o
Helix4Git

Helix4Git Administrator Guide

2017.2
October 2017

PERFORCE

Copyright © 2015-2018 Perforce Software
Allrights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sellany documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or supportis provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
Allother brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 92.

https://www.perforce.com/

Howto Use this Guide 7
Feedback ... L 7
Otherdocumentation 7
SYNtaX CONVENIIONS ., 7

What’s new in this guide for the 2017.2release 9
NeW features .. 9

OV VI W 10
Architecture and components il 11

P4JenKins SUPPOrt .. 12
WV OTK O 13
ONne-timMe taSKS 13
Recurming tasksl 13
Git client tasks L 14

Installation and configuration 15
System reqUIrEMENtS ... 15
Install the Git Connector 16
Upgrading Git CONNECTONo e 18

Upgrading to version 2017.2 from the 2017.1 patch 18
Upgrading helix-git-connector that is priorto the 2017.1 patch 19
Configure the Git ConNECOr 20
Perform Connector-specific Helix Server configurations 22
Grant PeIMISSIONS ... 23
Create graph depots 24
Create TOPOS il 24
Configure a client workspace to SYNC reposooooiii e 24
SYNC A IO PO il 25
Set up Git users to work with the Git Connector 25
SOH 25
HT T P S 28
Verify the Git Connector configuration 28
Push, clone, and pull repos ... L 28
SSOH SYNtaX . 28
HT TP S SYNtaX 29

Depots and rePoOsS 30

Create graph depots il 30
Create and VIEW IEPOS o oo 31
Specify adefault branch ... 32
Manage access to graph depots and repos 32
Set up client Workspaces 33
Sync files from graph depots i 34
Sync using an automatic label 35
One-way mirroring from Gitservers 37
GitHub or GitLab configuration il 38
GitHub or GitLab HT TP . 38
GitHub or GitLab SSH ... L 40
Gerrit configuration ... iiiiiiiiiiiiiiil. 42
System requirements with Gerrit 42

N Xt S D .. 43
Installation of the mirror hOOKS L 43
Configure Gerrit for HT TP ... e 43
Configure Germit for SSH ... L 45
Testing the Mirror NOOK L 47
Troubleshooting Gerrit one-way mirroring 47
Helix TeamHuUb configuration ... 48
OV IV W . 48
System reqUIremMENtS ... 49
Installation of Helix TeamHub On-Premise 49

N Xt S D . 49
Helix TeamHUb HT TP L 50
Helix TeamHUb SSH . 53
Git Connector configuration for fail-over to another Git host 56
Procedure .. 57
EXample .. 58

| 1 (=T o] 60
Command-line Help .. 60

N Xt S DS il 60
Configuring Git Connector to poll repos from Helix4Git 62
ProceduUre .l 62

Connection ProblemMs ... 64

SSH: user prompted for git's password 65
SSL certificate problem . 66
HTTPS: userdoes Not eXist 66
Permission problems . .. 66
The gconn-user needs admin @CCESSt 67
Unable to clone: missing read permission 67
Unable to push: missing create-repo permission 68
Unable to push: missing write-ref permission 68
Unable to push: not enabled by p4 protect 69
Unable to push a new branch: missing create-ref permission 69
Unable to delete a branch: missing delete-ref permission 70
Unable to force a push: missing force-push permission 71
Branch problems .. 71
Push results in message about HEAD ref notexisting 71
Clone results in "remote HEAD refers to nonexistent ref" 72
Special Git COMMaANAS ... L 73
GlOSSaNY 76

License Statements 92

How to Use this Guide

This guide tells you how to use Helix4Git, which augments the functionality of the Helix Versioning
Engine (also referred to as the Helix Server) to support Git clients. It services requests from mixed
clients, that is, both "classic" Helix Server clients and Git clients, and stores Git data in Git repos that
reside within a classic Helix Server depot.

Tip
m For help configuring Helix Server for building from mixed clients, see P4 Command Reference
under P4 Client, the section "Including Graph Depots and repos in your client".
m Forin-depth admin and usage information pertaining to the Helix Server, see:
« Helix Versioning Engine Administrator Guide: Fundamentals

« Helix Versioning Engine User Guide

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

Titeral Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-f] The enclosed elements are optional. Omit the brackets when you compose
the command.

