the merge file while editing,
you can specify a range of revisions to be merged. The base file is the revision with the most edits in
common.

Example Merging specific file revisions

Bruno has made two bug fixes to / /JamCode /dev/jam/scan. c in the development stream,
and Earl wants to merge the change into the release 1.0 branch. Although scan . ¢ has gone through
several revisions since the fixes were submitted, Earl knows that the bug fixes he wants were made to
the 30th revision of scan. c. He types:

$ p4 integrate -b jamgraph-1.0-dev2release
depot/release/jam/1.0/scan.c#30,30

The target file (/ /depot/release/jam/1.0/scan. c)is given as an argument, but the file
revisions are applied to the source. When Earl runs p4 resolwve, only the 30th revision of Bruno’s
file is scheduled for resolve. That is, Earl sees only the changes that Bruno made to scan. c at
revision 30.

Re-merging and re-resolving files

After a revision of a source file has been merged into a target, that revision is skipped in subsequent
merges to the same target. To force the merging of already-merged files, specify the — £ option when you
issue the p4 merge command.

A target that has been resolved but not submitted can be resolved again by specifying the — £ option to
p4 resolve. Whenyoure-resolve afile, yours is the new client file, the result of the original resolve.

Reporting branches and merges

The reporting commands below provide useful information about the status of files being branched and
merged. Note the use of the preview option (—n) for reporting purposes.

To display this information Use this command
Preview of the results of an integration p4 integrate -n
[filepatterns]
Files that are scheduled for resolve p4 resolve -n
[filepatterns]
Files that have been resolved but not yet submitted. P4 resolved

124

Reporting branches and merges

To display this information Use this command

List of branch specifications p4 branches
The integration history of the specified files. P4 integrated
filepatterns
The revision histories of the specified files, including the integration p4 filelog -i
histories of files from which the specified files were branched. [filepatterns]

125

Less common tasks

This chapter discusses less common tasks.

Work offline . 126
Ignoring groups of files when adding 127
LocKing files .. L 127
Preventing multiple resolves by locking files 127
Preventing multiple CheCKOULS L 128

Work offline

The preferred method of working offline (without access to the Helix server) is to use DVCS (distributed
versioning) features. For details, refer to Using Helix Core Server for Distributed Versioning.

If you work offline, you must manually reconcile your work with the Helix server service when you regain
access toit. The following method for working detached assumes that you work on files in your
workspace or update the workspace with your additions, changes, and deletions before you update the
depot:

To work offline:

1. Work on files without issuing p4 commands. Instead, use operating system commands to
change the permissions on files.

2. After the network connection is re-established, use p4 statusorp4 reconciletofindall
files in your workspace that have changed.

3. Submit the resulting changelist(s).

To detect changed files, issuethe p4 status orp4 reconcile commands. The commands
perform essentially the same function, but differ in their default behavior and output format.

Command Description

p4 When called without arguments, p4 reconcile opens thefiles in a changelist.
reconcile Topreview an operation, you must either use the —n option with p4
reconcile, orusethep4 status command.

p4 status When called without arguments, p4 status only previews the results of the
workspace reconciliation. You must use eitherp4 status -A (orsome
combination of the —e, —a, or —d options) to actually open the files in a changelist.

Also in this section:
Ignoring groups of files when adding

126

http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html

Ignoring groups of files when adding

Ignoring groups of files when adding

Sometimes development processes result in the creation of extraneous content that should not be
submitted to the depot. Possible examples:

m compilers produce object files and executables during development
m text editors and word processors produce backup files

m some individuals might have informal notes on work in progress
To ignore files (or groups of files) when adding to the depot:

1. Create afile with a list of file specifications to ignore.
2. Set the PAIGNORE environment variable to point to this file.

When you add files, the full local path and parent directories of any file to be added are searched for
P4IGNORE files. If any PAIGNORE files exist, their rules are added to a list, with greater precedence
given to PAIGNORE rules closest to the file being added. For details on syntax and an example, see
P41GNORE in the Helix Core P4 Command Reference.

To override the PAIGNORE file, use the - I option withthe p4 add, p4 reconcile, orp4
status commands.

Reporting ignored files

Thep4 ignores command reports the ignore mappings in effect. Specifically, it displays the ignore
mappings from the rules in the P4 IGNORE file. If you add the -1 option, it reports whether a particular
file (or set of files) will be ignored.

Locking files

After you open afile, you can lock it to prevent other users from submitting it before you do. The benefit of
locking a file is that conflicts are prevented, but when you lock a file, you might prevent other team
members from proceeding with their work on that file.

Also in this section:

Preventing multiple resolves by locking files 127
Preventing multiple checkouts 128

Preventing multiple resolves by locking files

Without file locking, there is no guarantee that the resolve process ever ends. The following scenario
demonstrates the problem:

127

https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4IGNORE.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_add.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_reconcile.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_status.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_status.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_ignores.html

Preventing multiple checkouts

Bruno opens file for edit.
Gale opens the same file in her client for edit.
Bruno and Gale both edit their client workspace versions of the file.

Bruno submits a changelist containing that file, and his submit succeeds.

o » wDd =

Gale submits a changelist with her version of the file; her submit fails because of file conflicts with
the new depot’s file.

2

Gale starts aresolve.
7. Bruno edits and submits a new version of the same file.

8. Gale finishes the resolve and attempts to submit; the submit fails and must now be merged with
Bruno’s latest file.

...and soon.
To prevent such problems, you can lock files, as follows.

Before scheduling a resolve, lock the file.
Sync the file (to schedule a resolve).
Resolve the file.

Submit the file.

a M v Dd =

Helix server automatically unlocks the file after successful changelist submission.
To list open locked files on UNIX, issue the following command:

$ p4 opened | grep "*locked*"

Preventing multiple checkouts

To ensure that only one user at a time can work on the file, use the +1 (exclusive-open) file type modifier.
For example:

$ p4 reopen -t binary+l file

Although exclusive locking prevents concurrent development, for some file types (binary files), merging
and resolving are not meaningful, so you can prevent conflicts by preventing multiple users from working
on the file simultaneously.

Your Helix server administrator can use the p4 typemap command to ensure that all files of a
specified type (forinstance, //depot/. . ./* .gif forall . gif files)can only be opened by one
user at a time. See the Helix Core P4 Command Reference.

The difference betweenp4 lock and +1 is thatp4 lock allows anyone to open a file for edit, but
only the person who locked the file can submit it. By contrast, a file of type +1 prevents more than one
user from opening the file.

128

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

For security purposes, your Helix server administrator can configure the Helix server to require SSL-
encrypted connections, user passwords, and to limit the length of time for which your login ticket is valid.

Note
Let your administrator know that Helix Core supports:

m integration with an identity provider through Helix Authentication Service, which is documented
at Helix Authentication Service Administrator Guide.

m multi-factor authentication, which is documented in "Helix Core Server Administrator Guide",
in the chapter on "Securing the server", which has a section on Multi-factor authentication.

SSL-encrypted connections 129
Connecting to services that require plaintext connections 131
PaSSWOIAS 131
Setting PASSWOIAS 131
USINg YOUr PasSSWOI 132
Connection time limits ... 132
Logging in and logging OUt 133
Working on multiple computers 133

SSL-encrypted connections

If your installation requires SSL, make sure your P4PORT is of the form ss1 : hostname: port. If
you attempt to communicate in plaintext with an SSL-enabled Helix server, the following error message
is displayed:

Failed client connect, server using SSL.

Client must add SSL protocol prefix to P4PORT.

Set PAPORT to ssl: hostname: port, and attempt to reconnect to the server.

The first time you establish an encrypted connection with an SSL-enabled server, you are prompted to
verify the server’s fingerprint:

The authenticity of '10.0.0.2:1818' can't be established,

this may be your first attempt to connect to this P4PORT.

The fingerprint for the key sent to your client is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2

Your administrator can confirm whether the displayed fingerprint is correct or not. If (and only if) the
fingerprint is correct, use the p4 trust command toaddit to your PATRUST file. If PATRUST is
unset, this file is assumed to be . p4trust in your home directory:

129

http://perforce.com/manuals/helix-auth-svc/
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/security.mfa.html

SSL-encrypted connections

$ p4 trust

The fingerprint of the server of your P4PORT setting
'ssl:example.com:1818"' (10.0.0.2:1818) is not known.

That fingerprint is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:EQ:DA:EF:E2
Are you sure you want to establish trust (yes/no)?

Added trust for P4PORT 'ssl:example.com:1818' (10.0.0.2:1818)

If the fingerprint is accurate, enter yes to trust this server. You can also install a fingerprint directly into
your trust file from the command line. Run:

$ p4 trust -p ssl:hostname:port -i fingerprint

where ssl: hostname: port corresponds to your P4PORT setting, and fingerprint corresponds to a
fingerprint that your administrator has verified.

From this point forward, any SSL connectionto ss1:example.com: 1818 is trusted, solong as the
server at example . com: 1818 continues to report a fingerprint that matches the one recorded in your
P4TRUST file.

If the Helix server ever reports a different fingerprint than the one that you have trusted, the following error
message is displayed:

KA Axxxx WARNING P4PORT IDENTIFICATION HAS CHANGED! ***xxxxx%

It is possible that someone is intercepting your connection

to the Perforce P4PORT '10.0.50.39:1667'

If this is not a scheduled key change, then you should contact

your Perforce administrator.

The fingerprint for the mismatched key sent to your client is
18:FC:4F:C3:2E:FA:7A:AE:BC:74:58:2F:FC:F5:87:7C:BE:C0:2D:B5

To allow connection use the 'p4 trust' command.

This error message indicates that the server’s fingerprint has changed from one that you stored in your
P4TRUST file and indicates that the server's SSL credentials have changed.

Although the change to the fingerprint may be legitimate (for example, your administrator controls the
length of time for which your server's SSL credentials remain valid, and your server’s credentials may
have expired), it can also indicate the presence of a security risk.

Warning
If you see this error message, and your Helix server administrator has not notified you of a change to

your server’'s key and certificate pair, it is imperative that you independently verify the accuracy of the
reported fingerprint.

130

Connecting to services that require plaintext connections

Unless you can independently confirm the veracity of the new fingerprint (by some out-of-band means
ranging from the company’s intranet site, or by personally contacting your administrator), do not trust
the changed fingerprint.

Also in this section:
Connecting to services that require plaintext connections _._................. 131

Connecting to services that require plaintext connections

If your Helix server installation requires plaintext (in order to support older Helix server applications), set
P4PORT to tcp: hostname: port. If you attempt to use SSL to connect to a service that expects
plaintext connections, the following error message is displayed:

Perforce client error:
SSL connect to ssl: host : port failed (Connection reset by peer).
Remove SSL protocol prefix from P4PORT.

Set PAPORT to tcp: hostname: port (or, if you are using applications at release 2011.1 or earlier,
set PAPORT to hostname: port), and attempt to reconnect to the service.

Passwords

Depending on the security level at which your Helix server installation is running, you might need to log in
to Helix server before you can run Helix server commands. Without passwords, any user can assume
the identity of any other Helix server user by setting P4USER to a different user name or specifying the -
u option when you issue a p4 command. To improve security, use passwords.

