
Helix Authentication Service
Administrator Guide

2020.2
January 2021

Copyright © 2020-2021 Perforce Software, Inc..

All rights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sell it, or sell any documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

https://www.perforce.com/

Contents

How to use this guide 6
Syntax conventions 6

Feedback 6

Other documentation 7

Overview of Helix Authentication Service 9
Helix Core and Helix ALM 9

Supported client applications and minimal versions 9
Sequence for Helix Core 10
Sequence for Helix ALM 11
Important security consideration 12

Load balancing 12

Installing Helix Authentication Service 13
Prerequisites 13

Four ways to install HAS 14

Easy way to install Node.js 15
Package installation overview 16

Package installation details 16

Verify the Public Key 17
For APT (Ubuntu) 17
For YUM (Red Hat Enterprise Linux or CentOS) 17
Next 18

Installation script 18

Installation steps 18
Next 20

Manual installation 20

CentOS/RHEL 6, 7, 8, Fedora 31, Ubuntu 14, 16, 18 20
Other Linux distributions 20
Windows 10 Pro and Windows Server 2019 20
Windows as a service 21
Installing Module Dependencies 21
Next 21

Installing as a Windows service 22
Installation 22

3

Prerequisites 22
Installing Module Dependencies 22

Starting and Stopping the Service 23

Configuration 23

Logging 23

Removal 24

Configuring Helix Authentication Service 25
Recommended: configure-auth-service.sh 25

Example of ecosystem.config.js 27

Certificates 27

Restarting the Service 27

OpenID Connect settings variables 28

SAML settings variables 29

Other Settings 31

Logging 33

Next 35

Starting Helix Authentication Service 36
Overview 36

npm 36

Process Managers 36

pm2 36

Next 36

Example Identity Provider configurations 37
Auth0 37

OpenID Connect 37
SAML 2.0 38

Azure Active Directory 39

OpenID Connect 39
SAML 2.0 39
SAML via Azure's Active Directory Gallery 40

Okta 40

OpenID Connect 40
SAML 2.0 41

OneLogin 42

4

OpenID Connect 42
SAML 2.0 42

Google G Suite IdP 43

SAML 2.0 43
Next 43

Example Helix Swarm configuration 44
Service Address Consistency 44

Swarm SAML 44

Example Swarm config.php 44
entityID values 45

Authentication Service 45

Next steps for Helix Core 47
Next steps for Helix ALM 48
Upgrading Helix Authentication Service 49
Troubleshooting 51

"Missing authentication strategy" displayed in browser 51

Redirect URI error displayed in browser 51

Environment settings and unexpected behavior 51

pm2 caching environment variables 52

OIDC challenge methods not supported 52

pm2 restart has no effect for CentOS service package 52

Glossary 53
License statements 72

5

How to use this guide

How to use this guide
This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning
literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for a
serverid parameter, supply the ID of the server.

-a -b Both a and b are required.

{-a | -
b}

Either a or b is required. Omit the curly braces when you compose the command.

[-a -b] Any combination of the enclosed elements is optional. None is also optional.
Omit the brackets when you compose the command.

[-a | -
b]

Any one of the enclosed elements is optional. None is also optional. Omit the
brackets when you compose the command.

... Previous argument can be repeated.

 n p4 [g-opts] streamlog [-l -L -t -m max] stream1
...
means 1 or more stream arguments separated by a space

 n See also the use on ... in Command alias syntax in the Helix Core P4
Command Reference

Tip
... has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

Feedback
How can we improve this manual? Email us at manual@perforce.com.

6

https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation
See https://www.perforce.com/support/self-service-resources/documentation.

Tip
You can also search for Support articles in the Perforce Knowledgebase.

7

https://www.perforce.com/support/self-service-resources/documentation
https://community.perforce.com/s/

Overview of Helix Authentication Service
The Helix Authentication Service (HAS) is designed to enable certain Perforce products to integrate with
your organization's Identity Provider (IdP).

HAS supports:

 n Two protocols: Security Assertion Markup Language (SAML) and OpenID Connect (OIDC).

 l HAS can work with one IdP per protocol. For example, you might want to use OpenID
Connect with Azure Active Directory, and SAML with Google G Suite IdP.

 n Security-Enhanced Linux (SELinux) enabled in enforcing mode

The officially supported "Example Identity Provider configurations" on page 37 include AuthO, Azur
Active Directory, Okta (identity management), OneLogin, Google G Suite IdP for SAML. In addition, we
have positive results with our initial testing with Shibboleth for SAML and Ping Identity. We expect HAS
can also work with Cisco Duo Security and probably any standard IdP.

Helix Core and Helix ALM
After you perform the tasks of "Installing Helix Authentication Service" on page 13, "Configuring Helix
Authentication Service" on page 25, and "Starting Helix Authentication Service" on page 36, you will go
to one of the following:

 n "Next steps for Helix Core" on page 47 so you can to learn about the necessary work with a Helix
Core Server Extension

 n "Next steps for Helix ALM" on page 48 so you can to learn about the necessary work with the
Helix ALM License Server

Supported client applications and minimal versions
The client version must be equal to or greater than the version specified:

9

https://en.wikipedia.org/wiki/Identity_provider
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://en.wikipedia.org/wiki/OpenID_Connect
https://en.wikipedia.org/wiki/Security-Enhanced_Linux
https://auth0.com/
https://azure.microsoft.com/en-us/services/active-directory
https://azure.microsoft.com/en-us/services/active-directory
https://en.wikipedia.org/wiki/Okta_(identity_management)
https://en.wikipedia.org/wiki/OneLogin
https://gsuite.google.com/learn-more/gsuite-expands-identity-services.html
https://www.shibboleth.net/
https://www.pingidentity.com/en.html
https://duo.com/

Sequence for Helix Core

Helix Core Client Helix ALM or
Surround SCM

 n Helix Swarm 2018.3, the free code review tool

 n P4V 2019.2, the Helix Core Visual Client

 n P4 2019.1, the Helix Core command-line client

 n P4VS 2019.2 patch 2, the Helix Plugin for Visual
Studio

 n P4EXP 2019.2, the Helix Plugin for File Explorer

 n Helix Plugin for Eclipse (P4Eclipse) 2019.1
patch 2

 n Helix Plugin for Matlab (P4SL) 2019.1

 n Helix ALM 2019.4.0
clients

 n Surround SCM
2019.2.0

Sequence for Helix Core

10

https://www.perforce.com/products/helix-swarm
https://www.perforce.com/products/helix-core-apps/helix-visual-client-p4v
https://www.perforce.com/products/helix-core-apps/command-line-client
https://www.perforce.com/plugins-integrations/visual-studio-plugin
https://www.perforce.com/plugins-integrations/visual-studio-plugin
https://www.perforce.com/plugins-integrations/file-explorer-plugin
https://www.perforce.com/plugins-integrations/eclipse-plugin
https://www.perforce.com/downloads/helix-plugin-matlab-p4sl
https://www.perforce.com/products/helix-alm
https://www.perforce.com/products/surround-scm

Sequence for Helix ALM

Important
Helix Core clients get a p4 ticket to log in from a Helix Core Server Extension on the Helix Core
server. To learn about the necessary work with a Helix Core Server Extension, see "Next steps for
Helix Core" on page 47.

Sequence for Helix ALM

Important
For Helix ALM clients, the user gets a login response from the Helix ALM License Server. See "Next
steps for Helix ALM" on page 48.

11

Important security consideration

Important security consideration

Warning
The IdP authentication precedes and is separate from the Helix Core "ticket" and the ALM License
Server login reponse. Therefore, when the user logs out of Helix Core, the user is not necessarily
logged out from the IdP's perspective.

Logging out of a Helix Core or Helix ALM client does not invoke a logout with the IdP. Depending on
the IdP, subsequently starting a Helix Core or Helix ALM client might result with the user being logged
in again without the user being prompted to provide credentials.