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

Syntax conventions

Notation Meaning

m Repeats as much as needed:

« alias-name[[$(argl)...
[$Cargn)]]=transformation

= Recursive for all directory levels:

« clone perforce:1666 //depot/main/p4...
~/local-repos/main

- p4 repos -e //gra.../rep...

element1 | Either element1 or element2 is required.
element2

What's new in this guide for the 2017.2 release

What’s new in this guide for the 2017.2 release

This section provides a summary with links to topics in this reference. For a complete list, see the
Release Notes.

New features

"Helix TeamHub configuration" on page 48
"Configuring Git Connector to poll repos from Helix4Git" on page 62

"Git Connector configuration for fail-over to another Git host" on page 56

https://www.perforce.com/perforce/doc.current/user/connectornotes.txt

Overview

Benefits:
m Flexibility: sync any combination of repos, branches, tags, and SHA-1 hashes
= Hybrid support: you can sync data that is a mix of Git repo data and classic Helix Server depot
data
= Supports "One-way mirroring from Git servers" on page 37, such as GitHub, GitLab, and Gerrit
Code Review
m Automation: polling to automatically trigger a build upon updates to the workspace, and support for

Jenkins

Visibility: listing of building contents

This solution:

stores Git repos in one or more depots of type graph
services requests for the data stored in the Git repos
supports Large File Storage (LFS) objects and service requests using HTTPS

enforces access control on Git repos through the use of permissions granted at depot, repo, or
branch level

supports both HTTPS and SSH remote protocols

services requests from Git clients using a combination of cached data and requests to the Helix
Server

supports clients accessing repos containing Git Large File Storage (LFS) objects (but not over
SSH)

Architecture and components ... 1"
P4Jenkins SUPPOIt 12
Workflow . 13
ONne-tiMe taSKS L 13
Recurring tasks ... il 13
Git Client tasKsS ... 14

10

Architecture and components

Architecture and components

© citHub () GitLab

2¢ HelixTeamHub

Git Connector

Helix Versioning Engine

K____,/
e

Helix Core depot Helix4Git repos
with versioned files in depot of
and metadata type graph

Helix4Git consists of two
components:

= Helix Server (or p4d), the
traditional Helix Versioning
Engine
augmented for Git support

m The Git Connector, which
acts as a Git server to Git
clients,
such as Helix TeamHub,
GitLab, and GitHub.

Git users use a Git client to pull files
from the graph depot to make
modifications and then push the
changes back into the graph depot.
The Git client communicates with the
Helix Server through the Git
Connector.

In support of advanced workflows for
blended assets, such as text and
large binaries in build and test
automation, you can also directly
sync and view graph depot content
through a command line client into a
single classic Helix Server
workspace.

Note

To edit the graph depot files
associated with a classic
workspace, you must use a Git
client.

A typical scenario:

1. A Git user pushes changes to the Git Connector.

2. The Git Connectorpushes the changes to the Helix Server.

11

P4Jenkins support

3. A continuous integration (Cl) server, such as P4Jenkins, detects changes and runs a build using
one workspace that can include multiple Git repos and classic depot files.

P4 Jenkins Command-Line Client P4

A A
') ') Client Workspace
Git Client Git Client
Graph Depot Classic Depot
| I Files Files

S5H git push HTTPS . ‘ ‘

Connector
Interface
Git Connector Graph Depot Classic Depot

Git Repos Helx

Server
Interface
Subset of repos accessed by users

Appears to Git clients . L. .
as a Git server Helix Versioning Engine

P4Jenkins sSUPPOIt . 12

P4Jenkins support

You can connect the workspace to Cl tools, such as P4 Jenkins. The advantages of using the P4 Plugin
for Jenkins as the continuous integration server include:

m Efficiency: being able to sync a SINGLE depot of type graph that contains MANY repos
= Hybrid support: this single depot is able to have also classic depot files

= Flexibility: sync any combination of repos, branches, tags, and SHA-1 hashes

= Automation: polling to automatically trigger a build upon updates to the workspace

m Visibility: listing of building contents

Tolearn how to use the P4 Plugin for Jenkins, see https://github.com/jenkinsci/p4-
plugin/blob/master/ GRAPH.md

12

https://github.com/jenkinsci/p4-plugin/blob/master/GRAPH.md
https://github.com/jenkinsci/p4-plugin/blob/master/GRAPH.md

Workflow

Workflow

1. Install the Git Connector.
2. Configure the Git Connector, including HTTPS and SSH authentication.

3. Configure the Helix Versioning Engine to work with the Git Connector. This includes depot, repo,
and permissions configuration.