Also in this section:

Setting pPassWOrds .. 131
Using your passWord 132
Setting passwords

To create a password for your Helix server user, issue the p4 passwd command.

Passwords may be up to 1,024 characters in length. Your system administrator can configure Helix
server to require “strong” passwords, the minimum length of a password, and if you have been assigned a
default password, your administrator can further require that you change your password before you first
use Helix server.

131

Using your password

By default, the Helix server defines a password as strong if it is at least eight characters long and
contains at least two of the following:

m Uppercase letters
m Lowercase letters

= Non-alphabetic characters

In an environment with a minimum password length of eight characters, for example, alb2c3d4,
A1B2C3D4, aBcDeFgH would be considered strong passwords.

Toreset or remove a password (without knowing the password), Helix server superuser privilege is
required. If you need to have your password reset, contact your Helix server administrator. See the Helix
Core Server Administrator Guide for details.

Using your password

If your Helix server user has a password set, you must use it when you issue p4 commands. To use the
password, you can:

m Loginto Helix server by issuingthe p4 login command, before issuing other commands.
m Set PAPASSWD to your password, either in the environment or in a config file.

m Specify the -P passwoxrd option when you issue p4 commands (for instance, p4 -P
mypassword submit).

= Windows or OS X: store your password by usingthe p4 set -s command. Not advised for
sites where security is high. Helix server administrators can disable this feature.

Connection time limits

Your Helix server administrator can configure the Helix server to enforce time limits for users. Helix
server uses ticket-based authentication to enforce time limits. Because ticket-based authentication does
not rely on environment variables or command-line options, it is more secure than password-based
authentication.

Tickets are stored in a file in your home directory. After you have logged in, your ticket is valid for a
limited period of time (by default, 12 hours).

Also in this section:

Logging in and loggingout 133
Working on multiple computers ... 133

132

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Logging in and logging out

Logging in and logging out

If time limits are in effect at your site, you must issue the p4 login command to obtain a ticket. Enter
your password when prompted. If you log in successfully, a ticket is created for you in the ticket file in
your home directory, and you are not prompted to log in again until either your ticket expires or you log out
by issuingthe p4 logout command.

To see how much time remains before your login expires, issue the following command:

$ p4 login -s

If your ticket is valid, the length of time remaining is displayed. To extend a ticket’s lifespan, use p4
login while already logged in. Your ticket’s lifespan is extended by 1/3 of its initial timeout setting,
subject to a maximum of your ticket’s initial timeout setting.

Tolog out of Helix server, issue the following command:

$ p4 logout

Working on multiple computers

By default, your ticket is valid only for the IP address of the computer from which you logged in. If you
use Helix server from multiple computers that share a home directory (typical in many UNIX
environments), log in with:

S p4 login -a

Usingp4 login -a creates aticket in your home directory that is valid from all IP addresses,
enabling you to remain logged into Helix server from more than one computer.

Tolog out from all computers simultaneously, issue the following command:

$ p4 logout -a

For more information about thep4 loginandp4 logout commands, see the Helix Core P4
Command Reference.

133

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

A Helix server label is a set of tagged file revisions. For example, you might want to tag the file revisions
that compose a particular release with the label release2.0. 1. You can use labels to:

m Keep track of all the file revisions contained in a particular release of software.

m Distribute a particular set of file revisions to other users. For example, a standard configuration.
m Populate a clean build workspace.

m Specify a set of file revisions to be branched for development purposes.

m Sync the revisions as a group to a client workspace.

Labels and changelist numbers differ:

Label Changelist

A label can refer to any set of file A changelist number refers to the contents of all the files
revisions. in the depot at the time the changelist was submitted.
If you need to refer to a group of file If there is a point in time at which the files are consistent

revisions from different points in time, use | foryour purposes, use a changelist number.
a label.

You can change the contents of a label. You cannot change the contents of a submitted
changelist.

You can assign your own names to labels. | Helix server assigns each changelist number.

There are two types of labels: static and automatic. See "Static versus automatic labels" on page 137 for
a discussion of their differences.

Tagging files with a label

To tag a set of file revisions (in addition to any revisions that have already been tagged), use p4 tag,
specifying a label name and the desired file revisions.

For example, to tag the head revisions of files that reside under
//JamCode/release/jam/2.1/src/ withthelabel jam-2.1. 0, issue the following
command:

$ p4 tag -1 jam-2.1.0 //JamCode/release/jam/2.1/src/...

To tag revisions other than the head revision, specify a changelist number in the file pattern:

$ p4 tag -1 jam-2.1.0 //JamCode/release/jam/2.1/src/...Q@1234

Only one revision of a given file can be tagged with a given label, but the same file revision can be tagged
by multiple labels.

134

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_tag.html

Untagging files

Untagging files
You can untag revisions with:

$ p4 tag -d -1 labelname filepattern

This command removes the association between the specified label and the file revisions tagged by it.
For example, if you have tagged all revisions under / /JamCode/release/jam/2.1/sxc/. ..
with jam-2.1. 0, you can untag only the header files with:

$ pd4 tag -d -1 jam-2.1.0 //JamCode/release/jam/2.1/src/*.h

Previewing tagging results

You can preview the results of p4 tagwithp4 tag -n.This command lists the revisions that would
be tagged, untagged, or re-tagged without actually performing the operation.

Listing files tagged by a label

To list the revisions tagged with labelname, use p4 f1iles, specifying the label name as follows:

$ p4 files @labelname

All revisions tagged with labelname are listed, with their file type, change action, and changelist number.
(This command is equivalenttop4 files //...Q@labelname).

Listing labels that have been applied to files
To list all labels that have been applied to files, use the p4 labels command:

p4 labels filepattern

Using a label to specify file revisions

You can use a label name anywhere you can refer to files by revision (#1, #head), changelist number
(@7381), ordate (@R2017/08/29).

If you omit file arguments when you issue the p4 sync @labelname command, all files inthe
workspace view that are tagged by the label are synced to the revision specified in the label. All files in
the workspace that do not have revisions tagged by the label are deleted from the workspace. Open files
or files not under Helix server control are unaffected. This command is equivalenttop4 sync
//...Qlabelname.

135

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_tag.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_files.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_labels.html

Deleting labels

If you specify file arguments when you issue the p4 sync command (p4 sync
files@labelname), files that are in your workspace and tagged by the label are synced to the
tagged revision.

Example Retrieving files tagged by a label into a client workspace
To retrieve the files tagged by Bruno’s jam-2 . 1. 0 label into his client workspace, Bruno issues the
following command:

$ p4 sync @ jam-2.1.0

and sees:

//JamCode/dev/jam/Build.com#5 - updating c:\bruno ws\dev\jam\Build.com
//JamCode/dev/jam/command.c#5 - updating c:\bruno ws\dev\jam\command.c
//JamCode/dev/jam/command.h#3 - added as c:\bruno ws\dev\jam\command.h
//JamCode/dev/jam/compile.c#12 - updating c:\bruno ws\dev\jam\compile.c
//JamCode/dev/jam/compile.h#2 - updating c:\bruno ws\dev\jam\compile.h

Deleting labels
To delete a label, use the following command:
$ p4 label -d labelname

Note
Only one revision of a given file can be tagged with a given label, but the same file revision can be

tagged by multiple labels.

Creating a label for future use

To create a label without tagging any file revisions, issuethe p4 label labelname command.
This command displays a form in which you describe and specify the label. After you have created a
label, youcanusep4 tagorp4 labelsync toapply the label tofile revisions.

Label names cannot be the same as client workspace, branch, or depot names.

For example, to create jam-2.1 . 0, issue the following command:

$ p4 label jam-2.1.0

The following form is displayed:

Label: jam-2.1.0
Update: 2011/03/07 13:07:39

136

Restricting files that can be tagged

Access: 2011/03/07 13:13:35
Owner: bruno
Description:
Created by bruno.
Options: unlocked noautoreload
View:
//depot/. ..

Enter a description for the label and save the form. (You do not need to change the View: field.)

After you create the label, you are able touse the p4 tagandp4 labelsync commands to apply
the label to file revisions.

Restricting files that can be tagged

TheView: fieldinthe p4 label form limits the files that can be tagged with a label. The default label
view includes the entire depot (/ /depot/ . . .). To prevent yourself from inadvertently tagging every
file in your depot, set the label’'s View : field to the files and directories to be taggable, using depot
syntax.

Example Using a label view to control which files can be tagged

Bruno wants to tag the revisions of source code in the release 2.1 branch, which he knows can be
successfully compiled. He types p4 label jam-2.1.0 anduses thelabel's View: field to
restrict the scope of the label as follows:

Label: jam-2.1.0
Update: 2018/03/27 13:07:39
Access: 2018/03/27 13:13:35
Owner: bruno
Description:
Created by bruno.
Options: unlocked noautoreload
View:
//JamCode/release/jam/2.1/src/. ..

This label can tag only files in the release 2.1 source code directory.

Static versus automatic labels

There are two types of labels:

137

Static labels

static automatic

Use static labels with the p4 tag Automatic labels perform much better than static labels when

and p4 labelsync commands. synced because they are aliases for changelists.

p4 tagallows you to add and Automatic labels using a changelist revision do not require

delete file revisions from a label. storing each file revision, which greatly reduces the amount of

p4 labelsync allows youto Idz:;talthat must be stored and scanned when referencing the
abel.

use the named label to apply the
current contents of the client tothe | Note that when executing the commandp4 labels
label. <filespec>, automatic labels do not display.

Static labels

You can use static labels to archive the state of your client workspace (meaning the currently synced file
revisions) by issuingthe p4 labelsync command. The label you specify must have the same view
as your client workspace.

For example, to record the configuration of your current client workspace using the existingws_
config label, use the following command:
$ p4 labelsync -1 ws_config

All file revisions that are synced to your current workspace and visible through both the workspace view
and the label view (if any) are tagged with the ws_config label. Files that were previously tagged with
ws_config, then subsequently removed from your workspace (p4 sync #none), are untagged.

To sync the files tagged by the ws_con£1ig label (thereby recreating the workspace configuration):
$ p4 sync @ws_config
Note
You can control how static labels are stored using the autoreload ornoautoreload options:

m autoreload stores the labels in the unload depot. This storage option can improve
performance on sites that make heavy use of labels.

m noautoreload stores the labels inthe db . 1abel table.

These storage options do not affect automatic labels.

p4 tag allows you to specify any revision of any file, and add that revision to an existing label or create
anew label if the label does not exist.

p4 labelsync allows you to use the named label to tag the current contents of the client.

When syncing static labels, the performance is the same regardless of how they are created.

138

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_tag.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_labelsync.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_labels.html

Automatic labels

Automatic labels

Automatic labels refer to the revisions provided inthe View: and Revision: fields of the label
specification. To create an automatic label, fill inthe Revision: field of thep4 label spec witha
revision specifier. When you sync a workspace to an automatic label, the contents of the Revision:
field are applied to every file in the View: field.