Load balancing
If you are using load balancing in front of HAS, configure your load balancer to:

 n preserve session cookies so the login sequence can succeed

 n use session affinity (sticky sessions) so that all requests from the client go to the same HAS
instance

12

Installing Helix Authentication Service

Prerequisites
 n Administrative expertise with the software of your Identity Provider

 n Expertise in security administration sufficient to work with both your Identity Provider (IdP) and
your Perforce server product.

 n A web browser. Any client using the authentication service requires a web browser.

 n Any client (even the p4 command-line client) is still required to authenticate through your IdP's
website. We recommend that at least one user with super level access use Perforce
authentication instead of Helix Authentication Service. See the Authorizing Access in the Helix
Core Server Administrator Guide.

 n Two valid certificates: a certificate for HAS and a certificate for the other half of the solution,
which is either a Helix Core Server Extension or a Helix ALM License Server.

 n One or more of the following:

Helix Core Server, version 2019.1 or later, assuming that you have
knowledge of Perforce administration for authentication with tickets -
see Authenticating using passwords and tickets in the Helix Core
Server Administrator Guide.

Important
 l To configure Helix Authentication Service for Helix Core

Server (P4) and the Helix Core visual client (P4V), you must
configure a Helix Core Server Extension. See the
Administrator's Guide for Helix Authentication Extension in
the docs directory of the Helix Authentication Extension
repository on GitHub.

 l Extensions are currently disabled for Helix Core installs on
Windows servers.

 l The Helix Authentication Extension provides a mechanism
to test the Helix Authentication Service with a select group
of users prior to rolling out the service organization-wide. See
the Testing the extension section in the Administrator's
Guide for Helix Authentication Extension in the docs
directory of the Helix Authentication Extension repository on
GitHub.

Helix ALM, version
2019.4 or later, or
Surround SCM,
version 2019.2 or
later.

Important
To use the Helix
Authentication
Service to
authenticate from
Helix ALM or
Surround SCM,
you must
configure Helix
ALM License
Server. see the
Helix ALM
License Server
Admin Guide.

13

https://www.perforce.com/manuals/p4sag/Content/P4SAG/security.authorizing.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/manuals/p4sag/Content/P4SAG/authenticating-passwords-tickets.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://github.com/perforce/helix-authentication-extension
https://github.com/perforce/helix-authentication-extension/blob/master/docs/Administrator-Guide.md#testing-the-extension
https://github.com/perforce/helix-authentication-extension/blob/master/docs/Administrator-Guide.md
https://github.com/perforce/helix-authentication-extension/blob/master/docs/Administrator-Guide.md
https://github.com/perforce/helix-authentication-extension
https://help.perforce.com/alm/help.php?product=licenseserver&type=lsadmin
https://help.perforce.com/alm/help.php?product=licenseserver&type=lsadmin
https://help.perforce.com/alm/help.php?product=licenseserver&type=lsadmin

Four ways to install HAS

Note
The diagrams at "Sequence for Helix Core" on page 10 and "Sequence for Helix ALM" on
page 11 show the flow of information between three components:

 l the IdP

 l Helix Authentication Service

 l Helix Core Extension (or ALM License server)

The installation and configuration of these three
components can be in any order. What matters is that each
component have the information it needs to do its part in the
sequence.

Tip
If you want to use multi-factor authentication (MFA) with the Helix Authentication Service,
consider using the multi-factor authentication solution provided by your IdP.

We do NOT recommend using the Helix MFA Authenticator with Helix Authentication Service.
The Helix MFA Authenticator should only be implemented when your password store and MFA
service are separated. The typical use case for the Helix MFA Authenticator is to have an on-
prem password store (such as LDAP) and a cloud-based MFA service.

Four ways to install HAS
You can install Helix Authentication Service (HAS) by using any of the following:

"Package
installation
overview" on
page 16

Easiest way

Supports

 n CentOS 7, 8

 n Ubuntu 16, 18, 20

Requires an installation of Node.js, version 14 or later

14

https://nodejs.org/en/download/

Easy way to install Node.js

"Installation script"
on page 18

Supports

 n CentOS/RHEL 7, 8

 n Debian 8, 9, 10

 n RedHat Fedora 31

 n Ubuntu 14, 16, 18, 20

 Automates the installation of required software, including Node.js

 Requires some installation steps

"Manual
installation" on
page 20

Supports

 n CentOS/RHEL 6, 7, 8

 n Fedora 31

 n Ubuntu 14, 16, 18, 20

 n other Linux distributions (untested)

 n Windows 10 Pro and Windows Server 2019, which

 l are supported for use with the Helix ALM License Manager

 l are not supported for use with Helix Core

Requires an installation of:

 n Node.js, version 14 or later

 n a process manager

 n module dependencies

Docker Even easier than the package installation is the pre-build Docker container for
download. For more information, see https://hub.docker.com/r/perforce/helix-
auth-svc

Only the "Installation script" on page 18 automatically installs Node.js, so if you will be using the package
installation (see "Package installation overview" on the next page) or the "Manual installation" on
page 20, you need get Node.js installed.

Easy way to install Node.js
You can install Node.js on the following flavors on Linux.

15

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://hub.docker.com/r/perforce/helix-auth-svc
https://hub.docker.com/r/perforce/helix-auth-svc

Package installation overview

Installing Node.js on Ubuntu

14, 16, and 18
Packages from NodeSource are easy to install:

$ sudo apt-get install build-essential curl git
$ curl -sL https://deb.nodesource.com/setup_14.x | sudo -E bash
-
$ sudo apt-get install nodejs

Installing Node.js on CentOS/RHEL 7
CentOS, Oracle Linux, and RedHat Enterprise Linux lack Node.js packages of the versions required by
this service, but there are packages available from NodeSource that are easy to install.

$ sudo yum install curl git gcc-c++ make
$ curl -sL https://rpm.nodesource.com/setup_14.x | sudo -E bash -
$ sudo yum install nodejs

Installing Node.js on CentOS/RHEL 8
$ sudo yum install curl git gcc-c++ make
$ curl -sL https://rpm.nodesource.com/setup_14.x | sudo -E bash -
$ dnf --repo=nodesource download nodejs
$ sudo rpm -i --nodeps nodejs-14.*.rpm
$ rm -f nodejs-14.*.rpm

Installing Node.js on Fedora 31
This release of Fedora provides a compatible version of Node.js, so installation is simple.

$ sudo dnf install nodejs

Package installation overview
If your operating system is CentOS 7, 8 or Ubuntu 16, 18:

 1. Make sure you have an installation of Node.js, version 14 or later (see "Easy way to install
Node.js " on the previous page).

 2. Perform the package installation that allows you to use the YUM or APT package manager.

Package installation details
Package installation requires sudo or root level privileges.

16

https://www.centos.org/
https://ubuntu.com/
https://nodejs.org/en/download/
https://en.wikipedia.org/wiki/Yum_(software)
https://en.wikipedia.org/wiki/APT_(software)

Verify the Public Key

Verify the Public Key
To ensure you have the correct public key for installing Perforce packages, verify the fingerprint of the
Perforce public key against the fingerprint shown below.

 1. Download the public key at https://package.perforce.com/perforce.pubkey

 2. To obtain the fingerprint of the public key, run:
gpg --with-fingerprint perforce.pubkey

 3. Verify that it matches this fingerprint:
E581 31C0 AEA7 B082 C6DC 4C93 7123 CB76 0FF1 8869

Follow the instructions that apply to you:

 n "For APT (Ubuntu) " below

 n "For YUM (Red Hat Enterprise Linux or CentOS)" below

For APT (Ubuntu)

 1. Add the Perforce packaging key to your APT keyring. For example,
wget -qO - https://package.perforce.com/perforce.pubkey |
sudo apt-key add -

 2. Add the Perforce repository to your APT configuration.
Create a file called /etc/apt/sources.list.d/perforce.list with the following
line:

deb http://package.perforce.com/apt/ubuntu {distro} release

Where {distro} is replaced by one of the following: precise, trusty, xenial or
bionic.