4. Verify the configuration.

Runp4 sync and a subset of other p4 commands against Git repos and classic depot files.

One-time tasks 13

Recurring tasks . .. 13

Git client tasks ... 14
One-time tasks

The following table summarizes one-time tasks:

Task More information

Install the Git Connector. "Install the Git Connector" on page 16

Configure the Git Connector. "Configure the Git Connector" on page 20

This includes configuring HTTPS and SSH
authentication.

Configure the Helix Server to work with the "Perform Connector-specific Helix Server
Git Connector. configurations" on page 22

This includes depot, repo, and permissions
configuration.

Set up users. "Set up Git users to work with the Git Connector" on
page 25
Verify the Git Connectorconfiguration. "Verify the Git Connector configuration" on page 28
Recurring tasks

The following table summarizes recurring tasks:

Task More information

Create and view graph depots. "Create graph depots" on page 30

13

Git client tasks

Task More information

Create, view, and delete Git repos. "Create and view repos" on page 31

Manage permissions on a repo or group of repos. "Manage access to graph depots and

You can grant, revoke, and show permissions. repos” on page 32

Permissions apply at the user or group level.

Set up client workspaces. "Set up client workspaces" on
page 33
Run p4 sync and a subset of other p4 commands against "Sync files from graph depots" on
both Git and classic depot data. page 34
Troubleshoot. "Troubleshooting" on page 64
Git client tasks

Git clients must perform a couple of tasks to interact with the Git Connector:

m Obtain SSH and HTTPS URLs. See "Set up Git users to work with the Git Connector" on page 25.
m Generate SSH keys to be added to the Git Connector, if the SSH keys do not already exist.

14

Installation and configuration

This chapter describes how to install and configure the Git Connector. The installation requires operating

system-specific packages (see "System requirements" below).

System requirements ... il
Install the Git Connector il
Upgrading Git Connector il
Upgrading to version 2017.2 fromthe 20171 patch 18
Upgrading helix-git-connector that is prior to the 2017.1patch 19
Configure the Git Connector
Perform Connector-specific Helix Server configurations
Grant PerMISSIONS 23
Create graph depots ... o 24
Creale rePOS 24
Configure a client workspacetosyncrepos 24
SYNC A TP 25
Set up Git users to work with the Git Connector
SO H 25
H T P S L 28
Verify the Git Connector configuration
Push, clone, and pull repos
SSH SYNtaX 28
HT TP S SYNtaX e 29

System requirements

The Git Connector requires an installation of Helix Versioning Engine 2017.1 or later.

Tip

We recommend that the Git Connector be on a machine that is separate from the machine with the

Helix Server.

The Git Connector is available in two distribution package formats: Debian (. deb) for Ubuntu systems

and RPM (. rpm) for CentOS and RedHat Enterprise Linux (RHEL). You can install the Git Connector on

the following Linux (Intel x86_64) platforms:

= Ubuntu14.04 LTS
= Ubuntu16.04 LTS

15

Install the Git Connector

m CentOs or Red Hat 6.x
» not recommended because it requires that you manually install Git and HTTPS

« if the operating system is CentOS 6.9, Security-Enhanced Linux (SELinux) and the iptables
use-space application must allow:

« the Git server to contact the helix/gconn service on port 443 (the HTTPS port)
« gconn to communicate with p4d if they are both on the same machine
m CentOS or Red Hat 7.x

Note
"One-way mirroring from Git servers" on page 37 is not recommended with Centos6.

Space and memory requirements depend on the size of your Git repos and the number of concurrent Git
clients.

The Git Connector works with Git version 1.8.5 or later. If the distribution package comes with an earlier
release of Git, upgrade to a supported version.

Note
If your Git clients work with repos containing large file storage (LFS) objects, install Git LFS and
select the files to be tracked. For details, see https://qgit-Ifs.github.com. Git LFS requires HTTPS.

Warning
» The Helix4Git configuration process removes any SSL certificates in /etc/apache2/ss1
before generatings new SSL certificates. Therefore, existing sites, such as Helix Swarm,
might be disabled.

m Do not add custom hooks in the Git Connector because they will not work as expected.
However, the Helix Versioning Engine does support triggers for depots of type graph. See
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/scripting.triggers.gr
aph.html.