Example Using an automatic label as an alias for a changelist number

Bruno is running a nightly build process, and has successfully built a product as of changelist 1234.
Rather than having to remember the specific changelist for every night’s build, he types p4 label
nightly20111201 and uses the label’'s Revision: field to automatically tag all files as of
changelist 1234 withthenightly20111201 label:

Label: nightly20111201
Owner: bruno
Description:

Nightly build process.
Options: unlocked noautoreload
View:

//depot/. ..

Revision:

@1234

The advantage to this approach is that it is highly amenable to scripting, takes up very little space in
the label table, and provides a way to easily refer to a nightly build without remembering which
changelist number was associated with the night’s build process.

Example Referring specifically to the set of files submitted in a single changelist

A bug was fixed by means of changelist 1238, and requires a patch label that refers to only those files
associated with the fix. Brunotypes p4 label patch20111201 and uses the label's
Revision: field to automatically tag only those files submitted in changelist 1238 with the
patch20111201 label:

Label: patch20111201
Owner: bruno
Description:
Patch to 2011/12/01 nightly build.
Options: unlocked noautoreload
View:

//depot/. ..

139

Automatic labels: superior performance

Revision:

@1238,1238

This automatic label refers only to those files submitted in changelist 1238.

Example Referring to the first revision of every file over multiple changelists
You can use revision specifiers other than changelist specifiers. In this example, Bruno specifies to
the first revision (#1) of every file in a branch. Depending on how the branch was populated, these files
could have been created through multiple changelists over a long period of time:
Label: first2.2
Owner: Dbruno
Description:
The first revision in the 2.2 branch
Options: unlocked noautoreload
View:
//JamCode/release/jam/2.2/src/. ..
Revision:
ngn

Because Helix server forms use the # character as a comment indicator, Bruno has placed quotation
marks around the # to ensure that it is parsed as a revision specifier.

Also in this section:
Automatic labels: superior performance ... 140

Automatic labels: superior performance

Automatic labels perform much better than static labels when synced because they are aliases for
changelists.

m Static labels must store information for every file revision associated with the label. Sites using a
large number of static labels with a large number of revisions have a very large db . 1abel table.

= Automatic labels using a changelist revision do not require storing each file revision, which greatly
reduces the amount of data that must be stored and scanned when referencing the label.

When using automatic labels containing both View: and Revision: fields, use of the automatic
labels to represent a revision ranges might not produce the same results when using the equivalent
changelist revision range. You can make an automatic label behave exactly like its revision specifier by
leaving the View : field blank. Without this field, the automatic label is considered a pure alias and is
processed exactly like the revision specification.

140

Preventing inadvertent tagging and untagging of files

Tip

A changelist number can apply to more files than the number of files submitted by the changelist.
For example, putting @1234 inthe Revision: fieldand //depot/. . . inthe View: field of a
label spec creates a label that is an alias for changelist 1234 for all files within depot at the time
the change was submitted, even if only one file revision was submitted with the change.

Changelist numbers increment in chronological order, and automatic labels can be used as fixed
points for any file or set of files in your depot.

Preventing inadvertent tagging and untagging of files

To tag the files that are in your client workspace and label view (if set) and untag all other files, issue the
p4 labelsync command with no arguments. To prevent the inadvertent tagging and untagging of
files, issuethep4 label labelname command and lock the label by settingthe Options: field
of the label form to Locked. To prevent other users from unlocking the label, set the Owner : field. For
details about Helix server privileges, see the Helix Core Server Administrator Guide.

Using labels on edge servers

You can user the Helix Core server in a multi-server environment using central and edge servers. With a
multi-server Helix server architecture, users typically connect to an edge server and execute commands
just as they would with a classic Helix server. For more information, see Helix Core Server Administrator
Guide.

When connected to an edge server, the commands p4 label, p4 labelsync, and p4 tag operate on labels
local to the edge server. Global labels can be manipulated by using the —g option. For details, see the
Helix Core P4 Command Reference.

Note
Using the —g option withp4 labelsync only works with a global client. To manipulate a global
label, usep4 tag.

Using labels with Git

If you are using Git with Helix server, and you want to support build systems that need to build from
multiple repos not all of which are at the same branch, tag, or commit (SHA), create a label specification
inwhichthe Revision: fieldis set to "#head":

A Perforce Label Specification.

Label: mylabel

Update: 2017/08/08 15:23:08

Access: 2012/01/23 16:16:17

141

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_label.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_labelsync.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_tag.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using labels with Git

Owner: bruno
Description:

Created by bruno.

Options: unlocked noautoreload
Revision: "#head"
View:

//repo/linux/projects/...@master
//repo/linux/projects/drivers/...Qdev-1
//repo/linux/projects/forms/...@4759B19D1EB8B706E71D54AD1 68AA

For more information about using Git with Helix server, see Helix4Git Administration.

142

https://www.perforce.com/perforce/doc.current/manuals/helix-for-git/

A job is a numbered (or named) work request managed by Helix server. Helix server jobs enable you to
track the status of bugs and enhancement requests and associate them with changelists that implement
fixes and enhancements. You can search for jobs based on the contents of fields, the date the job was
entered or last modified, and many other criteria.

Your Helix server administrator can customize the job specification for your site’s requirements. For
details on modifying the job specification, see the Helix Core Server Administrator Guide.

To integrate Helix server with your in-house defect tracking system, or to develop an integration with a
third-party defect tracking system, use P4DTG, the Helix Defect Tracking Gateway. PADTG is an
integrated platform that includes both a graphical configuration editor and a replication engine. For more
information, see https://www.perforce.com/plugins-integrations/defect-tracking-gateway

Creating, editing, and deletingajob 143
Searching JoObS .. . 144
Searching JOb teXt 145
Searching specific flelds ... 145
Using comparison OPErators o oo 146
Searching date flelds 147
FiXiNg JODS 147
Linking automatically 148
LinKing ManuUally . 148
Linking jobs to changelists 149

Creating, editing, and deleting a job

To create a job using Helix server’s default job-naming scheme, issue the p4 job command. To assign
aname to a new job (or edit an existing job), issuethep4 job jobname command.

Example Creating a job

Gale discovers a problem with Jam, so she creates ajob by issuing the p4 job command and
describes it as follows:

Job: Job000006

Status: open

User: gale

Date: 2011/11/14 17:12:21

143

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/plugins-integrations/defect-tracking-gateway

Searching jobs

Description:

MAXLINE can't account for expanded cmd buffer size.

The following table describes the fields in the default job specification:

Field Name Description Default
Job The name of the job (white space is not allowed). By Last job number
default, Helix server assigns job names using a +1

numbering scheme (jobnnnnnn).

Status m open: job has not yet been fixed. open
m closed: jobhas been completed.

m suspended: jobis not currently being worked

on.
User The user to whom the job is assigned, usually the person Helix server user
assigned to fix this particular problem. name of the job
creator.

Date The date the job was last modified. Updated by Helix
server when you
save the job.

Description Describes the work being requested, for example a bug None. You must

description or request for enhancement. entera
description.

To edit existing jobs, specify the job name when you issue the p4 job command: p4 job
jobname. Enter your changes in the job form, save the form and exit.

Todelete ajob, issuethep4 job -d jobname command.

Searching jobs

To search Helix server jobs, issuethep4 jobs -e jobviewcommand, where jobview specifies
search expressions described in the sections listed below. For more details, issue the p4 help
jobview command.

Also in this section:

Searching job text 145
Searching specific fields 145
Using comparison operators 146
Searching date fields 147

144

Searching job text

Searching job text

You can use the expression ' wordl word2 ... wordN' tofind jobs that contain all of word?
through wordN in any field (excluding date fields). Use single quotes on UNIX and double quotes on
Windows.

When searching jobs, note the following restrictions:

m When you specify multiple words separated by whitespace, Helix server searches for jobs that
contain all the words specified. To find jobs that contain any of the terms, separate the terms with
the pipe (|) character.

m Field names and text comparisons in expressions are not case-sensitive.

= Only alphanumeric text and punctuation can appear in an expression. To match the following
characters, which are used by Helix server as logical operators, precede them with a backslash:
=r&| () <>,

= You cannot search for phrases, only individual words.

Example Searching jobs for specific words
Bruno wants to find all jobs that contain the words £ilter, file, andmailbox. He types:

S p4 jobs -e 'filter file mailbox'

Example Finding jobs that contain any of a set of words in any field
Bruno wants to find jobs that contain any of the words £ilter, file ormailbox. He types:

$ p4 jobs -e 'filter|file|mailbox'

You can use the * wildcard to match one or more characters. For example, the expression
fieldname=string* matches string, strings, stringbuffer, andsoon.

To search for words that contain wildcards, precede the wildcard with a backslash in the command. For
instance, to search for *string (perhaps in reference to char *string), issue the following
command:

$ p4 jobs -e '*string'

Searching specific fields

To search based on the values in a specific field, specify field=value.

Example Finding jobs that contain words in specific fields
Bruno wants to find all open jobs related to filtering. He types:

$ p4 jobs -e 'Status=open User=bruno filter.c'

145

Using comparison operators

This command finds all jobs witha Status: of open, aUser: of bruno, and the word
filter. cinany non-date field.

To find fields that do not contain a specified expression, precede it with #, which is the NOT operator.
The NOT operator # can be used only directly after an AND expression (space or &). For example, p4
jobs -e '“user=bruno'’ is notvalid. To get around this restriction, use the * wildcard to add a
search term before the # term; forexample: p4 jobs -e 'job=* “user=bruno' retums all
jobs not owned by Bruno.

Example Excluding jobs that contain specified values in a field
Bruno wants to find all open jobs he does not own that involve filtering. He types:

$ p4 jobs -e 'status=open “user=bruno filter'

This command displays all open jobs that Bruno does not own that contain the word £ilter.

Using comparison operators

The following comparison operators are available: =, >, <, >=, <=, and % for Boolean NOT.

The behavior of these operators depends upon the type of the field in the expression. The following table
describes the field types and how they can be searched:

Field Description Notes

Type

word A single word The equality operator (=) matches the value in the
word field exactly.

The relational operators perform comparisons in

ASCII order.
text A block of text entered on the The equality operator (=) matches the job if the value
lines beneath the field name. is found anywhere in the specified field.

The relational operators are of limited use here,
because they’ll match the job if any word in the
specified field matches the provided value. For
example, if a job has a text field
ShortDescription: that contains only the
phrase gui bug, and the expression is
'ShortDesc<filter', thejob will match the
expression, because bug<filter.

line Asingle line of text enteredon ~ Same as text.
the same line as the field
name.

146

Searching date fields

Field Description Notes

Type

select Oneof asetof values. For The equality operator (=) matches a job if the value in
example, job status can be the field is the specified word. Relational operators
open, suspended, or perform comparisons in ASCII order.
closed.

date A date and optionally a time. Dates are matched chronologically. If a time is not
For example, specified, the operators =, <=, and >= match the

2011/07/15:13:21:40 whole day.

bulk Like text, but not indexed These fields are not searchable withp4 jobs -e.
for searching.