 3. Run apt-get update

 4. Install the package by running sudo apt-get install helix-auth-svc

Alternatively, you can browse the repository and download a Deb file directly from
https://package.perforce.com/apt/

For YUM (Red Hat Enterprise Linux or CentOS)

 1. Add Perforce's packaging key to your RPM keyring:
sudo rpm --import
https://package.perforce.com/perforce.pubkey

 2. Add Perforce's repository to your YUM configuration.
Create a file called /etc/yum.repos.d/perforce.repo with the following content:

17

https://package.perforce.com/perforce.pubkey
https://package.perforce.com/apt/

Next

[perforce]
name=Perforce
baseurl=http://package.perforce.com/yum/rhel/{version}/x86_64
enabled=1
gpgcheck=1

where version is either 6 for RHEL 6 or 7 for RHEL 7

 3. Install the package by running sudo yum install helix-auth-svc
Alternatively, you can browse the repository and download an RPM file directly from
https://package.perforce.com/yum/

Next
See the configuration steps in the "Configuring Helix Authentication Service" on page 25 section.

Installation script
If your operating system is not supported by the package installation, we recommend using the
installation script rather than performing a "Manual installation" on page 20. The installation script
supports:

 n CentOS 7, 8

 n Debian 8, 9, 10

 n RedHat Fedora 31, RHEL 7 and 8

 n Ubuntu 14, 16, and 18

Installation steps

 1. Download Helix Authentication Service from the Perforce download page by selecting Plugins &
Integrations.

18

https://package.perforce.com/yum/
https://www.perforce.com/downloads

Installation steps

 2. Expand the .tgz or .zip file.

 3. Verify that you now have a README file, an ecosystem.config.js file, and an
install.sh file. The install.sh is the bash installation script.

 4. Verify that the bin subdirectory contains the configure-auth-service.sh file.

 5. Run the bash script named install.sh, which installs Node.js and the pm2 process
manager, and then builds the service dependencies.

Note
When you type

./install.sh -h

the output is:

Installation script for authentication service.
Usage:
install.sh [-m] [-n]
Description:
Install the authentication service and its dependencies.
-m
Monochrome; no colored text.
-n
Non-interactive; does not prompt for confirmation.
-h | --help
Display this help message.

 6. Modify the service configuration by editing the ecosystem.config.js file. Configuration
consists of defining the identity provider (IdP) details for either OIDC or SAML, and setting the
SVC_BASE_URI of the authentication service.

19

Next

 7. (Recommended) For better security, replace the example self-signed SSL certificates with ones
signed by a trusted certificate authority.

 8. Restart the service by using pm2 startOrReload ecosystem.config.js

Next
See the configuration steps in the "Configuring Helix Authentication Service" on page 25 section.

Manual installation
The manual installation supports more operating systems than does the package installation.

 1. Download Helix Authentication Service from the Perforce download page by selecting Plugins &
Integrations.

 2. Expand the .tgz or .zip file you downloaded.

 3. Verify that you now have a README file and an ecosystem.config.js file.

CentOS/RHEL 6, 7, 8, Fedora 31, Ubuntu 14, 16, 18

 1. Make sure you have an installation of Node.js, version 14 or later (see "Easy way to install
Node.js " on page 15).

 2. Perform the step under "Installing Module Dependencies" on the facing page.

Other Linux distributions

 1. Download and install the Linux Binaries for Node.js, version 14 or later, making sure that the bin
folder is added to the PATH environment variable when installing and starting the service.

 2. Perform the step under "Installing Module Dependencies" on the facing page.

Windows 10 Pro and Windows Server 2019

Note
For Helix ALM and Surround SCM configurations only because Helix Core Extensions are currently
disabled for Helix Core installs on Windows servers.

 1. Download and run both:

 a. the Windows-based installer for Git because it is a precondition for installing Node.js

 b. the Windows-based installer for Node.js LTS

20

https://www.perforce.com/downloads
https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://git-scm.com/download/win
https://nodejs.org/en/download/

Windows as a service

 2. Perform the step under "Installing Module Dependencies" below.

Note that Windows native toolchain, available by installing the Chocolatey Windows package manager,
is not required for the authentication service.

Windows as a service
If you want HAS to run automatically as a service, see "Installing as a Windows service " on the next
page.

Installing Module Dependencies
The following command copies dependencies from the Node.js package site into the node_modules
directory within HAS. Open a terminal window and change to the directory containing the service code,
then run:

$ npm install

Next
See the configuration steps in the "Configuring Helix Authentication Service" on page 25 section.

21

https://chocolatey.org/

Installing as a Windows service

Installing as a Windows service
The Helix Authentication Service can be deployed to Windows-based systems, and managed as a
Windows service. The guide below outlines the installation and configuration process.

Note
For Helix ALM and Surround SCM configurations only because Helix Core Extensions are currently
disabled for Helix Core installs on Windows servers.

Installation

Prerequisites
Download and run the Windows-based installers for Git and Node.js LTS. Note that the native tool chain,
available with the Chocolatey package manager, is not required for the authentication service.

Installing Module Dependencies
Installing the module dependencies for the authentication service is done from a command prompt. Open
a Windows PowerShell window (preferably as an Administrator) and change to the directory containing
the authentication service, then run the following commands:

> npm ci --only=prod --no-optional
> npm -g install node-windows
> npm link node-windows
> node .\bin\install-windows-service.js

If you run the commands as a normal user, as opposed to an administrator, several User Access Control
prompts from Windows will request your permission for the installation of the service.

HAS is now installed and running as a Windows service. If the system restarts, the authentication
service starts automatically.

Tip
If the service does not appear to be installed and running, run the uninstall script and then install a
second time.

> node .\bin\uninstall-windows-service.js
> node .\bin\install-windows-service.js

22

https://git-scm.com/
https://nodejs.org/en/
https://chocolatey.org/

Starting and Stopping the Service

Starting and Stopping the Service
You can start and stop the HAS Windows service by using the Windows service utilities. The Services
application provides a graphical interface for this purpose.

Alternatively, the NET command can be run as administrator from the command shell:

To stop the service,

> net stop helixauthentication.exe

To start the service,

> net start helixauthentication.exe

Configuration
The configuration of the authentication service is managed through environment variables. An easy
method for setting the variables for the service is with a file named .env in the directory containing the
authentication service. The .env file is a text file that contains names and values, separated by an
equals (=) sign. For example:

 1. Stop the service.

 2. Add these lines to the .env file:

SVC_BASE_URI=https://has.example.com
LOGGING='C:\\helix-auth-svc\\logging.config.js'

 3. Start the service.

For additional settings, see "Configuring Helix Authentication Service" on page 25.

Logging
The output of the authentication service is captured in text files in the bin\daemon directory within the
directory containing the authentication service. The error output is in a file named
helixauthentication.err.log and the normal output is in a file named
helixauthentication.out.log.

By default, basic logging of the service executable is written to the Windows event log in a source named
helixauthentication.exe, which shows when the service starts, stops, or has critical errors.
There might also be a second source named Helix Authentication wrapper that is created
by the program that runs the authentication service as a Windows service.

The authentication service supports writing its own logging to the events log, and this can be enabled
by configuring the logging. See the "Logging" on page 33 section. To enable logging to the Windows
event log, use the transport value of event, and optionally define additional properties, as
described below.

23

Removal

Name Description Default
eventLog Selects the event log scope, either

APPLICATION or SYSTEM
APPLICATION

source Label used as the source of the logging event HelixAuthentication

An example of logging all messages at levels from info up to error, to the SYSTEM events log, with
a source named Auth-Service:

module.exports = {

 level: 'info',

 transport: 'event',

 event: {

 eventLog: 'SYSTEM',

 source: 'Auth-Service'

 }

 }

Removal
To remove HAS as a Windows service, open the PowerShell and execute the following commands from
the installation directory of the Helix Authentication Service.