Install the Git Connector

Installing the Git Connector requires that you create a package repository file, import the package signing
key, and install the package.

Before you start the installation, verify that you have root-level access to the machine that will host the
Git Connector.

1. Configure the Helix Versioning Engine package repository.

As root, perform the following steps based on your operating system:

16

https://git-lfs.github.com/
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/scripting.triggers.graph.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/scripting.triggers.graph.html

Install the Git Connector

a. For Ubuntu 14.04:

Create the file /etc/apt/sources.list.d/perforce. 1ist with the following
content:

deb http://package.perforce.com/apt/ubuntu trusty release

. For Ubuntu 16.06:
Create the file /etc/apt/sources.1ist.d/perforce. 1ist withthe following
content:

deb http://package.perforce.com/apt/ubuntu xenial release

. For CentOS/RHEL 6.x:
Create the file /etc/yum. repos.d/Perforce. repo with the following content:

[perforce]
name=Perforce for Cent0S $releasever - $basearch
baseurl=http://package.perforce.com/yum/rhel/6/x86_64/

enabled=1

gpgcheck=1
gpgkey=http://package.perforce.com/perforce.pubkey

. For CentOS/RHEL 7.x:
Create the file /etc/yum. repos.d/Perforce. repo with the following content:

[perforce]
name=Perforce for Cent0S $releasever - $basearch

baseurl=http://package.perforce.com/yum/rhel/7/x86_64/
enabled=1

gpgcheck=1
gpgkey=http://package.perforce.com/perforce.pubkey

17

Upgrading Git Connector

2. Import the Helix Versioning Engine package signing key.
As root, run the following command:

a. For Ubuntu 14.04 and 16.04:

$ wget -qO0 - http://package.perforce.com/perforce.pubkey |
sudo apt-key add -
$ sudo apt-get update

b. For CentOS/RHEL 6.x and 7.x:
$ sudo rpm --import
http://package.perforce.com/perforce.pubkey

3. Install the Git Connector package.
As root, run one of the following commands:

a. For Ubuntu 14.04 and 16.04:
$ sudo apt-get install helix-git-connector

b. For CentOS/RHEL 6.x and 7.x:

$ sudo yum install helix-git-connector

4. Follow the prompts.

5. Configure the Git Connector. See "Upgrading Git Connector" below and "Configure the Git
Connector" on page 20.

Upgrading Git Connector

Upgrading to version 2017.2 from the 2017.1 patch

1. Verify the Git Connector server id, which, for this example, is my-gconn-centos6:
*p4 servers¥
The response is similar to:

my-gconn-centos6 connector git-connector ' This GitConnector
service was configured on [Tue Aug 29 10:21:30 PDT 2017] by
user [super]

2. Make sure that you provide the value of the serverid when upgrading the Git Connector:

configure-git-connector.sh --upgrade --serverid my-gconn-
centos6

Here is an example:

18

Upgrading helix-git-connector that is prior to the 2017.1 patch

sudo /opt/perforce/git-connector/bin/configure-git-connector.sh --
upgrade --serverid my-gconn-centos6
hostname: Unknown host

Summary of arguments passed:

GitConnector SSH system user [git]

Home directory for SSH system user [/home/git]

SSH key update interval [10]

Server ID [gconn-gconn-centos6]
GitConnector hostname [(not specified)]

For a list of other options, type Ctrl-C to exit, and then run:
$ sudo /opt/perforce/git-connector/bin/configure-git-connector.sh --help

would you 1like to perform the upgrade of this GitConnector instance? [no]:

yes

Moving existing configuration file to
/opt/perforce/git-connector/gconn.conf.bak

Writing GitConnector configuration file

This GitConnector instance has been successfully upgraded.

Upgrading helix-git-connector that is prior to the 2017.1
patch

If you have a version of the Git Connector that is prior to the 2017.1 July patch, and you want to use
Gerrit, upgrade the package and re-run the package configuration script.