If you're not sure of a field’s type, issuethep4 jobspec -o command, which displays yourjob
specification. The field called Fields: lists the job fields' names and data types.

Searching date fields

To search date fields, specify the date using the format yyyy/mm/dd or yyyy/mm/dd: hh: mm: ss.
If you omit time, the equality operator (=) matches the entire day.

Example Using dates within expressions
Bruno wants to view all jobs modified on July 13, 2011. He enters:

$ p4 jobs -e 'ModifiedDate=2011/07/13'

Fixing jobs
Tofix ajob, you link it to a changelist and submit the changelist. Helix server automatically changes the

value of a job’s status field to closed when the changelist is submitted.

Jobs can be linked to changelists in one of three ways:

m By setting the JobView: fieldinthe p4 user form to an expression that matches the job.
s Withthep4 £ix command.
m By editingthe p4 submit form.

You can modify job status directly by editing the job, but if you close a job manually, there’s no
association with the changelist that fixed the job. If you have altered your site’s job specification by
deleting the Status : field, jobs can still be linked to changelists, but status cannot be changed when
the changelist is submitted. (In most cases, this is not a desired form of operation.) See the chapter on
editing job specifications in the Helix Core Server Administrator Guide for more details.

147

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Linking automatically

Toremove jobs from a changelist, issuethep4 £ix -dcommand.

Also in this section:

Linking automatically 148
Linking manually .. L 148
Linking jobs to changelists 149

Linking automatically

You can modify your Helix server user specification to automatically attach open jobs to any changelists
you create. To set up automatic inclusion, issue the p4 user command and set the JobView: field
value to a valid expression that locates the jobs you want attached.

Example Automatically linking jobs to changelists
Bruno wants to see all open jobs that he owns in all changelists he creates. He types p4 user and
adds the JobView: field:

User: bruno

Update: 2011/06/02 13:11:57
Access: 2011/06/03 20:11:07
JobView: user=brunoé&status=open

All of Bruno’s open jobs now are automatically attached to his default changelist. When he submits
changelists, he must be sure to delete jobs that aren’t fixed by the changelist he is submitting.

Linking manually

Tolink a job to a changelist manually, issuethep4 fix -c changenum jobname command. If
the changelist has already been submitted, the value of the job’s Status: fieldis changed to closed.

Otherwise, the status is not changed.

Example Manually linking jobs to changelists.
Youcanusep4 £ixtolink achangelisttoajob owned by another user.

Sarah has just submitted a job called options-bug to Bruno, but the bug has already been fixed in
Bruno’s previously submitted changelist 18. Bruno links the job to the changelist by typing:

$ p4 fix -c 18 options-bug

Because changelist 18 has already been submitted, the job’s status is changed to closed.

148

Linking jobs to changelists

Linking jobs to changelists

To link jobs to changelists when submitting or editing the changelist, enter the job names in the Jobs :
field of the changelist specification. When you submit the changelist, the job is (by default) closed.

To unlink a job from a pending changelist, edit the changelist and delete its name from the Jobs : field.
To unlink a job from a submitted changelist, issuethep4 fix -d -c changenumjobname

command.

149

Scripting and reporting

This chapter provides details about using p4 commands in scripts and for reporting purposes. For a full
description of any particular command, see the Helix Core P4 Command Reference, or issue the p4
help command.

Common options used in scripting and reporting 150
Scripting with Helix server forms 151
File reporting ... oo 152
Displaying file status il 153
Displaying file revision history .. 154
Listing open files . il 154
Displaying file locations 155
Displaying file contents ... il 155
Displaying annotations (details about changes tofilecontents) 156
Monitoring changes to files 157
Changelist reporting 157
Listing changelists . iiiiiiiiiii.. 157
Listing files and jobs affected by changelists 158
Label reporting ... oo 159
Branch and integration reporting 159
JOb rePOrtinNg 160
LiStiNg JODS . .. 160
Listing jobs fixed by changelists 161
System configuration reporting 161
DiSPlaYiNg USEIS . 161
Displaying WOrKSPACES 162
LiSting AEPOtS 162
Sample SCriPt . 162

Common options used in scripting and reporting

The command-line options described below enable you to specify settings on the command line and in
scripts. For full details, refer to the description of global options in the Helix Core P4 Command
Reference.

Option Description

-b Specify a batch size (number of arguments) to use when processing a command
batchsize from-x argfile. By default, 128 arguments are read at a time.

=@ Specifies the client workspace name.
client
workspace

150

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Scripting with Helix server forms

Option Description

-G Causes all output (and batch input for form commands with —1i) to be formatted as
marshaled Python dictionary objects.

-P Specifies the host and port number of the Helix server, as well as the protocol used
protocol to connect.

host:port

-P Specifies the user password if any. If you prefer your script to log in before running

password commands (instead of specifying the password every time a command is issued),
usethep4 login command. Forexample:

$ echo 'mypassword' | p4 login

-s Prepends a descriptive field (forexample, text:, info:, error:,exit:)to
each line of output produced by a Helix server command.

-u user Specifies the Helix server user name.
-X Reads arguments, one per line, from the specified file. If argfile s asingle
argfile hyphen (=), then standard input is read.

Scripting with Helix server forms

If your scripts issue p4 commands that require the user to fill in a form, such as thep4 client and
p4 submit commands, use the —o option to write the form to standard output and the —i option to
read the edited form from standard input.

For example, to create a job using a script on UNIX:
1. Write a blank job specification into a text file.
$ p4 job -o > templ

2. Make the necessary changes to the job.

For example:

$ sed 's/<enter description here>/Crashes on exit./' templ >

temp2
3. Savethejob.
$ p4 job -i < temp2

To accomplish the preceding without a temporary file, issue the following command:

151

File reporting

S p4 job -o | sed 's/<enter description here>/Crashes on exit./' |

p4 job -i
The commands that display forms are:
= p4 branch
= p4 change
m p4 client
= p4 job
= p4 label

= p4 submit (usep4 change -otocreatechangelist,orp4 submit -d "A
changelist description" tosupply adescription to the default changelist during

changelist submission.)
= p4d stream

= p4 user

File reporting

The sections below describe commands that provide information about file status and location. The

following table lists a few basic and highly-useful reporting commands:

To display this information

Use this
command

File status, including file type, latest revision number, and other information p4 files
File revisions from most recent to earliest pé4 filelog
Currently opened files p4 opened
Preview of p4 sync results p4 sync -n
Summarize ap4 sync preview, estimate network traffic p4 sync -N
Currently synced files p4 have
The contents of specified files p4 print
The mapping of files' depot locations to the corresponding workspace p4 where
locations.

A list of files and full details about the files p4 fstat

Also in this section:

152

Displaying file status

Displaying file status 153
Displaying file revision history 154
Listing open filesl 154
Displaying file locations 155
Displaying file contents 155
Displaying annotations (details about changes to file contents) 156
Monitoring changes tofiles 157

Displaying file status

To display information about single revisions of files, issue the p4 £iles command. This command
displays the locations of the files in the depot, the actions (add, edit, delete, and so on) performed
on those files at the specified revisions, the changelists in which the specified file revisions were
submitted, and the files' types. The following example shows typical output of thep4 files
command:

//depot/README#5 - edit change 6 (text)

Thep4 £iles command requires one or more filespec arguments. Regardless of whether you use
local, client, or depot syntax to specify the filespec arguments, the p4 £ile command displays results
using depot syntax. If you omit the revision number, information for the head revision is displayed. The
output of p4 £iles includes deleted revisions.

The following table lists some common uses of the p4 £iles command:

To display the status of Use this
command

All files in the depot, regardless of your workspace view pé4 files
//depot/. ..

For depots containing numerous files, you can maximize performance by
avoiding commands that refer to the entire depot (/ /depot/ . . .)when
not required. For best performance, specify only the directories and files of

interest.

The files currently synced to the specified client workspace. p4 files @
workspacename

The files mapped by your workspace view. p4 files //
workspacename
/...

Specified files in the current working directory p4 files
filespec

153

Displaying file revision history

To display the status of Use this
command

A specified file revision p4 files
filespec#rev

Specified files at the time a changelist was submitted, regardless of whether p4 files

the files were submitted in the changelist filespec
@changenum

Files tagged with a specified label p4 files
filespec
@labelname

Displaying file revision history
To display the revision history of afile, issuethep4 filelog filespeccommand. The following
example shows how p4 filelog displays revision history:
$ p4 filelog //JamCode/dev/jam/jam.c
//JamCode/dev/jam/jam.c

. #35 change 627 edit on 2011/11/13 by earl@earl-dev-yew (text)
'Handle platform variants better'

. #34 change 598 edit on 2011/10/24 by raj@raj-althea (text)
'Reverse previous attempt at fix'

. branch into //JamCode/release/jam/2.2/src/jam.c#l

. #33 change 581 edit on 2011/10/03 by gale@gale-jam-oak (text)

'Version strings & release notes'

To display the entire description of each changelist, specify the =1 option.

Listing open files

To list the files that are currently opened in a client workspace, issue the p4 opened filespec
command. The following line is an example of the output displayed by the p4 opened command:

//JamCode/dev/jam/fileos2.c- edit default change (text)

The following table lists some common uses of the p4 opened command:

To list Use this command

Opened files in the current workspace p4 opened

154

Displaying file locations

To list Use this command

Opened files in all client workspaces p4 opened -asp4 opened -a
Files in a numbered pending changelist p4 opened -c changelist
Files in the default changelist p4 opened -c default
Whether a specific file is opened by you p4 opened filespec

Whether a specific file is opened by anyone p4 opened -a filespec

Displaying file locations

To display information about the locations of files, use the p4 where,p4 have,andp4 sync -n
commands:

m Todisplay the location of a file in depot, client, and local syntax, issue the p4 where command.

m Tolist the location and revisions of files that you last synced to your client workspace, issue the
P4 have command.

= To see where files will be synced in your workspace, preview the sync by issuingthe p4 sync
-n command.

You can use these commands with or without filespec arguments.

The following table lists some useful location reporting commands:

To display Use this command

The revision number of a file that you synced to your P4 have filespec

workspace

How a particular file in the depot maps to your workspace p4 where
//depot/filespec

Displaying file contents

To display the contents of afile in the depot, issuethep4 print filespeccommand. This
command prints the contents of the file to standard output or to a specified output file, with a one-line
banner that describes the file. To suppress the banner, specify the —q option. By default, the head
revision is displayed, but you can specify a file revision.

To display the contents of files Use this command
At the head revision P4 print filespec
Without the banner P4 print -q filespec

155

Displaying annotations (details about changes to file contents)

To display the contents of files Use this command

At a specified changelist number P4 print filespec@changenum

Displaying annotations (details about changes to file
contents)

To find out which file revisions or changelists affected lines in a text file, issuethe p4 annotate
command.

By default, p4 annotate displays the file line by line, with each line preceded by a revision number
indicating the revision that made the change. To display changelist numbers instead of revision numbers,
specify the —c option.

Example Using p4 annotate to display changes to a file
Afileis added (file. txt#1)to the depot, containing the following lines:

This is a text file.