> net stop helixauthentication.exe
> node .\bin\uninstall-windows-service.js

24

Configuring Helix Authentication Service
The authentication service is configured using environment variables. Because there are numerous
settings, it is easiest to create a file called .env that contains all of the settings. If you change the
 .env file while the service is running, the service must be restarted for the changes to take effect.

The choice of process manager affects how these environment variables are defined. For example, the
pm2 process manager allows environment variables to be defined in the ecosystem.config.js
file. For further details, see "Starting Helix Authentication Service" on page 36.

If you use a .env file, make sure it is located in the current working directory when the service is
started. Typically this is the same directory as the package.json file of the service code.

Note
Be aware that the configuration might require some assistance from Perforce Support.

Recommended: configure-auth-service.sh
We recommend that you use the configure-auth-service.sh script because it is easier than
a manual configuration of the ecosystem.config.js file. The prerequisite for using
configure-auth-service.sh is an installation of both pm2 and Node.js. If you used the
package installation or the install.sh script described at "Four ways to install HAS" on page 14,
you already have an installation of both.

The configuration script is in the bin directory of your installation. For example, if you installed HAS
using the package, to get the help for the configuration script, type

/opt/perforce/helix-auth-svc/bin/configure-auth-service.sh -h

and the output will be:

25

https://www.perforce.com/support/request-support

Recommended: configure-auth-service.sh

26

Example of ecosystem.config.js

Example of ecosystem.config.js

Certificates

Warning
We strongly recommend that you use proper certificates and a trusted certificate authority (CA).
A self-signed certificate might be rejected at any time.

The Helix Authentication Service reads its certificate and key files using the paths defined in SP_
CERT_FILE and SP_KEY_FILE, respectively. The path for the CA certificate is read from the CA_
CERT_FILE environment variable. Providing a CA file is only necessary if the CA is not one of the root
authorities whose certificates are already installed on the system. Clients accessing the
/requests/status/:id route will require a valid client certificate signed by the certificate
authority.

If the certificate files are changed, the service will need to be restarted because the service only reads
the files at startup.

Restarting the Service
Changes to the environment settings take effect when the service is restarted.

 n If you are using npm start, use Ctrl-c to stop the running process, and run npm start again.

 n If using pm2, use the pm2 startOrReload ecosystem.config.js command to
gracefully restart.

27

OpenID Connect settings variables

Note
If you performed the package installation on CentOS (or RedHat), see "pm2 restart has no
effect for CentOS service package" on page 52 in "Troubleshooting" on page 51.

OpenID Connect settings variables

Variable
Name Description

OIDC_
CLIENT_ID

The client identifier as provided by the OIDC identity provider

OIDC_
CLIENT_
SECRET

The client secret as provided by the OIDC identity provider

OIDC_
CLIENT_
SECRET_
FILE

Path of the file containing the client secret as provided by the OIDC identity
provider. This setting should be preferred over OIDC_CLIENT_SECRET to
prevent accidental exposure of the client secret.

OIDC_
ISSUER_URI

The OIDC provider issuer URL

OIDC_CODE_
CHALLENGE_
METHOD

The default behavior is to detect the supported methods in the OIDC issuer data.
Therefore, in most cases it is optional to specify the authorization code challenge
method, which is either S256 or plain.

However, not all identity providers supply this information, in which case this
setting becomes necessary.

OpenID Connect has a discovery feature in which the identity provider advertises various properties via a
"discovery document". The URI path will be /.well-known/openid-configuration at the
IdP base URL, which is described in the OpenID Connect (OIDC) specification. This information makes
the process of configuring an OIDC client easier.

The OIDC client identifier and secret are generally provided by the identity provider during the setup and
configuration of the application, and this is unique to each identity provider. For guidance with several
popular identity providers, see "Example Identity Provider configurations" on page 37.

The OIDC issuer URI value is advertised in the discovery document mentioned above, and will be a
property named issuer. Copy this value to the OIDC_ISSUER_URI service setting. Do NOT to use
one of the "endpoint" URL values, because those are different from the issuer URI.

28

SAML settings variables

SAML settings variables

Name IDP_CERT_FILE

Description Path of the file containing the public certificate of the identity provider, used to
validate signatures of incoming SAML responses. This is not required, but it
does serve as an additional layer of security.

Default none

Name SAML_IDP_SSO_URL

Description URL of IdP Single Sign-On service.

Default none

Name SAML_IDP_SLO_URL

Description URL of IdP Single Log-Out service.

Default none

Name SAML_SP_ENTITY_ID

Description The entity identifier (entityID) for the Helix Authentication Service.

Default https://has.example.com

Name SAML_IDP_ENTITY_ID

Description The entity identifier for the identity provider. This is not required, but if
provided, then the IdP issuer will be validated for incoming logout
requests/responses.

Default none

Name IDP_CONFIG_FILE

29

SAML settings variables

Description Path of the configuration file that defines SAML service providers that will be
connecting to the authentication service.

Default When the authentication service is acting as a SAML identity provider, it
reads some of its settings from a configuration file in the auth service
installation. By default, this file is named saml_idp.conf.js and is
identified by the IDP_CONFIG_FILE environment variable. It is evaluated
using the Node.js require() function.

Name SAML_IDP_SLO_URL

Description URL of IdP Single Log-Out service.

Default none

Name SAML_SP_AUDIENCE

Description Service provider audience value for AudienceRestriction assertions.

Default none

Name SAML_AUTHN_CONTEXT

Descripti
on

The authn context defines the method by which the user will authenticate with the IdP.
Normally the default value works on most systems, but it may be necessary to change
this value. For example, Azure might want this set to
urn:oasis:names:tc:SAML:2.0:ac:classes:Password in certain
cases.

Default urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtect
edTransport

Name SAML_NAMEID_FIELD

Description Name of the property in the user profile to be used if nameID is missing,
which is likely to be the case when using another authentication protocol
(such as OIDC) with the identity provider (such as Okta).

Default none

Note: Changing the configuration file requires restarting the service because Node
caches the file contents in memory.

30

Other Settings

Name SAML_IDP_METADATA_URL

Description URL of the IdP metadata configuration in XML format.

Note
If you fetch the IdP metadata by the SAML_IDP_
METADATA_URL setting, several other settings
might be configured automatically by the service.
Which settings depends on the information the IdP
advertises via the metadata. Possibilities include
SAML_IDP_SSO_URL, SAML_IDP_SLO_
URL, SAML_NAMEID_FORMAT, and the IdP
certificate that would be loaded from the file
named in IDP_CERT_FILE.

In the unlikely scenario that the IdP returns data
that needs to be modified, set the correct value in
the appropriate environment variable, such as
SAML_NAMEID_FORMAT

Default none

SAML identity providers advertise some of this information through their metadata URL. The URL is
different for each provider, unlike OIDC. See "Example Identity Provider configurations" on page 37.

When configuring the service as a "service provider" within a SAML identity provider, provide an
entityID that is unique within your set of registered applications. By default, the service uses the
value https://has.example.com, which can be changed by setting the SAML_SP_ENTITY_
ID environment variable. Anywhere that https://has.example.com appears in this
documentation, replace it with the value you defined in the identity provider.

Other Settings

Name Description Default
BIND_
ADDRESS

Define the IP address upon which the service will listen for
requests. Setting this to 127.0.0.1 (that is, localhost)
means that only processes on the same host can connect, while
a value of 0.0.0.0 means requests made against any
address assigned to the machine will work.

0.0.0.0

DEBUG Set to any value to enable debug logging in the service (writes
to the console).

none

31

Other Settings

Name Description Default
LOGGING Path of a logging configuration file. See the Logging section

below. Setting this will override the DEBUG setting.
none

FORCE_
AUTHN

If set to any non-empty value, will cause the service to require
the user to authenticate, even if the user is already
authenticated. For SAML, this means setting the forceAuthn
field set to true, while for OIDC it will set the max_age
parameter to 0. This is not supported by all identity providers,
especially for OIDC.

none

SESSION_
SECRET

Password used for encrypting the in-memory session data. keyboard
cat

SVC_
BASE_URI

The authentication service base URL visible to end users. Needs to
match the application settings defined in IdP configuration.