19

Configure the Git Connector

1. Run as root:

$ sudo apt-get update # yum install helix-git-

$ sudo apt-get install helix- connector

git-connector

2. Optionally, if your Helix Server configuration has changed, or you encounter problems, run the
configuration script:

$ sudo /opt/perforce/git-connector/bin/configure-git-
connector.sh

The configuration script:
= warns you about the existing configuration file
= prompts you for P4PORT, super user's account name, and super user password

m updates the HTTPS and SSH authentication configurations

Configure the Git Connector

1. As root, run the following configuration script in interactive mode:

$ sudo /opt/perforce/git-connector/bin/configure-git-connector.sh

In interactive mode, the configuration script displays the following summary of settings. Some
settings have a default value. Other settings require that you specify a value during the
configuration.

m Helix Server P4APORT: The host (name or IP address) and port for the Helix Server, in the
following format: host: port.

m Helix Server super-user: The name of an existing Helix Server user with super level
privileges. This super-user is used for all tasks related to the Helix Server, such as creating
users and groups and granting permissions.

m Helix Server super-user password: The password for the existing Helix Server super-
user.

= New Graph Depot name: The Helix Server installation automatically creates a default
depot of type graph named repo. During the configuration, you can create an additional
graph depot.

A depot of type graph is a container for Git repos.

A depot name must start with a letter or a number.

20

Configure the Git Connector

GitConnector user password: By default, the Git Connector configuration creates a Helix
Server user called gconn-user. This user performs the Helix Server requests. Only
admins should know and set this password.

Note

If you change the gconn-user Helix Server password, you need to reset the
password on each Git Connector by running the helper script:
/opt/perforce/git-connector/bin/login-gconn-user.sh.

Configure HTTPS?: Option to use HTTPS as authentication method. HTTPS is required
if you use Git LFS.

Tip
Re-running configure-git-connector. sh and choosing NO when asked if

you want to configure HTTPS after having chosen Yes previously, does not change
already configured https.

Configure SSH?: Option to use SSH as authentication method.

GitConnector SSH system user: The name of the SSH system user to connect to the Git
Connector. By default, this is g1 t.

Home directory for SSH system user: The home directory for the SSH system user. By
default, this is /home/git.

SSH key update interval: How often the SSH keys are updated.

Tip
Wait 10 minutes for the keys to update. Otherwise, the Git Connector will not have the
updated SSH keys in the list of authorized keys, and you will not be able to connect.

Server ID: The host name of the server.

21

Perform Connector-specific Helix Server configurations

2. Provide information to the configuration script.

After the summary, the configuration script prompts you for information on the Helix Server

P4PORT, the Helix Server super-user's name and password, whether you want to create another

depot of type graph, and whether you want to configure HTTPS or SSH.

At each prompt, you can accept the proposed default value by pressing Enter, or you can specify
your own value. If needed, you can also set values with a command line argument. For example,

to specify PAPORT and a super-user name:

$ sudo /opt/perforce/git-connector/bin/configure-git-
connector.sh --pdport=ssl:IP address:1666 --super=name

After you answer the prompts, the script creates the configuration file according to your choices.
As it runs, the script displays information about the configurations taking place. The script might
prompt you for more input. For example, if you opted for HTTPS support and Apache components

are already present on your server.

To see all possible configuration options, run the command:

$ sudo /opt/perforce/git-connector/bin/configure-git-
connector.sh --help

This is helpful if you do not want to use the default configurations. For example, the configuration
script does not prompt you for the name of the SSH user or the path to the home directory of the

system user because it uses default values. If you want to overwrite these values, you need to
pass in the respective parameter and argument.

3. When the configuration script has finished running, read the details to see if anything still needs to

be done.

Perform Connector-specific Helix Server configurations

After installing and configuring the Git Connector, configure the Helix Server to work with the Git
Connector. Tasks include:

m granting relevant permissions

m creating repos that belong to the graph depots you created during the installation
m granting users permission to push repos to the Helix Server

m configuring a client mapping to sync repos

m syncing a repo, provided the repo has already been pushed to the Helix Server

For more information on p4 commands, see the P4 Command Reference orrunthe p4 --help
command.

Grant PermMisSSIONS ... L 23
Create graph depots . . 24
Create rePOS il 24
Configure a client workspace to syncrepos 24

22

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Grant permissions

Sync a repo

Grant permissions

The Git Connector authenticates Git users through HTTP or SSH (see "Set up Git users to work with the
Git Connector" on page 25) and allows them to access resources by pull, push, and clone transactions
through user or group permissions in the Helix Server.