The second line has not been changed.

The third line has not been changed.

The third line is deleted and the second line edited so that £ile . txt#2 reads:

This is a text file.
The second line is new.

The output of p4 annotateandp4 annotate -clook like this:

$ p4 annotate file.txt
//Acme/files/file.txt#3 - edit change 153 (text)
1: This is a text file.

2: The second line is new.

$ p4 annotate -c file.txt
//Acme/files/file.txt#3 - edit change 153 (text)
151: This is a text file.

152: The second line is new.

Thefirst line of £ile . txt has been present since revision 1, which was submitted in changelist
151. The second line has been present since revision 2, which was submitted in changelist 152.

To show all lines (including deleted lines) in the file, usse p4 annotate -a as follows:

156

Monitoring changes to files

$ p4 annotate -a file.txt
//Acme/files/file.txt#3 - edit change 12345 (text)
1-3: This is a text file.

1-1: The second line has not been changed.

1-1: The third line has not been changed.

2-3: The second line is new.

The first line of output shows that the first line of the file has been present for revisions 1 through 3.
The next two lines of output show lines of £ile . txt present only in revision 1. The last line of
output shows that the line added in revision 2 is still present in revision 3.

You can combine the —a and -c options to display all lines in the file and the changelist numbers
(rather than the revision numbers) at which the lines existed.

Monitoring changes to files

The following table lists commands that display information about the status of files, changelists, and
users:

To list Use this command

The users who review specified files p4 reviews filespec

The users who review files in a specified changelist P4 reviews -c changenum

A specified user's email address P4 users username
Changelist reporting

Thep4 changes command lists changelists that meet search criteria, andthe p4 describe
command lists the files and jobs associated with a specified changelist.

Also in this section:

Listing changelists 157
Listing files and jobs affected by changelists 158

Listing changelists

Tolist changelists, issue thep4 changes command. By default, p4 changes displays one line for
every public changelist known to the system, as well as for any restricted changelists to which you have
access. The following table lists command-line options that you can use to filter the list.

157

Listing files and jobs affected by changelists

To list changelists

Use this command

With the first 31 characters of the changelist descriptions P4 changes
With full descriptions P4 changes -1
The last n changelists P4 changes -m n
With a specified status p4 changes -s
pending
P4 changes -s
submitted
P4 changes -s
shelved
From a specified user p4 changes -u user
From a specified workspace P4 changes -c
workspace
That affect specified files p4 changes filespec
That affect specified files, including changelists that affect files P4 changes -i
that were later integrated with the named files filespec
That affect specified files, including only those changelists p4 changes
between revisions m and n of these files filespec#m, #n
That affect specified files at each revision between the revisions P4 changes
specified in labels /label1 and label2 filespec
Qlabell,Rlabel2
Submitted between two dates P4 changes
RQdatel,@date2
Submitted on or after a specified date P4 changes
Rdatel,Rnow

Listing files and jobs affected by changelists

Tolist files and jobs affected by a specified changelist, along with the diffs of the changes, issue the p4
describe command. To suppress display of the diffs (for shorter output), specify the —s option. The
following table lists some useful changelist reporting commands:

To list Use this command

Files in a pending changelist p4 opened -c
changenum

158

Label reporting

To list Use this command

Files submitted and jobs fixed by a particular changelist, including diffs p4 describe

changenum
Files submitted and jobs fixed by a particular changelist, suppressing p4 describe -s
diffs changenum
Files and jobs affected by a particular changelist, passing the context p4 describe -dc
diff option to the underlying diff program changenum
The state of particular files at a particular changelist, regardless of pé4 files
whether these files were affected by the changelist filespec
@changenum

For more commands that report on jobs, see "Job reporting" on the facing page.

Label reporting

To display information about labels, issue the p4 labels command. The following table lists some
useful label reporting commands:

To list Use this command

All labels, with creation date and owner p4 labels

All labels containing a specific file revision (or range) p4 labels file#revrange
Files tagged with a specified label p4 files Qlabelname

A preview of the results of syncing to a label p4 sync -n Qlabelname

Branch and integration reporting

The following table lists commonly used commands for branch and integration reporting:

All branch specifications p4 branches

Files in a specified branch p4 files filespec
The revisions of a specified file p4 filelog filespec
The revisions of a specified file, recursively including revisions p4 filelog -i

of the files from which it was branched filespec

159

Job reporting

To list Use this command

A preview of the results of a resolve p4 resolve [args] -n
[filespec]
Files that have been resolved but not yet submitted p4 resolved
[filespec]
Integrated, submitted files that match the filespec arguments P4 integrated
filespec
A preview of the results of an integration P4 integrate [args]

-n [filespec]

Job reporting

Tolist jobs, issuethe p4 jobs command.
Also in this section:

Listing jobs .. il 160
Listing jobs fixed by changelists

Listing jobs

The following table lists common job reporting commands:

To list Use this
command
All jobs p4 jobs
All jobs, including full descriptions p4 jobs -
1
Jobs that meet search criteria (see "Searching jobs" on page 144 for details) p4 jobs -
e jobview
Jobs that were fixed by changelists that contain specific files p4 jobs
filespec
Jobs that were fixed by changelists that contain specific files, including p4 jobs -
changelists that contain files that were later integrated into the specified files i
filespec

160

Listing jobs fixed by changelists

Listing jobs fixed by changelists

Any jobs that have been linked to a changelist withp4 change,p4 submit,orpd4 fixare
referred to as fixed (regardless of whether their status is closed). To list jobs that were fixed by
changelists, issuethe p4 fixes command.

The following table lists useful commands for reporting fixes:

To list Use this
command

all changelists linked to jobs pé4 fixes

all changelists linked to a specified job p4 fixes -j
jobname

all jobs linked to a specified changelist pé4 fixes -c
changenum

all fixes associated with specified files p4 fixes
filespec

all fixes associated with specified files, including changelists that contain p4 fixes -i

files that were later integrated with the specified files filespec

System configuration reporting

The commands described in this section display Helix server users, client workspaces, and depots.

DisSpPlaying USerS 161
Displaying workspaces 162
Listing depots ... 162

Displaying users

Thep4 users command displays the user name, an email address, the user’s “real” name, and the
date that Helix server was last accessed by that user, in the following format:

bruno <bruno@bruno ws> (bruno) accessed 2011/03/07

dai <dai@dai ws> (Dai Sato) accessed 2011/03/04

earl <earl@earl ws> (Earl Ashby) accessed 2011/03/07

gale <galelgale ws> (Gale Beal) accessed 2011/06/03

hera <hera@hera ws> (Hera Otis) accessed 2011/10/03

ines <ines@ines ws> (Ines Rios) accessed 2011/02/02

jack <jack@submariner> (jack) accessed 2011/03/02

161

Displaying workspaces

mei <mei@mei ws> (Mei Chang) accessed 2011/11/14

ona <ona@ona ws> (Ona Birch) accessed 2011/10/23

quinn <quinn@quinn ws> (Quinn Cass) accessed 2011/01/27
raj <raj@ran ws> (Raj Bai) accessed 2011/07/28

vera <vera@vera ws> (Vera Cullen) accessed 2011/01/15

Displaying workspaces

To display information about client workspaces, issue the p4 clients command, which displays the
client workspace name, the date the workspace was last updated, the workspace root, and the
description of the workspace, in the following format:

Client bruno ws 2011/03/07 root c:\bruno ws "'

Client earl-dev-beech 2011/10/26 root /home/earl ''

Client earl-dev-guava 2011/09/08 root /usr/earl/development ''
Client earl-dev-yew 2011/11/19 root /tmp "'

Client earl-win-buckeye 2011/03/21 root c:\src "'

Client earl-gnx-elm 2011/01/17 root /src "'

Client earl-tupelo 2011/01/05 root /usr/earl "'

Listing depots

Tolist depots, issue the p4 depots command. This command lists the depot’s name, its creation
date, its type (Local, remote, archive, spec, or stream), its host name or IP address (if
remote), the mapping to the local depot, and the system administrator’'s description of the depot.

For details about defining multiple depots on a single Helix server installation, see the Helix Core Server
Administrator Guide.

Sample script

The following sample script parses the output of the p4 £stat command to report files that are opened
where the head revision is not in the client workspace (a potential problem):

Example

#!/bin/sh
Usage: opened-not-head.sh files
Displays files that are open when the head revision is not

on the client workspace

162

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Sample script

echo=echo
exit=exit
pd=p4
sed=sed

if [$# -ne 1]

then
Secho "Usage: $0 files"
Sexit 1

fi

Sp4d fstat -Ro $1 | while read line

do
name="$echo $line | $sed 's/~[\. I\+\([" 1\+\) .*$/\1/""
value="$echo $line | $sed 's/~[\. I\+[" I\+ \(.*\)S/\1/""

if ["Sname" = "depotFile"]
then
depotFile=Svalue

elif ["$name" = "headRev"]
then

headRev=Svalue

elif ["$name" = "haveRev"]
then

haveRev=Svalue

if [SheadRev != ShaveRev]
then
Secho S$SdepotFile
fi
fi

163

Sample script

done

164

Helix server file types

Helix server supports a set of file types that enable it to determine how files are stored by the Helix server
and whether the file can be diffed. When you add a file, Helix server attempts to determine the type of the
file automatically: Helix server first determines whether the file is a regular file or a symbolic link, and
then examines the first part of the file to determine whether it's text orbinary. If any non-text
characters are found, the file is assumed to be binary; otherwise, the file is assumed to be text.
(Files in Unicode environments are detected differently; see "Helix server file type detection and
Unicode" on page 170.

To determine the type of a file under Helix server control, issue thep4 openedorp4 files
command. To change the Helix server file type, specify the -t £iletype option. For details about
changing file type, refer to the descriptions of p4 add,p4 edit,andp4 reopen inthe Helix Core
P4 Command Reference.

Helix server supports the following file types:

Keyword Description Comments Stored as

binary Non-text file Synced as binary files in the workspace. Stored full file,
compressed within the depot. compressed
symlink Symbolic link Helix server applications on UNIX, OS X, recent delta

versions of Windows treat these files as symbolic
links. On other platforms, these files appear as
(small) text files.

text Text file Synced as text in the workspace. Line-ending delta
translations are performed automatically.

unicode Unicode file Helix server operating in Unicode mode support the delta, UTF-
unicode file type. These files are translated into 8
the local character set specified by PACHARSET.

Helix server not in Unicode mode do not support
the unicode file type.

For details, see the Interationalization Notes.

utfs8 Unicode file Whether the service is in Unicode mode or not, files delta, UTF-
that are detected as UTF8 will be stored as UTF8 8
and synced as UTF8 without being translated by
the PACHARSET setting.

For details, see the Interationalization Notes.

165

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/r20.2/user/i18nnotes.txt
http://www.perforce.com/perforce/r20.2/user/i18nnotes.txt

File type modifiers

Keyword Description Comments Stored as

utfle Unicode file Whether the service is in Unicode mode or not, files delta, UTF-
are transferred as UTF-8, and translated to UTF-16 8
(with byte order mark, in the byte order appropriate
for the user’'s computer) in the client workspace.