Note
If you use a load balancer in front of HAS, such as Amazon Web
Services Elastic Load Balancing (ELB), the load balancer can
have a certificate installed and use SSL termination (decryption).
Such a process requires a protocol to forward the traffic to a port.
Therefore, HAS supports setting the PORT and PROTOCOL
configuration variables.

If SVC_BASE_URI is defined, it sets the value of PORT and
PROTOCOL. For example,
https://has.example.com:443 explicitly sets
PROTOCOL to https and PORT to 443. In this scenario, 443
might also be considered the DNS name of the load balancer.

The default value of PORT is 3000, and the default value of
PROTOCOL is http.

You can explicitly set PROTOCOL to http or https. The
PORT value can be implicitly defined because http defaults to
80 and https defaults to 443.

Note that the PORT for SVC_BASE_URI is distinct from the
syslog port described under "Logging" on the facing page.

For information about configuring the service to treat the
connection to the load balancer and/or proxy as secure, use the
TRUST_PROXY setting. For details, see
http://expressjs.com/en/guide/behind-proxies.html.

none

32

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
http://expressjs.com/en/guide/behind-proxies.html

Logging

Name Description Default
SP_CERT_
FILE

The service provider public certificate file, needed with SAML. none

SP_KEY_
FILE

The service provider private key file, typically needed with
SAML.

none

SP_KEY_
ALGO

The algorithm used to sign the requests. sha256

CA_CERT_
FILE

Path of certificate authority file for service to use when verifying
client certificates.

none

CA_CERT_
PATH

Path of directory containing certificate authority files for service
to use when verifying client certificates. All files in the named
directory will be processed.

none

CLIENT_
CERT_CN

By default, HAS accepts any valid client certificate that is signed by
the designated certificate authority. If you want additional security,
consider using this setting.

Specify a name or pattern to match against the Common Name in
the client certificate used to acquire the user profile data. The patterns
supported are described in the library at
https://github.com/isaacs/minimatch, with the asterisk (*) being the
most common wildcard. For example:

client.example.com

*.example.com

TrustedClient

none

DEFAULT_
PROTOCOL

The default authentication protocol to use. Can be oidc or saml. saml

LOGIN_
TIMEOUT

How long in seconds to wait for user to successfully
authenticate.

60

Logging
The authentication service will, by default, write only HTTP request logs to the console. With the DEBUG
environment variable set to any value, additional logging will be written to the console. For more precise
control, the LOGGING environment variable can be used to specify a logging configuration file. The
format of the logging configuration file can be either JSON or JavaScript (like the
ecosystem.config.js file, use an extension of .json for a JSON file, and .js for a JavaScript
file). The top-level properties are listed in the table below.

33

https://github.com/isaacs/minimatch

Logging

Name Description Default
level Messages at this log level and above will be written to the named

transport; follows syslog levels per RFC5424, section 6.2.1.
Levels in order of priority: emerg, alert, crit, error,
warning, notice, info, debug

none

transport console, file, or syslog none

An example of logging messages to the console, starting explicitly at debug and including emerg:

module.exports = {

 level: 'debug',

 transport: 'console'

 }

Logging to a named file can be achieved by setting the transport to file. Additional properties can
then be defined within a property named file, as described in the table below.

Name Description Default
filename Path for the log file. auth-svc.log

maxsize Size in bytes before rotating the file. none

maxfiles Number of rotated files to retain. none

An example of logging messages to a named file, starting at the level of warning and including
emerg, is shown below. This example also demonstrates log rotation by defining a maximum file size
and a maximum number of files (maxfiles) to retain.

module.exports = {

 level: 'warning',

 transport: 'file',

 file: {

 filename: '/var/log/auth-svc.log',

 maxsize: 1048576,

 maxfiles: 10

 }

 }

Logging to the system logger, syslog, is configured by setting the transport to syslog.
Additional properties can then be defined within a property named syslog, as described in the table
below. Note that the syslog program name will be helix-auth-svc for messages emitted by the
authentication service.

34

https://tools.ietf.org/html/rfc5424

Next

Name Description Default
facility Syslog facility, such as auth, cron, daemon, kern, mail, etc. local0

path Path of the syslog unix domain socket. For example, /dev/log none

host Host name of the syslog daemon. none

port Port number on which the syslog daemon is listening. none

protocol Communication protocol, such as tcp4, udp4, unix none

An example of logging all messages at levels from info up to emerg, to the system log, is shown below.
This example demonstrates logging to syslog on Ubuntu 18, in which the default installation uses a unix
domain socket named /dev/log.

module.exports = {

 level: 'info',

transport: 'syslog',

syslog: {

 path: '/dev/log',

 protocol: 'unix'

 }

}

Next
See "Starting Helix Authentication Service" on page 36.

35

Starting Helix Authentication Service

Overview
Helix Authentication Service does not rely on a database because all data is stored temporarily in
memory. The configuration is defined by environment variables.

Tip
Knowing that the service can start is necessary but not sufficient. After you know the service can
start, you need to go to either "Next steps for Helix Core" on page 47 or "Next steps for Helix ALM" on
page 48.

npm
The simplest way to run the Helix Authentication Service is using npm start from a terminal window.
However, that is not robust because if the service fails, it must be restarted. Therefore, we recommend
that you use a Node.js process manager to start and manage the service.

Process Managers
Node.js process managers generally offer many advantages over using just npm to run a Node.js
application. Such managers include pm2, forever, and StrongLoop. These Node.js process managers
typically hook into the system process manager (for example, systemd) and thus will only go down if
the entire system goes down.

pm2
The pm2 process manager is recommended for deploying this service. Aside from it offering many
convenient functions for managing Node.js processes, it also aggregates and rotates log files that
capture the output from the service: use the pm2 logs command to list the files, and pm2 info to
get the location of the log files. See the example configuration file, ecosystem.config.js, in the
top-level of the service installation directory.

Next
See "Example Identity Provider configurations" on page 37.

36

https://pm2.keymetrics.io/
https://github.com/foreversd/forever
http://strong-pm.io/
https://pm2.keymetrics.io/

Example Identity Provider configurations
This section:

 n provides details for several hosted identity providers, but is not an exhaustive list of supported
identity providers

 n refers to variables that are described in "OpenID Connect settings variables" on page 28 and
"SAML settings variables" on page 29

 l for every occurrence of the SVC_BASE_URI variable in the instructions below, substitute
the actual protocol, host, and port for the authentication service (for example,
https://localhost:3000 for development environments). This address must
match the URL that the identity provider is configured to recognize as the "SSO" or
"callback" URL for the application.

Auth0

OpenID Connect

 1. From the admin dashboard, click the CREATE APPLICATION button.

 2. Enter a meaningful name for the application.

 3. Select the Regular Web Application button, then click Create.

 4. Open the Settings tab,

 a. Copy the Client ID and Client Secret values to the OIDC_CLIENT_ID and
OIDC_CLIENT_SECRET settings in the service configuration

 b. For Allowed Callback URLs, add {SVC_BASE_URI}/oidc/callback

 c. For Allowed Logout URLs, add {SVC_BASE_URI}

 d. Scroll to the bottom of the Settings screen and click the Advanced Settings link.

 e. Find the Endpoints tab and select it.

 5. In a new browser tab,

 a. Open the OpenID Configuration value to get the raw configuration values.

 b. Find issuer and copy the value to OIDC_ISSUER_URI in the service config.

 c. Close the browser tab.