Because the gconn-user performs all Helix Server requests required by the Git Connector, the
gconn-user must have an entry in the protections table with wri te permission and have been
granted adm1i n permission for all graph depots manually created after the installation.

For details on Helix Server permissions, see Securing the Server in Helix Versioning Engine
Administrator Guide: Fundamentals. For details on the p4 protect command, see p4 protect in the
P4 Command Reference.

For details on access control policies related to graph depots, see "Manage access to graph depots and
repos" on page 32.

Perform the following steps to grant the required permissions:

1. Add the user gconn-user to the protections table with wri te permission. Note that if you
encounter a reference to GCOnh P4 user, this is the gconn-user user.

Run the following command to open the protections table in text form:

$ p4 protect
Add the following line to the Protections field:

$ write user gconn-user * //...
Save the spec.

2. Forany depot of type graph that you create in addition to the ones already created during the
installation, grant the gconn-user user admin permission:

$ p4 grant-permission -u gconn-user -p admin -d
graphDepotName

3. As asuperuser, grant admi n permission to another user so that this user can manage
permissions as required:

$ p4 grant-permission -u username -p admin -d graphbepotName
4. Grant users permission to create repos for specific graph depots:

$ p4 grant-permission -p create-repo -d graphDepotName -u
username

23

https://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.security.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Create graph depots

5. Grant users permission to push repos to a graph depot:

$ p4 grant-permission -p write-all -u username -d
graphDepotName

Tip

Instead of granting permissions to single users, you can create groups, assign users to groups, and

set permissions that are appropriate for that particular group. See Granting access to groups of users
in Helix Versioning Engine Administrator Guide: Fundamentals.

Create graph depots

The Helix Server installation creates a default depot of type graph called repo. If you need to
manually add additional graph depots, see "Create graph depots" on page 30.

For any additional graph depots that you create, grant admi n permission to the user gconn-user
(for details, see Granting permissions).

To view a list of existing depots, runthe p4 depots command. See the P4 Command Reference.

Create repos
To create a new repo stored in an existing graph depot, run the following command:

$ p4 repo //graphbDepotName/repol

For more information on creating repos, see "Create and view repos" on page 31.

Configure a client workspace to sync repos

A client workspace is a set of directories on a user's machine that mirrors a subset of the files in the
depot. This view defines which depots you can sync to your client workspace. Classic depots are
mapped by default, but to be able to sync repos from a graph depot, you need to manually edit the client
workspace specification by noting the required mappings.

For more information on setting up clients, see "Set up client workspaces" on page 33.

1. Runthe following command to create a depot client specification and its view:

$ p4 client clientName

24

http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.security.html#protections.groups
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Sync arepo

2. Edit the workspace view to meet your requirements.

For example, to map a graph depot called graphDepot that includes a repo called repol, the
mapping could look like the following, where workspace is the dedicated directory on the client
user's machine that contains all files located in the graph depot:

//graphbepot/repol/... //workspace/graphbepot/repol/...

Syncarepo

After setting up the client workspace, you can update it to reflect the latest contents of the graph depot.

To sync a repo after the repo has been pushed to the Helix Server, run the command:

$ p4 sync //graphbepotName/repoName/. . .

For more information on the p4 Sync command, see p4 sync in P4 Command Reference.

Set up Git users to work with the Git Connector

Depending on the network protocol you selected during the Git Connector configuration, you now need to
set up either SSH or HTTPS authentication for each user and from each computer used to clone, push,
and pull Git repos.

When this setup is complete, provide SSH or HTTPS URLs to Git client users. These URLs include the
IP address or host name of the Git Connector and the path to the respective repo, which consists of the
graph depot name and the repo name. The URLs have the following format:

= SSH:
$ git command git@ConnectorHost:graphDepotName/repoName
= HTTPS:

$ git command
https://username@ConnectorHost/graphbepotName/repoName

SSH

The SSH key consists of a public/private key pair that you create for each user on each computer used
as a Git client. Git users who already have an SSH key can send the public key to their administrator for
further handling.

25

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_sync.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

SSH

When you have the SSH key, you can share the public key with the Helix Server machine and then verify
the key in the Git Connector server. By default, it takes 10 minutes for the SSH key shared with the Helix
Server to be authorized in the Git Connector server, so you need to wait before you proceed to the
verification step.