For details, see the Intemationalization Notes.

See "Task streams" on page 90 and "Virtual streams" on page 93.

File type modifiers

You can apply file type modifiers to the base types of specific files to preserve timestamps, expand RCS
keywords, specify how files are stored in the service, and more. For details about applying modifiers to
file types, see "Specifying how files are stored in Helix server" on page 168.

The following table lists the file type modifiers:

Modifier Description Comments

+C Helix server stores Default storage mechanism for binary files and newly-
the full compressed added text, unicode, orut£16 files larger than 10MB.
version of each file

revision
+D Helix server stores Default storage mechanism for text files.
deltas in RCS
format
+F Helix server stores Forlarge ASCII files that aren’t treated as text, such as
full file per revision PostScript files, where storing the deltas is not useful or

efficient.

166

http://www.perforce.com/perforce/r20.2/user/i18nnotes.txt

File type modifiers

Modifier
+k

Description

RCS (Revision
Control System)
keyword expansion

Comments

Supported keywords are as follows:

Id

$SHeader$

SDate$ Date of submission

$DateUTCS$ Date of submission in UTC time
zone

$DateTime$ Date and time of submission

$DateTimeUTCS Date and time of submission in
UTC time zone.

$DateTimeTZ$ Date and time of submission in
the server’s time zone, but
including the actual time zone in
the result.

$Change$

SFile$

$Revision$

SAuthor$

RCS keywords are case-sensitive. A colon after the keyword
(forexample, $Id: $)is optional.

+ko Limited keyword Expands only the Id and $Header$ keywords. Primarily
expansion for backwards compatibility with versions of Helix server prior
t0 2000.1, and corresponds to the +k (ktext) modifierin
earlier versions of Helix server.
+1 Exclusive open If set, only one user at a time can open a file for editing.
(locking) Useful for binary file types (such as graphics) where merging
of changes from multiple authors is not possible.
+m Preserve original The file’s timestamp on the local file system is preserved upon

modification time

submission and restored upon sync. Useful for third-party
DLLs in Windows environments, because the operating
system relies on the file’s timestamp. By default, the
modification time is set to the time you synced the file.

167

Specifying how files are stored in Helix server

Modifier Description Comments

*S Only the head Older revisions are purged from the depot upon submission of
revision is stored new revisions. Useful for executable or . obj files.

+Sn Only the most recent Older revisions are purged from the depot upon submission of
nrevisions are more than n new revisions, or if you change an existing +Sn
stored, where nis a file’'s nto a number less than its current value. For details, see
number from 1 to the Helix Core P4 Command Reference.

10,0rl6, 32, 64,

128, 256, or 512. Using an +Sn file modifier results in special behavior when you

delete and re-add a file: no file revisions are deleted that were
submitted before the add or delete. For example, if a file of type
+S2 is marked as deleted in revision 5, and then re-added with
the same file type and modifier, revisions 3 and 4 are not

purged.
+w File is always Not recommended, because Helix server manages the read-
writable on client write settings on files under its control.
+x Execute bit set on Used for executable files.
client
+X Archive trigger The Helix server runs an archive trigger to access the file.
required See the Helix Core Server Administrator Guide for details.

Specifying how files are stored in Helix server

File revisions of binary files are normally stored in full within the depot, but only changes made to text
files since the previous revision are normally stored. This approach is called delta storage, and Helix
server uses RCS format to store its deltas. The file’s type determines whether full file or delta storage is
used.

Some file types are compressed to gz ip format when stored in the depot. The compression occurs
when you submit the file, and decompression happens when you sync (copy the file from the depot to
your workspace). The client workspace always contains the file as it was submitted.

Warning
To avoid inadvertent file truncation, do not store binary files as text. If you store a binary file as text

from a Windows computer and the file contains the Windows end-of-file character ~Z, only the part of
the file up to the ~ Z is stored in the depot.

168

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Assigning file types for Unicode files

Assigning file types for Unicode files

The Helix server can be run in Unicode mode to activate support for filenames and Helix server metadata
that contain Unicode characters, or in non-Unicode mode, where filenames and metadata must be
ASCII, but textual files containing Unicode content are still supported.

If you need to manage textual files that contain Unicode characters, but do not need Unicode characters
in Helix server metadata, you do not need to run Helix server in Unicode mode. Assign the Helix server
ut£16 file type to textual files that contain Unicode characters.

Your system administrator will be able to tell you which mode the service is using.

In either mode, Helix server supports a set of file types that enable it to determine how afile is stored and
whether the file can be diffed. The following sections describe the considerations for managing textual
files in Unicode environments:

To assign file type when adding a file to the depot, specify the —t option. For example:

$ p4 add -t utflé newfile. txt

To change the file type of files in the depot, open the file for edit, specifying the —t option. For example:

$ p4 edit -t utflé myfile. txt

Also in this section:

Choosing the file type L 169
Helix server file type detection and Unicode

Choosing the file type
When assigning file types to textual files that contain Unicode, consider the following:

m Do you need to edit and diff the files?

Many IDEs create configuration files that you never edit manually or diff. To ensure they are never
translated, assign such files the binary file type.

m |s your site managing files that use different character sets?

If so, consider storing them using aut£16 file type, to ensure they are not translated but still can
be diffed.

Unicode mode services translate the contents of Unicode files into the character set specified by
P4CHARSET. The following table provides more details about how Unicode-mode services manage the
various types of text files:

169

Helix server file type detection and Unicode

Textfile Stored by Helix Validated? Translated Translated
type server as (Unicode per per client
mode) P4CHARSET? platform

text Extended ASCII No No No
unicode UTF-8 Yes (as UTF-16 Yes No

and

PACHARSET)
utflé UTF-8 Yes (as UTF- No No

16)

Non-Unicode-mode services do not translate or verify the contents of unicode files. Instead, the UTF-
8 datais converted to UTF-16 using the byte order appropriate to the client platform. To ensure that such
files are not corrupted when you edit them, save them as UTF-8 or UTF-16 from within your editing
software.

Textfile Stored by Helix Validated? Translated Translated
type server as (Unicode per per client
mode) PACHARSET? platform

text Extended ASCII No No No
unicode UTF-8 Yes (as UTF-16 No No

and

P4ACHARSET)
utfle UTF-8 Yes (as UTF- No Yes

16)

Helix server file type detection and Unicode

In both Unicode mode and non-Unicode mode, if you do not assign a file type when you add afile to the
depot, Helix server (by default) attempts to detect file type by scanning the first 65536 characters of the
file. If non-printable characters are detected, the file is assigned the binary file type. (In Unicode
mode, a further check is performed: if there are no non-printable characters, and there are high-ASCII
characters that are translatable using the character set specified by PACHARSET, the file is assigned
the unicode file type.)

Finally (for services running in Unicode mode or non-Unicode mode), if a UTF-16 BOM is present, the file
is assigned the ut£16 file type. Otherwise, the file is assigned the text file type. (In Unicode mode, a
further check is performed: files with high-ASCII characters that are undefined in the character set
specified by PACHARSET are assigned the binary file type.)

170

Overriding file types

In most cases, there is no need to override Helix server’'s default file type detection. If you must override
Helix server's default file type detection, you can assign Helix server file types according to a file's
extension, by issuing the p4 typemap command. For more about using the typemap feature, refer to
the Helix Core Server Administrator Guide, and the Helix Core P4 Command Reference.

Overriding file types

Some file formats (for example, Adobe PDF files, and Rich Text Format files) are actually binary files,
but they can be mistakenly detected by Helix server as being text. To prevent this problem, your
system administrator can use the p4 typemap command to specify how such file types are stored.
You can always override the file type specified in the typemap table by specifyingthe -t filetype
option.

Preserving timestamps

Normally, Helix server updates the timestamp when a file is synced. The modification time (+m) modifier
is intended for developers who need to preserve afile’s original timestamp. This modifier enables you to
ensure that the timestamp of a file synced to your client workspace is the time on your computer when
the file was submitted.

Windows uses timestamps on third-party DLLs for versioning information (both within the development
environment and also by the operating system), and the +m modifier enables you to preserve the original
timestamps to prevent spurious version mismatches. The +m modifier overrides the client workspace
[no]modtime setting (for the files to which it is applied). For details about this setting, refer to "File
type modifiers" on page 166.

Expanding RCS keywords

RCS (Revision Control System), an early version control system, defined keywords that you can embed
in your source files. These keywords are updated whenever a file is committed to the repository. Helix
server supports some RCS keywords.

To activate RCS keyword expansion for afile, use the +k modifier. RCS keywords are expanded as
follows.

Keyword Expands To Example
$Author$ Helix server user submitting the file $Author: bruno $
$Change$ Helix server changelist number under $Change: 439 $

which file was submitted

$Date$ Date of last submission in format SDate: 2011/08/18 $
YYYY/MM/ DD

171

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Expanding RCS keywords

Keyword Expands To Example
$DateTime$ Date and time of last submission in $DateTime: 2011/08/18
format YYYY/MM/DDhh:mm: ss 23:17:02 $

Date and time are as of the local time on
the Helix server at time of submission.

$File$ Filename only, in depot syntax (without $File:
revision number) //depot/path/file.txt $
$Header$ Synonymous with Id $Header:
//depot/path/file. txt#3
$
Id Filename and revision number in depot $Id:
syntax //depot/path/file. txt#3
$
SRevision$ Helix server revision number SRevision: #3 $

To display afile without expanding its keywords, usep4 print -k filename.

172

Helix server command syntax

This section provides basic information about p4 commands, including command-line syntax,

arguments, and options. For full details about command syntax, see the Helix Core P4 Command
Reference.

Certain commands require administrator or superuser permission. For details, consult the Helix Core
Server Administrator Guide.

You have the option of applying aliases to personal server commands, to do such things as:
m abbreviation
m creating more complex commands
= automating simple multi-command sequences

m providing alternate syntax for difficult-to-remember commands

For more information, see the "Introduction" chapter of Helix Core P4 Command Reference.

Command-line syntax L 173
Specifying filenames onthe command line 176
Helix serverwildcards 177
Restrictions on filenames and identifiers 177
Specifying file revisions 179
Reporting Commands ...l 182

Using Helix server forms .. 183

Command-line syntax

The basic syntax for commands is as follows:

P4 [global options] command [command-specific options] [command

arguments]

The following options can be used with all p4 commands:

Global Description and Example

options

=@ Specifies the client workspace associated with the command. Overrides
clientna PACLIENT.

me

$ p4 -c bruno_ws edit //JamCode/dev/jam/Jambase

173

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/chapter.introduction.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Command-line syntax

Global Description and Example
options
=C Specifies the client workspace’s character set. Overrides PACHARSET.
charset
$ p4 -C utf8 sync
-d Specifies the current directory, overriding the environment variable PWD.
directory
C:\bruno ws> p4 -d c:\bruno_ws\dev\main\jam\Jambase
Jamfile
-G Format all output as marshaled Python dictionary objects (for scripting with
Python).
S p4 -G info
-H host Specifies the hostname of the client computer, overriding PAHOST.
$ p4 -H deneb print //JamCode/dev/jam/Jambase
-I Specify that progress indicators, if available, are desired. This option is not
compatible with the —s and -G options.
At present, the progress indicator is only supported by two commands: submitting
achangelistwithp4 -I submit and “quietly” syncing files withp4 -I
sync -qg.
-L Specifies the language to use for error messages from the Helix server. Overrides
language P4LANGUAGE. In order for this option to work, your administrator must have
loaded support for non-English messages in the database.
$ p4 -L language info
-p port Specifies the protocol, host and port number used to connect to the Helix server
service, overriding PAPORT.
$ p4 -p ssl:deneb:1818 clients
-P Supplies a Helix server password, overriding PAPASSWD. Usually used in
password combination with the —u username option.
$ p4 -u earl -P secretpassword job
=4z Specifies the number of times to retry a command (notably, p4 sync)if the
retries network times out.