 6. At the bottom of the page, click the SAVE CHANGES button.

37

SAML 2.0

SAML 2.0

 1. From the admin dashboard, click the CREATE APPLICATION button.

 2. Enter a meaningful name for the application.

 3. Select the Regular Web Application button, then click Create.

 4. On the application Settings screen, add {SVC_BASE_URI}/saml/sso to the Allowed
Callback URLs field.

 5. For Allowed Logout URLs add {SVC_BASE_URI}/saml/slo

 6. At the bottom of the page, click the SAVE CHANGES button.

 7. Click the Addons tab near the top of the application page.

 8. Click the SAML2 WEB APP button to enable SAML 2.0.

 9. Enter {SVC_BASE_URI}/saml/sso for the Application Callback URL

 10. Ensure the Settings block looks something like the following:

{

 "signatureAlgorithm": "rsa-sha256",

 "digestAlgorithm": "sha256",

 "nameIdentifierProbes": [

"http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress"

],

 "logout": {

 "callback": "{SVC_BASE_URI}/saml/slo"

 }

}

 11. Click the ENABLE button at the bottom of the page.

 12. On the Usage tab of the addon screen, copy the Identity Provider Login URL to the
SAML_IDP_SSO_URL setting in the service configuration.

 13. To get the single logout URL, download the metadata and look for the
SingleLogoutService element, copying the Location attribute value to SAML_IDP_
SLO_URL in the config.

38

Azure Active Directory

Azure Active Directory

OpenID Connect

 1. Visit the Microsoft Azure portal.

 2. Register a new application under Azure Active Directory.

 3. You can use a single app registration for both OIDC and SAML.

 4. For the redirect URI, enter {SVC_BASE_URI}/oidc/callback

 5. Copy the Application (client) ID to the OIDC_CLIENT_ID variable.

 6. Open the OpenID Connect metadata document URL in the browser.
Click the Endpoints button from the app overview page.

 7. Copy the issuer URI and enter it as the OIDC_ISSUER_URI variable.
If the issuer URI contains {tenantid}, replace it with the Directory (tenant) ID
from the application overview page.

 8. Under Certificates & Secrets, click New client secret, copy the secret value to the OIDC_
CLIENT_SECRET environment variable.

 9. Add a user account (such as guest) such that it has a defined email field.
Note that "personal" accounts do not have the email field defined.

 10. Make sure the user email address matches the user in Active Directory.

SAML 2.0

 1. Visit the Microsoft Azure portal.

 2. Register a new application under Azure Active Directory.

 3. You can use a single app registration for both OIDC and SAML.

 4. Enter the auth service URL as the redirect URL.

 5. Copy the Application (client) ID to the SAML_SP_ENTITY_ID environment
variable

 6. Open the API endpoints page.
Click the Endpoints button from the app overview page

 7. Copy the SAML-P sign-on endpoint value to the SAML_IDP_SSO_URL environment
variable.

 8. Copy the SAML-P sign-out endpoint value to the SAML_IDP_SLO_URL environment
variable.

 9. Set the SAML_NAMEID_FORMAT environment variable to the value
urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress

39

SAML via Azure's Active Directory Gallery

 10. Make sure the user email address matches the user in Active Directory.

 11. Configure the extension to use nameID as the name-identifier value.

SAML via Azure's Active Directory Gallery
These steps involve a template that might make configuration easier.

 1. Visit the Microsoft Azure portal.

 2. Select Azure Active Directory.

 3. Under Enterprise applications, click New Application.

 4. In the Add an application page, enter Perforce and select the Perforce Helix Core
- Helix Authentication Service.

 5. Click the Add button.

 6. Wait for the application to be added.

 7. In Assign users and groups, add a user or a group.

 8. In the Single sign-on page, click SAML.

 9. In the Basic SAML Configuration section, configure the required fields:

 n For the Entity ID, enter the value from the SAML_SP_ENTITY_ID setting in the HAS
service configuration.

 n For the Reply URL, enter {SVC_BASE_URI}/saml/sso

 n For the Sign on URL, enter {SVC_BASE_URI}

 10. Click the Save button.

 11. Click Single sign-on and navigate to SAML Signing Certificate area.

 12. Copy the value in the field for App Federation Metadata Url to the SAML_IDP_
METADATA_URL variable.

 13. Make sure the user email address matches the user in Active Directory.

 14. Configure the extension to use nameID as the name-identifier value.

Okta

OpenID Connect

 1. On the Okta admin dashboard, click the Create a New application button, which is available in
the "classic ui".

 2. Select Web as the Platform and OpenID Connect as the Sign on method.

 3. Provide a meaningful name on the next screen.

40

SAML 2.0

 4. For the Login redirect URIs, enter {SVC_BASE_URI}/oidc/callback

 5. For the Logout redirect URIs, enter {SVC_BASE_URI}

 6. On the next screen, find the Client ID and Client secret values and copy to the OIDC_
CLIENT_ID and OIDC_CLIENT_SECRET service settings.

 7. From the Sign On tab, copy the Issuer value to OIDC_ISSUER_URI

If you are already logged into Okta, do one of the following:

 n assign that user to the application you just created

 n log out so you can log in again using the credentials for a user that is assigned to the application.

Otherwise you will immediately go to the login failed page, and the only indication of the cause is in the
Okta system logs.

SAML 2.0

 1. On the Okta admin dashboard, click the Create a New application button, which is available in
the "classic ui".

 2. Select Web as the Platform and SAML 2.0 as the Sign on method.

 3. Provide a meaningful name on the next screen.

 4. Click Save to go to the next screen.

 5. For the Single sign on URL, enter {SVC_BASE_URI}/saml/sso

 6. For the Audience URI, enter https://has.example.com

 7. Click the Show Advanced Settings link and check the Enable Single Logout checkbox.

 8. For the Single Logout URL, enter {SVC_BASE_URI}/saml/slo

 9. For the SP Issuer, enter https://has.example.com

 10. For Signature Certificate, select and upload the certs/server.crt file.

 11. Click the Next button to save the changes.

 12. There might be an additional screen to click through.

 13. From the Sign On tab, click the View Setup Instructions button and copy the values for IdP
SSO and SLO URLs to the SAML_IDP_SSO_URL and SAML_IDP_SLO_URL settings in
the environment.

 14. Configure the extension to use nameID as the name-identifier value.

 15. Configure the extension to use user as the user-identifier value.

If you are already logged into Okta, do one of the following:

 n assign that user to the application you just created

 n log out so you can log in again using the credentials for a user that is assigned to the application.

41

OneLogin

Otherwise you will immediately go to the login failed page, and the only indication of the cause is in the
Okta system logs.

OneLogin

OpenID Connect
 1. From the admin dashboard, create a new app: search for "OIDC" and select OpenId

Connect (OIDC) from the list.

 2. On the Configuration screen, enter {SVC_BASE_URI}/oidc/login for Login Url

 3. On the same screen, enter {SVC_BASE_URI}/oidc/callback for Redirect URI's

 4. Click the Save button.

 5. From the SSO tab, copy the Client ID value to the OIDC_CLIENT_ID environment
variable.

 6. From the SSO tab, copy the Client Secret value to OIDC_CLIENT_SECRET (you might
need to "show" the secret to enable the copy button).

 7. From the SSO tab, find the OpenID Provider Configuration Information link and open in a new
tab.

 8. Find the issuer and copy the URL value to the OIDC_ISSUER_URI environment variable.

 9. Ensure the Application Type is set to Web.

 10. Ensure the Token Endpoint is set to Basic.

SAML 2.0
 1. From the admin dashboard, create a new app: search for "SAML" and select SAML Test

Connector (Advanced) from the list.

 2. On the Configuration screen, enter https://has.example.com for Audience

 3. On the same screen, enter for Recipient
 4. For ACS (Consumer) URL Validator, enter .* to match any value

 5. For ACS (Consumer) URL, enter

 6. For Single Logout URL, enter

 7. For Login URL, enter

 8. For SAML initiator select Service Provider

 9. Click the Save button.

 10. From the SSO tab, copy the SAML 2.0 Endpoint value to the environment variable.

42

Google G Suite IdP

 11. From the SSO tab, copy the SLO Endpoint value to SAML_IDP_SLO_URL

 12. Configure the extension to use nameID as the name-identifier value.

Google G Suite IdP
Note that OpenID Connect is not supported.