Note
Helix Server users who have, at a minimum, the 11 St access to a filename in the protections table

can add their own public SSH keys to the Helix Server. For example:
p4 pubkey -i -s scopeName < my_id_rsa.pub

A Helix Server user with the access level of super oradmin can add a key for another user by
specifying the (—u) option. For example:

p4 pubkey -1 -s scopeName -u bruno < bruno_id_rsa.pub

See Prerequisites for a user to upload a key in P4 Command Reference.

Tip

If you have several public keys, you can define a scope for each key to be able to quickly distinguish
between them. This is useful if you need to delete a key. To get a list of keys along with their scope,
runthe p4 -ztag pubkeys command. Forexamples, see
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_pubkeys.html.

1. To create the SSH key, run the following command and follow the prompts:

$ ssh-keygen -t rsa

26

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_pubkey.html#p4_pubkey.description.upload-prerequisite
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_pubkeys.html

SSH

2. Letus assume:

m You are a user with admin or superuser privilege on the Helix server, but you are NOT
logged in to Helix server as an admin or superuser from the host running the command

= P4PORT is set in your environment

= auser named bruno, P4USER=bruno, has emailed his id_rsa. pub file to you and
that file is stored in /drive/userA/id_rsa.pub

To add the key to the Helix Server machine, you run the command:

$ p4 -u admin pubkey -u bruno -s scopeName -i <
/drive/userA/id_rsa.pub

However, if PAPORT is NOT set, include the server name and port number:

$ p4 -p helixserver:1666 -u admin pubkey -u bruno -s
scopeName -i < /drive/userA/id_rsa.pub

Note
Users without admi n permission need to run this command without the —Uu option:

$ p4 pubkey -1 -s scopeName < ~/.ssh/id_rsa.pub

Otherwise, they receive the following error message:

You don't have permission for this operation.

3. Wait 10 minutes for the keys to update. Otherwise, the Git Connector will not have the updated
SSH keys in the list of authorized keys, and you will not be able to connect.

4. Have Git client users run the following command to verify that they can successfully connect to
the Git Connector.This command is similar to the p4 1nfo command in that it displays
information about the installed applications.

$ git clone git@ConnectorHost:@info

Note
Ignore the following message:

fatal: Could not read from remote repository. Please make sure you
have the correct access rights and the repository exists.

If you see p4 info output, the command was successful.

If you are prompted for the Git password, this indicates an issue with the SSH setup. See
"Troubleshooting" on page 64.

27

HTTPS

HTTPS

Using HTTPS requires that you have a user account and password for the Helix Server. You need to
enter these credentials when prompted, which is every time you try to connect to the Git Connector to
push, pull, or clone.

m Toturn off SSL verification in Git, run one of the following commands:

$ export GIT_SSL_NO_VERIFY=true

$ git config --global http.sslverify false

Verify the Git Connector configuration

You already verified that the SSH key was added to the list of authorized keys in the Git Connector
server as part of "Set up Git users to work with the Git Connector" on page 25. In addition, you can verify
the Git Connector version installed by having Git users run the following command on the Git client
machine:

When using SSH:

$ git clone git@ConnectorHost:@info
When using HTTPS:

$ git clone https://ConnectorHost/@info

Push, clone, and pull repos

After you have installed and configured the Git Connector and have verified the installation, you can start
pushing repos from a Git client to a depot of type graph in the Helix Server. You can then clone those
repos to other Git clients as needed or, if you already have the repo on your Git client, pull changes from
the Helix Server.

Any Git user withwrite-al1 permission for the respective depots and repos in the Helix Server can
push, clone, and pull through the Git Connector. For details, see Granting permissions.

SSH syntax 28
HTTPS syntax L 29
SSH syntax

To push arepo into the Helix Server using SSH, run the following command:

$ git push git@ConnectorHost: graphDepotName/repoName

To clone a repo from the Helix Server using SSH, run the following command:

28

HTTPS syntax

$ git clone git@ConnectorHost:graphDepotName/repoName

To pull a repo from the Helix Server using SSH, run the following command:

$ git pull git@ConnectorHost:graphDepotName/repoName

HTTPS syntax

To push arepo into the Helix Server using HTTPS, run the following command:

$ git push https://ConnectorHost/graphbepotName/repoName

To clone a repo from the Helix Server using HTTPS, run the following command:

$ git clone https://ConnectorHost/graphbepotName/repoName

To pull a repo from the Helix Server using HTTPS, run the following command:

$ git pull https://ConnectorHost/graphbDepotName/repoName

29

Depots and repos

All versioned files that users work with reside in a shared repository called a depot. By default, a depot
named depot of type Tocal is created in the Helix Versioning Engine (the Helix Server) when the
server starts up. This kind of depot is also referred to as a classic depot. In addition, the Helix Server
installation creates a default graph depot named repo. A graph depot is a depot of type graph that
serves as a container for Git repos.