174

Command-line syntax

Global Description and Example
options
-Q Specifies the character set to use for command input and output; if you have set
charset P4CHARSET to a UTF-16 or UTF-32 value, you must set
P4COMMANDCHARSET to a non-UTF-16 or -32 value in order to use the p4
command-line client.
$ p4 -Q utf32 -C utf8 sync
-s Prepend a tag to each line of output (for scripting purposes).
$ p4 -s info
-u Specifies a Helix server user, overriding PAUSER.
username
$ p4 -u bill user
-x Read arguments, one per line, from the specified file. To read arguments from
filename standard input, specify -x -.
$ p4 -x myargs.txt
-z tag To facilitate scripting, displays the output of reporting commands in the format as
that generated by p4 fstat.
$ p4 -z tag info
-q Quiet mode; suppress all informational message and report only warnings or errors.
-V Displays the version of the p4 executable.

To display the options for a specific command, issue the p4 help command. For example:

$ p4 help add

add -- Open a new file to add it to the depot

p4 add [-c changelist#] [-d -f -T -n] [-t filetype] file

Open a file for adding to the depot. If the file exists on the

client,

it is read to determine if it is text or binary. If it does

not exist, it is assumed to be text. To be added, the file must not

already reside in the depot, or it must be deleted at the current

head revision. Files can be deleted and re-added.

175

Specifying filenames on the command line

For the full list of global options, commands, and command-specific options, see the Helix Core P4
Command Reference.

Also in this section:

Specifying filenames on the commandline 176
Helix server wildcards 177
Restrictions on filenames and identifiers 177
Specifying file revisions ... 179
Reporting commands L 182

Specifying filenames on the command line

Much of your everyday use of Helix server consists of managing files. You can specify filenames in p4

commands as follows:

m Local syntax: the file’s name as specified in your local shell or operating system.

Filenames can be specified using an absolute path (for example, c: \bruno__
ws\dev\main\jam\fileos2. c)ora paththatis relative to the current directory (for
example, . \jam\fileos2.c).

Relative components (. or . .) cannot be specified following fixed components. For example,
mysub/mydir/./here/file. cis invalid, because the dot (.) follows the fixed
mysub/mydir components.

= Depot syntax: use the following format: //depotname/ file path, specifying the

pathname of the file relative to the depot root directory. Separate the components of the path using

forward slashes. For example: //JamCode/dev/jam/Jambase.

= Client syntax: use the following format: //workspacename/file path, specifying the
pathname of the file relative to the client root directory. Separate the components of the path using

forward slashes. For example: //ona-agave/dev/main/jam/Jambase.

Example Using different syntaxes to refer to the same file
Local syntax:

C:\bruno ws> p4 delete c:\bruno_ws\dev\main\jam\Jambase

Depot syntax:

C:\bruno ws> p4 delete //JamCode/dev/jam/Jambase

Client syntax:

C:\bruno ws> p4 delete //bruno_ws/dev/main/jam/Jambase

176

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Helix server wildcards

Helix server wildcards

For commands that operate on sets of files, Helix server supports two wildcards.

Wildcard Description

B Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

Helix server wildcards can be used with local or Helix server syntax, as in the following examples:

Expression Matches

J* Files in the current directory starting with J.

*/help All files called help in current subdirectories.

VAN All files under the current directory and its subdirectories.

./....c All files under the current directory and its subdirectories, that endin . c.
/usr/bruno/. .. All files under /usr/bruno.

//bruno_ws/. .. All files in the workspace or depot that is named bruno_ws.
//depot/. .. All files in the depot named depot.

//... All files in all depots.

The * wildcard is expanded locally by the operating system before the command is sent to the Helix
server. To prevent the local operating system from expanding the * wildcard, enclose it in quotes or
precede it with a backslash.

Note
The . . . wildcard cannot be used withthe p4 add command. The . . . wildcard is expanded by the

Helix server, and, because the service cannot determine which files are being added, it can’t expand
the wildcard. The * wildcard can be used withp4 add, because it is expanded by the operating
system shell and not by Helix server.

Restrictions on filenames and identifiers
Spaces in filenames, pathnames, and identifiers

Use quotation marks to enclose files or directories that contain spaces. For example:

"//Acme/dev/docs/manuals/recommended configuration.doc"

177

Restrictions on filenames and identifiers

If you specify spaces in names for other Helix server objects, such as branch names, client names, label
names, and so on, the spaces are automatically converted to underscores by the Helix server.

Length limitations

Names assigned to Helix server objects such as branches, client workspaces, and so on, cannot exceed
1,024 characters.

Reserved characters

By default, the following reserved characters are not allowed in Helix server identifiers or names of files
managed by Helix server:

Reserved Character Reason

@ File revision specifier for date, label name, or changelist number
File revision numbers
Ly Wildcard

Wildcard (recursive)

$%1 - %%9 Wildcard (positional)

/ Separator for pathname components

These characters have conflicting and secondary uses. Conflicts include the following:

= UNIX separates path components with /, but many DOS commands interpret / as a command-
line switch.

= Most UNIX shells interpret # as the beginning of a comment.

m Both DOS and UNIX shells automatically expand * to match multiple files, and the DOS
command line uses % to refer to variables.

To specify these characters in filenames or paths, use the ASCII expression of the character's
hexadecimal value, as shown in the following table:

Character ASCII

@ %40
%23
& %2A
% %25

178

Specifying file revisions

Specify the filename literally when you add it; then use the ASCII expansion to refer to it thereafter. For
example, to add afile called recommended@configuration.doc, issue the following
command:

$ p4 add -f //Acme/dev/docs/manuals/recommended@configuration.doc

When you submit the changelist, the characters are automatically expanded and appear in the change
submission form as follows:

//Acme/dev/docs/manuals/recommended%40configuration.doc
After you submit the changelist with the file’s addition, you must use the ASCII expansion to sync the file
to your workspace or to edit it within your workspace. For example:

$ p4 sync //Acme/dev/docs/manuals/recommended%40configuration.doc

The requirement to escape the special characters @, #, *, or % also applies if you attempt to use them in
the Root: orAltRoots: fields of your client specification; escape them with $40, $23, $2A, or
%25 respectively.

Filenames containing extended (non-ASCIl) characters

Non-ASCII characters are allowed in flenames and Helix server identifiers, but entering them from the
command line might require platform-specific solutions. If you are using Helix server in Unicode mode, all
users must have PACHARSET set properly. For details about setting PACHARSET, see the Helix Core
P4 Command Reference and the Intemnationalization Notes.

Ininternational environments, use a common code page or locale setting to ensure that all filenames are
displayed consistently across all computers in your organization. To set the code page or locale:

m Windows: use the Regional Settings applet in the Control Panel
= UNIX: set the LOCALE environment variable

Specifying file revisions

Each time you submit a file to the depot, its revision number is incremented. To specify revisions prior to
the most recent, use the # revision specifier to specify a revision number, or @ to specify a date,
changelist, client workspace, or label corresponding to the version of the file you are working on.
Revision specifications can be used to limit the effect of a command to specified file revisions.

Warning
Some operating system shells treat the Helix server revision character # as a comment character if it
starts a word. If your shell is one of these, escape the # when you use it in p4 commands.

The following table describes the various ways you can specify file revisions:

179

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/r20.2/user/i18nnotes.txt

Specifying file revisions

Revision needed Syntax and example

Revision number file#n

$ p4 sync //JamCode/dev/jam/Jambase#3

Refers to revision 3 of file Jambase

The revision file@changelist number

submitted as of a
specified changelist $ p4 sync //JamCode/dev/jam/Jambase@1l26

Refers to the version of Jambase when changelist 126 was submitted,
even if it was not part of the change.
$ p4 sync //JamCode/dev/...Q126

Refers to the state of the entire depot at changelist 126 (numbered
changelists are explained in "Submit a numbered changelist" on page 56.

The revisionina file@label name
specified label
$ p4 sync //JamCode/dev/jam/Jambaselbeta
The revision of Jambase in the label called beta. For details about
labels, refer to "Labels" on page 134.

The revision last file@Rclient name
synced to a specified
client workspace $ p4 sync //JamCode/dev/jam/Jambase@bruno_ws

The revision of Jambase last synced to client workspace bruno_ws.

Remove the file file#none

$ p4 sync //JamCode/dev/jam/Jambasei#none

Removes Jambase from the client workspace.

The most recent file#head

version of the file
$ p4 sync //JamCode/dev/jam/Jambaseithead

Sameasp4 sync //JamCode/dev/jam/Jambase

(If you omit the revision specifier, the head revision is synced.)

The revision last filetthave
synced to your
workspace $ p4 files //JamCode/dev/jam/Jambaseihave

180

Specifying file revisions

Revision needed Syntax and example

The head revision of file@date
the file in the depot
on the specified date $ p4 sync //JamCode/dev/jam/Jambase@2011/05/18

The head revision of Jambase as of midnight May 18, 2011.

The head revision of file@"date[: time]"

the file in the depot

on the specified date S p4 sync

at the specified time //JamCode/dev/jam/Jambase@"2011/05/18"

Specify dates in the format YYYY/MM/DD. Specify time in the format
HH:MM: SS using the 24-hour clock. Time defaults to 00: 00: 00.

Separate the date and the time by a single space or a colon. (If you use a
space to separate the date and time, you must also enclose the entire date-
time specification in double quotes.)

Example Retrieving files using revision specifiers
Bruno wants to retrieve all revisions that existed at changelist number 30. He types:

$ p4 sync //JamCode/dev/jam/Jambase@30

Another user can sync their workspace so that it contains the same file revisions Bruno has synced by
specifying Bruno’s workspace, as follows:

$ p4 sync @bruno_ws

Example Removing all files from the client workspace

$ p4 sync ...#none

The files are removed from the workspace but not from the depot.

Date and time specifications

Date and time specifications are obtained from the time zone of the computer that hosts the Helix server.
To display the date, time, offset from GMT, and time zone in effect, issue the p4 info command. The
versioning service stores times as the number of seconds since 00:00:00 GMT Jan. 1, 1970), soif you
move across time zones, the times stored in the service are correctly reported in the new time zone.