SAML 2.0

 1. Visit the Google Admin console.

 2. Click the Apps icon.

 3. Click the SAML apps button.

 4. Click the Add a service/App to your domain link.

 5. Click the SETUP MY OWN CUSTOM APP link at the bottom of the dialog.

 6. On the Google IdP Information screen, copy the _SSO URL_ and _Entity ID_ values
to the SAML_IDP_SSO_URL and SAML_IDP_ENTITY_ID environment variables.

 7. Click the NEXT button.

 8. For the ACS URL enter {SVC_BASE_URI}/saml/sso

 9. For the Entity ID enter https://has.example.com

 10. Click the NEXT button, and then FINISH, and then OK to complete the initial setup.

 11. On the Settings page for the new application, click the EDIT SERVICE button.

 12. Change the Service status to ON to enable users to authenticate with this application.

Next
See one of the following:

 n "Next steps for Helix Core" on page 47

 n "Next steps for Helix ALM" on page 48

43

Example Helix Swarm configuration

Example Helix Swarm configuration
Helix Swarm 2018.3 and later support the SAML 2.0 authentication protocol.

You can configure:

 n Swarm to use SAML authentication with HAS as the IdP

 n HAS to use an authentication protocol, such as OpenID Connect

Swarm will authenticate the user using HAS and the Helix Authentication Extension. See "Sequence for
Helix Core" on page 10.

Service Address Consistency

Swarm
configuration

When specifying the URL of HAS, the authentication service SVC_
BASE_URI and the address specified in the Swarm configuration must
match. Either they are both IP addresses, or they are both host names.
Otherwise browser cookies will be inaccessible to the authentication
service and login will silently fail.

IdP
configuration

The IdP address for the authentication service (Service Provider) must
match the SVC_BASE_URI setting (before the suffix /saml/login).

Swarm SAML
For instructions on configuring single sign-on in Swarm, see Single Sign-On PHP configuration in the
Helix Swarm Guide.

Under idp/singleSignOnService, set the value of x509cert to the contents of the public
key of the authentication service. This is the file named in the SP_CERT_FILE setting. Collapse the
contents into a single line of text without the -----BEGIN CERTIFICATE----- header or the -
----END CERTIFICATE----- footer.

Example Swarm config.php
In this example:

 n the authentication service is reachable at https://has.example.com:3000, which
would also be the value of the SVC_BASE_URI setting

 n Swarm is reachable at http://swarm.example.com on the default port.

This example illustrates that the url setting under idp/singleSignOnService matches the value
of the SVC_BASE_URI setting with the suffix /saml/login and note that 'sp' represents Swarm
as the service provider.

44

https://www.perforce.com/products/helix-swarm
https://www.perforce.com/manuals/swarm/Content/Swarm/admin-saml_php_config.html
http://www.perforce.com/perforce/doc.current/manuals/swarm/index.html

entityID values

'saml' => array(

 'header' => 'saml-response: ',

 'sp' => array(

 'entityId' => 'urn:swarm-example:sp',

 'assertionConsumerService' => array(

 'url' => 'http://swarm.example.com',

),

),

 'idp' => array(

 'entityId' => 'urn:auth-service:idp',

 'singleSignOnService' => array(

 'url' => 'https://has.example.com:3000/saml/login',

),

 'x509cert' => 'MIIDUjCCAjoCCQD72tM......yuSY=',

),

)

entityID values

urn:auth-service:idp the entityId for the IdP cannot be changed without
modifying the authentication service source code

https://has.example.com default value of the entity ID for HAS

urn:swarm-example:sp an example of a value that the Swarm admin might set
for the entity ID for Helix Swarm

Authentication Service
The authentication service must be configured to know about the service provider (Swarm) that will be
connecting to it. This is defined in the IDP_CONFIG_FILE configuration file. See the description of
IDP_CONFIG_FILE under "SAML settings variables" on page 29.

In this example, the Swarm admin sets the entity ID for Swarm to be:

urn:swarm-example:sp

and sets its value is be:

http://swarm.example.com/api/v10/session

where:

45

Authentication Service

 n swarm.example.com represents your home page for Swarm

 n v10 represents the current version of the Swarm API

Tip
If you want multiple Swarm installations, add more entries to the IDP_CONFIG_FILE
configuration and restart the service.

46

https://www.perforce.com/manuals/swarm/Content/Swarm/swarm-apidoc_api_versions.html

Next steps for Helix Core
Assuming that you have already installed, configured, and started HAS, to configure Helix Authentication
Service for Helix Core Server (P4) and the Helix Core visual client (P4V), see the Administrator's Guide
for Helix Authentication Extension in the docs directory of the Helix Authentication Extension repository
on GitHub.

47

https://github.com/perforce/helix-authentication-extension

Next steps for Helix ALM

Next steps for Helix ALM
Assuming that you have already installed, configured, and started HAS, to use the Helix Authentication
Service to authenticate from Helix ALM or Surround SCM, see the Helix ALM License Server Admin
Guide.

48

https://help.perforce.com/alm/help.php?product=licenseserver&type=lsadmin
https://help.perforce.com/alm/help.php?product=licenseserver&type=lsadmin

Upgrading Helix Authentication Service
The upgrade process for the authentication service is essentially the same as installing for the first time,
with the addition of copying the configuration and certificate files.

 1. Stop the currently installed authentication service. This makes the port (the default is 3000)
available and prevents any confusion when starting the upgraded application within a process
manager.

 2. Consider renaming the directory containing the service code to indicate it is no longer in use.

 3. Download the updated release of the service to a new file location. Do not attempt to upgrade the
service "in-place" because that might cause subtle issues, such as unintentionally loading old
versions of dependencies.

 4. Install HAS by using one of the ways the "Installing Helix Authentication Service" on page 13
explains.

 n If you use the install.sh installation script, it will detect the previously installed
prerequisites (for example, Node.js) and not install them again.

 n If you perform a manual installation, be sure to run npm install in the authentication
service directory to install the module dependencies.

 5. Copy the SSL certificates from the old install location to the new one.

 6. Copy the configuration settings from the old install location to the new install location. The
configuration settings are in one of the following:

 n the .env file

 n if you are using the pm2 process manager, the env section of the
ecosystem.config.js file, which might look similar to this:

49

Upgrading Helix Authentication Service

env: {
CA_CERT_FILE: 'certs/ca.crt',
NODE_ENV: 'production',
OIDC_CLIENT_ID: 'client_id',
OIDC_CLIENT_SECRET_FILE: 'secrets/oidc_
client.txt',
OIDC_ISSUER_URI: 'http://localhost:3001/',
SAML_IDP_SSO_URL:
'http://localhost:7000/saml/sso',
SAML_IDP_SLO_URL:
'http://localhost:7000/saml/slo',
SAML_SP_ISSUER: 'urn:example:sp',
SP_CERT_FILE: 'certs/server.crt',
SP_KEY_FILE: 'certs/server.key',
SVC_BASE_URI: 'https://localhost:3000'
//
// Below are additional optional settings and
their default values.
//
// BIND_ADDRESS: '0.0.0.0',
// CA_CERT_PATH: undefined,
// DEBUG: undefined,
// DEFAULT_PROTOCOL: 'saml',
// FORCE_AUTHN: false,
// IDP_CERT_FILE: undefined,
// LOGGING: undefined,
// SAML_IDP_ISSUER: undefined,
// IDP_CONFIG_FILE: './saml_idp.conf.js',
// LOGIN_TIMEOUT: 60,
// OIDC_CLIENT_SECRET: undefined,
// SAML_AUTHN_CONTEXT:
'urn:oasis:names:tc:SAML:2.0:ac:classes:Password
ProtectedTransport',
// SAML_IDP_METADATA_URL: undefined,
// SAML_NAMEID_FIELD: undefined,
// SAML_NAMEID_FORMAT:
'urn:oasis:names:tc:SAML:1.1:nameid-
format:unspecified',
// SAML_SP_AUDIENCE: undefined,
// SESSION_SECRET: 'keyboard cat',
// SP_KEY_ALGO: 'sha256',
}

Note
If the upgraded service has already been started, restart it for the configuration changes to take effect.