Revision ranges

Some commands can operate on a range of file revisions. To specify a revision range, specify the start
and end revisions separated by a comma, forexample, #3, 4.

The commands that accept revision range specifications are:

181

Reporting commands

p4 annotate p4 p4 files p4 p4 interchanges p4 p4 list p4 p4

changes p4 dirs fixes p4 grep jobs p4 labels p4 merge p4 sync

p4 filelog p4 integrate labelsync print p4 sizes p4
tag

For the preceding commands:

m |f you specify a single revision, the command operates on revision #1 through the revision you
specify (except forp4 sync,p4 print,andp4 files, which operate on the highest
revision in the range).

= |f you omit the revision range entirely, the command affects all file revisions.

Example Listing changes using revision ranges
A release manager needs to see a quick list of all changes made to the jam project in July 2010. He
types:

$ p4 changes //JamCode/dev/jam/...@Q@2010/7/1,2010/8/1

The resulting list of changes looks like this:
Change 673 on 2010/07/31 by bruno@bruno ws 'Final build for QA'

Change 633 on 2010/07/1 by brunofbruno ws 'First build w/bug fix'
Change 632 on 2010/07/1 by bruno@bruno ws 'Started work'

Reporting commands

The following table lists some useful reporting commands:

To display Use this
command

A list of p4 commands with a brief description p4 help
commands

Detailed help about a specific command p4 help command

Command line options common to all Helix server commands p4 help usage

Details about Helix server view syntax p4 help views

All the arguments that can be specified forthe p4 help command p4 help

The Helix server settings configured for your environment p4 info

The file revisions in the client workspace p4 have

182

Using Helix server forms

To display Use this
command

Preview the results of ap4 sync (to see which files would be p4 sync -n

transferred)

Preview the results of ap4 delete (to see which files would be p4 delete -n

marked for deletion) files

Using Helix server forms

Some Helix server commands, forexamplep4 client andp4 submit, use atext editorto display
a form into which you enter the information that is required to complete the command (for example, a
description of the changes you are submitting). After you change the form, save it, and exit the editor,
Helix server parses the form and uses it to complete the command. (To configure the text editor that is
used to display and edit Helix server forms, set PAEDITOR.)

When you enter information into a Helix server form, observe the following rules:

= Field names (for example, View :) must be flush left (not indented) and must end with a colon.

m Values (your entries) must be on the same line as the field name, or indented with tabs on the lines
beneath the field name.

Some field names, such as the Client: fieldinthep4 client form, require a single value; other
fields, such as Description:, take ablock of text; and others, like View:, take a list of lines.

Certain values, like Client : inthe client workspace form, cannot be changed. Other fields, like
Description: inp4 submit, mustbe changed. If you don’t change a field that needs to be
changed, or vice versa, Helix server displays an error. For details about which fields can be modified, see
the Helix Core P4 Command Reference oruse p4 help command.

183

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

184

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

185

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelistis submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. Uses the Perforce file revision model, not
the graph model. The default depot name is depot. See also default depot, stream depot, and graph
depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

186

Glossary

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server thatis part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

187

Glossary

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

188

Glossary

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflictis

a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide" on "Extensions".

189

Glossary

F

file conflict
In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.
form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

190

Glossary

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same
projects using their preferred tools.

graph depot

A depot of type graph thatis used to store Git repos in the Helix server. See also Helix4Git and
classic depot.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

heartbeat

A process that allows one server to monitor another server, such as a standby server monitoring the
master server (see the p4 heartbeat command).

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

191

Glossary

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

hybrid workspace

A workspace that maps to files stored in a depot of the classic Perforce file revision model as well as
to files stored in a repo of the graph model associated with git.

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work
to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

192

Glossary

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server's metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpointis taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server’s metadata.

label

A named list of user-specified file revisions.

label view

The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy

A method used by Helix server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file

Afile that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

193

Glossary

list access

A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot

Any depot located on the currently specified Helix server.

local syntax

The syntax for specifying a filename that is specific to an operating system.

lock

1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

194

Glossary

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

o)

opened file

A file you have checked out in your client workspace as a result of a Helix Core server operation
(such as an edit, add, delete, integrate). Opening a file from your operating system file browser is not
tracked by Helix Core server.

owner

The Helix server user who created a particular client, branch, or label.

195

Glossary

P

p4
1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

pad
The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

196

Glossary

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depotlocated on another Helix server accessed by the current Helix server.

replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

197

Glossary

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

198

Glossary

S

server data

The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root

The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the PAROOT environment variable or use the p4d -r
flag.

service

In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A "branch" with built-in rules that determines what changes should be propagated and in what order
they should be propagated.

stream depot

A depot used with streams and stream clients. Has structured branching, unlike the free-form
branching of a "classic" depot. Uses the Perforce file revision model, not the graph model. See also
classic depot and graph depot.

199

Glossary

stream hierarchy

The set of parent-to-child relationships between streams in a stream depot.

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

200

Glossary

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide" on "Triggers".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user
The identifier that Helix server uses to determine who is performing an operation. The three types of
users are standard, service, and operator.

\'

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenameV' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

w

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; % %0
through % %39 is used for parameter substitution in views.

201

Glossary

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

202

License Statements

To get alisting of the third-party software licenses that Helix Core server uses, at the command line, type

thep4 help legal command.

To get alisting of the third-party software licenses that the local client (such as P4V) uses, at the
command line, typethep4 help -1 legal command.

203

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation
	Earlier versions of this guide

	What’s new in this guide
	2020.2
	2020.1
	2019.2
	2019.1

	Installation
	On Linux and OS X
	On Windows

	Overview
	Fundamental parts of Helix Core server
	File management
	Changelists
	Parallel development
	Shared files
	Branching: branches versus streams

	Security
	Organizing your work: jobs and labels
	Scripting and reporting

	Tutorial
	Read me first
	Make binaries executable, on UNIX and OS X
	Create a working directory
	Start up the shared server
	Start up the command line client
	Verify the connection to the server
	Create a stream depot
	Create your first stream
	Define a client workspace and bind it to the stream
	Populate a mainline stream
	Edit files
	Delete files
	Sync files from the depot to your client workspace
	Populate child streams

	Basic tasks
	Overview of initial tasks
	Overview of recurring tasks
	Initial tasks
	Create a working directory
	Log in to the shared server
	Start up a shared server
	Start up the command line client and verify the connection to the server
	Create a stream depot
	Create a mainline stream
	Define a workspace and bind it to the stream
	Populate the mainline stream

	Recurring file-level tasks
	Sync files
	Add files
	Add files outside of Helix server and then use p4 reconcile -k
	Edit files and check in changes
	Delete files
	Revert files, to discard changes
	Rename and move files
	Diff files
	Resolve conflicts

	Changelist-related tasks
	Submit a pending changelist
	Create numbered changelists
	Submit a numbered changelist
	Undo a submitted change
	Shelve changelists
	Display information about changelists
	Move files between changelists
	Delete changelists

	Other recurring tasks
	Configure client behavior
	Configure stream behavior
	Branch and populate child streams
	Propagate changes

	Configure clients
	Configure the client process
	Using the command line
	Using config files
	Using environment variables
	Using the Windows registry or OS X system settings
	Configure for IPv6 networks
	Configure for Unicode

	Configure a client workspace
	How Helix server manages files in a workspace
	Define a client workspace
	Configure workspace options
	Configure submit options
	View a stream as of a specific changelist
	Configure line-ending settings
	Change the location and/or layout of your workspace
	Manage workspaces
	Delete a client workspace

	Configure workspace views
	Specify mappings
	Use wildcards in workspace views
	Map part of the depot
	Map files to different locations in the workspace
	Map files to different filenames
	Rearrange parts of filenames
	Exclude files and directories
	Map a single depot path to multiple locations in a workspace
	Restrict access by changelist
	Avoid mapping conflicts
	Automatically prune empty directories from a workspace
	Map different depot locations to the same workspace location
	Deal with spaces in filenames and directories
	Map Windows workspaces across multiple drives
	Use the same workspace from different computers

	Streams
	About streams
	Configure a stream
	Stream types
	Merge down, copy up
	Stream types - most stable to least stable
	Task streams
	Virtual streams

	Stream views and paths
	Stream paths and inheritance
	Stream ParentView Examples

	Update streams
	Edit a stream
	Resolve a stream
	Revert a stream
	Submit, shelve, and unshelve a stream

	Resolve conflicts
	How conflicts occur
	How to resolve conflicts
	Your, theirs, base, and merge files
	Options for resolving conflicts
	Accepting yours, theirs, or merge
	Editing the merge file
	Merging to resolve conflicts

	Full list of resolve options
	Resolving branched files, deletions, moves and filetype changes
	Resolve command-line options
	Resolve reporting commands

	Codeline management
	Organizing the depot
	Branching streams (introduction)
	A shortcut: p4 populate

	Branching streams (merge)
	When to branch
	Branching streams

	Merge changes
	Merging between unrelated files
	Merging specific file revisions
	Re-merging and re-resolving files
	Reporting branches and merges

	Less common tasks
	Work offline
	Ignoring groups of files when adding

	Locking files
	Preventing multiple resolves by locking files
	Preventing multiple checkouts

	Security
	SSL-encrypted connections
	Connecting to services that require plaintext connections

	Passwords
	Setting passwords
	Using your password

	Connection time limits
	Logging in and logging out
	Working on multiple computers

	Labels
	Tagging files with a label
	Untagging files
	Previewing tagging results
	Listing files tagged by a label
	Listing labels that have been applied to files
	Using a label to specify file revisions
	Deleting labels
	Creating a label for future use
	Restricting files that can be tagged
	Static versus automatic labels
	Static labels
	Automatic labels
	Automatic labels: superior performance

	Preventing inadvertent tagging and untagging of files
	Using labels on edge servers
	Using labels with Git

	Jobs
	Creating, editing, and deleting a job
	Searching jobs
	Searching job text
	Searching specific fields
	Using comparison operators
	Searching date fields

	Fixing jobs
	Linking automatically
	Linking manually
	Linking jobs to changelists

	Scripting and reporting
	Common options used in scripting and reporting
	Scripting with Helix server forms
	File reporting
	Displaying file status
	Displaying file revision history
	Listing open files
	Displaying file locations
	Displaying file contents
	Displaying annotations (details about changes to file contents)
	Monitoring changes to files

	Changelist reporting
	Listing changelists
	Listing files and jobs affected by changelists

	Label reporting
	Branch and integration reporting
	Job reporting
	Listing jobs
	Listing jobs fixed by changelists

	System configuration reporting
	Displaying users
	Displaying workspaces
	Listing depots

	Sample script

	Helix server file types
	File type modifiers
	Specifying how files are stored in Helix server
	Assigning file types for Unicode files
	Choosing the file type
	Helix server file type detection and Unicode

	Overriding file types
	Preserving timestamps
	Expanding RCS keywords

	Helix server command syntax
	Command-line syntax
	Specifying filenames on the command line
	Helix server wildcards
	Restrictions on filenames and identifiers
	Specifying file revisions
	Reporting commands

	Using Helix server forms

	Glossary
	License Statements