50

Troubleshooting

"Missing authentication strategy" displayed in browser
Check authentication service log files for possible errors. During the initial setup, it is likely that the
settings for the protocol (such as SAML or OIDC) simply have not been defined as yet. Without the
necessary protocol settings, the service cannot initialize the authentication "strategy" (the appropriate
passport module).

Redirect URI error displayed in browser
In the case of certain identity providers, you may see an error message indicating a "bad request" related
to a redirect URI. For instance:

Error Code: invalid_request

 Description: The 'redirect_uri' parameter must be an absolute URI that

 is whitelisted in the client app settings.

This occurs when the authentication service base URI (SVC_BASE_URI) does not match what the
identity provider has configured for the application. For example, when using an OIDC configuration in
Okta, the Login redirect URIs must have a host and port that match those found in the SVC_BASE_
URI environment variable in the service configuration. You may use an IP address or a host name, but
you cannot mix them; either both have an IP address or both have a host name.

Environment settings and unexpected behavior
If the authentication service is not behaving as expected based on the configuration, it might be getting
environment variables from an unexpected location. All of the environment variables will be dumped to
the console when debug logging is enabled, so if those do not match your expectations, verify that you
are using one but not both of the following:

 n a .env file or

 n an ecosystem.config.js file

Although you can have both files, the order of precedence is not defined, so you might get unexpected
results. In practice, it appears that the .env file takes precedence over the env section in the
ecosystem.config.js file, but that is not a safe assumption.

51

http://www.passportjs.org/

pm2 caching environment variables

pm2 caching environment variables
If you remove an environment variable (for instance, by removing it from the env section of the
ecosystem.config.js file) and restart the service, the pm2 daemon might cache the old value for
that variable. This is especially true when pm2 is running in production or cluster mode (when NODE_
ENV is set to production).

To clear the cached values:

 1. Terminate the pm2 daemon by using the pm2 kill command.

 2. Start the service again by using the pm2 start auth-svc command.

OIDC challenge methods not supported
Some OpenID Connect identity providers might not be configured to have a default code challenge
method. As a result, user authentication might fail, and the service log file will contain an error like the
following:

error: oidc: initialization failed: code_challenge_methods_
supported is not properly set on issuer ...

If this happens, set the OIDC_CODE_CHALLENGE_METHOD, which is described at "OpenID
Connect settings variables" on page 28, to S256 and restart the authentication service.

pm2 restart has no effect for CentOS service package
If you installed HAS on on CentOS using the service package, after you modify the
ecosystem.config.js file and restart pm2, you might notice your changes do not take effect. The
workaround is:

 1. Stop the pm2 instance started by the non-root user.

 2. As the root user, restart the pm2 instance.

52

Glossary

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depot in which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

B

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

53

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the 'p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

C

change review

The process of sending email to users who have registered their interest in changelists that include
specified files in the depot.

54

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. Uses the Perforce file revision model, not
the graph model. The default depot name is depot. See also default depot, stream depot, and graph
depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

55

Glossary

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

56

Glossary

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site has in a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depot is the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

57

Glossary

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/

diff

(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflict is
a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate', and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide" on "Extensions".

58

Glossary

F

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file that is not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

59

Glossary

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same
projects using their preferred tools.

graph depot

A depot of type graph that is used to store Git repos in the Helix server. See also Helix4Git and
classic depot.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

heartbeat

A process that allows one server to monitor another server, such as a standby server monitoring the
master server (see the p4 heartbeat command).

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

60

Glossary

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

hybrid workspace

A workspace that maps to files stored in a depot of the classic Perforce file revision model as well as
to files stored in a repo of the graph model associated with git.

I

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

J

job

A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work
to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

61

Glossary

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server’s metadata.

L

label

A named list of user-specified file revisions.

label view

The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy

A method used by Helix server to make internal copies of files without duplicating file content in the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file

A file that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

62

Glossary

list access

A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot

Any depot located on the currently specified Helix server.

local syntax

The syntax for specifying a filename that is specific to an operating system.

lock

1. A file lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

M

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

63

Glossary

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

O

opened file

A file you have checked out in your client workspace as a result of a Helix Core server operation
(such as an edit, add, delete, integrate). Opening a file from your operating system file browser is not
tracked by Helix Core server.

owner

The Helix server user who created a particular client, branch, or label.

64

Glossary

P

p4

1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d

The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP

The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

65

Glossary

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depot located on another Helix server accessed by the current Helix server.

replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before it is submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

66

Glossary

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

67

Glossary

S

server data

The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root

The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4ROOT environment variable or use the p4d -r
flag.

service

In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelist is new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A "branch" with built-in rules that determines what changes should be propagated and in what order
they should be propagated.

stream depot

A depot used with streams and stream clients. Has structured branching, unlike the free-form
branching of a "classic" depot. Uses the Perforce file revision model, not the graph model. See also
classic depot and graph depot.

68

Glossary

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide" on "Triggers".)

69

Glossary

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation. The three types of
users are standard, service, and operator.

V

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

W

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; %%0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

70

Glossary

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

71

License statements

License statements
See the license file at https://www.perforce.com/perforce/doc.current/user/has_license.txt.

72

https://www.perforce.com/perforce/doc.current/user/has_license.txt

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation

	Overview of Helix Authentication Service
	Helix Core and Helix ALM
	Supported client applications and minimal versions
	Sequence for Helix Core
	Sequence for Helix ALM
	Important security consideration

	Load balancing

	Installing Helix Authentication Service
	Prerequisites
	Four ways to install HAS
	Easy way to install Node.js

	Package installation overview
	Package installation details
	Verify the Public Key
	For APT (Ubuntu)
	For YUM (Red Hat Enterprise Linux or CentOS)
	Next

	Installation script
	Installation steps
	Next

	Manual installation
	CentOS/RHEL 6, 7, 8, Fedora 31, Ubuntu 14, 16, 18
	Other Linux distributions
	Windows 10 Pro and Windows Server 2019
	Windows as a service
	Installing Module Dependencies
	Next

	Installing as a Windows service
	Installation
	Prerequisites
	Installing Module Dependencies

	Starting and Stopping the Service
	Configuration
	Logging
	Removal

	Configuring Helix Authentication Service
	Recommended: configure-auth-service.sh
	Example of ecosystem.config.js
	Certificates
	Restarting the Service
	OpenID Connect settings variables
	SAML settings variables
	Other Settings
	Logging
	Next

	Starting Helix Authentication Service
	Overview
	npm
	Process Managers
	pm2
	Next

	Example Identity Provider configurations
	Auth0
	OpenID Connect
	SAML 2.0

	Azure Active Directory
	OpenID Connect
	SAML 2.0
	SAML via Azure's Active Directory Gallery

	Okta
	OpenID Connect
	SAML 2.0

	OneLogin
	OpenID Connect
	SAML 2.0

	Google G Suite IdP
	SAML 2.0

	Next

	Example Helix Swarm configuration
	Service Address Consistency
	Swarm SAML
	Example Swarm config.php
	entityID values

	Authentication Service

	Next steps for Helix Core
	Next steps for Helix ALM
	Upgrading Helix Authentication Service
	Troubleshooting
	Missing authentication strategy displayed in browser
	Redirect URI error displayed in browser
	Environment settings and unexpected behavior
	pm2 caching environment variables
	OIDC challenge methods not supported
	pm2 restart has no effect for CentOS service package

	Glossary
	License statements