Create graph depots 30
Create and VieW rePOS . 31

Specifyadefaultbranch 32
Manage access to graph depots and repos 32
Set up client WOrKSpPaces L 33
Sync files from graph depots 34

Sync using an automatic label

Create graph depots

A graph depot can hold zero or more repositories. There is no upper limit to the number of repos that you
can store in a single graph depot. You can also manually create additional graph depots at any time by
running the p4 depot command. This command is used to create any type of depot. For details, see
P4 Command Reference or run the p4 help command.

Make sure to grant adm1i n permission to the gconn-user on any manually created graph depots. For
instructions, see Granting permissions.

You can view a list of the graph depots on your server by running the p4 depots command. with the -
-depot-type=graph option, as follows:
$ p4 depots --depot-type=graph

or (shorter):

$ p4 depots -t graph

When you create a new depot (of any type), the resulting form that opens is called the depot spec. The
depot spec for a graph depot:

m gives the graph depot a name
m establishes an owner for the depot

The owner has certain privileges for all repos in a graph depot and automatically acquires depot-
wide adm1 n privileges.

m defines a storage location for the archives and Git LFS files for all repos in a graph depot

A graph depot does not use the p4 protect mechanism at the file level. Instead, a graph depot
supports the Git model with a set of permissions for an entire repo of files. For details, see Managing
access control to graph depots and repos.

30

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Create and view repos

1. To create a new graph depot, run the following command:
$ p4 depot -t graph graphbDepotName

2. Edit the resulting spec as needed.

For information on the available form fields, see p4 depot in P4 Command Reference.

Create and view repos

Similar to the depot spec, each Git repo stored in the Helix Server is represented by a repo spec. You can
create, update, and delete repo specs by running the p4 repo command.

Note
Helix4Git supports a maximum of 10 repos per license. To obtain more licenses, please contact your
Perforce Sales representative.

Each repo has an owner (a user or a group). By default, this is the user who creates the repo. The owner
automatically acquires repo-wide adm1i n privileges and is responsible for managing access controls for
that repo.

In addition, the repo spec includes the repo name and information on when the repo was created as well
as the time and date of the last push. The spec also lets you specify:

m adescription of the remote server
m adefault branch to clone from

If you do not specify a default branch here, the default branch is refs/heads/master. If
your project uses another name, see "Specify a default branch" on the facing page.

m the upstream URL that the repo is mirrored from

The Mi rroredFrom field is updated automatically during mirroring configuration. For details,
see the chapter "One-way mirroring from Git servers" on page 37.

It is possible to enable automatic creation of a repo when you use the git push command to pusha
new repo into the Helix Server. You configure this behavior with the p4 grant-permission
command. For details, see "Manage access to graph depots and repos" on the facing page and p4 grant-
permission in P4 Command Reference.

You can view a list of the Git repos on your server by runnnig the p4 repos command. Similarly, Git
users can run the following command to view a list of repos:

$ git clone git@ConnectorHost:@list
1. Tocreate anew Git repo in an existing graph depot, run the following command:

$ p4 repo //graphDepotName/repoName

2. Edit the resulting spec as needed.

31

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_depot.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Specify a default branch

For more information, see p4 repo in P4 Command Reference.

Specify adefault branch ... 32

Specify a default branch

If your project uses a name other than master as the default branch name, make sure to specify this
name in the DefaultBranch field of the repo spec as a full Git ref, such as refs/heads/main.
Otherwise, if this field is left blank, the Git Connector assumes that your default branch to clone is
master. This would mean that you need to:

m add the branch name to the Git command every time you push to, clone, or check out the branch.

m manually check out the branch afteryou clone it.

To make your work easier, specify a default branch. For example, to make mai n the default branch, you
need to add the following line to the repo spec:

$ pefaultBranch: refs/heads/main
Setting the DefaultBranch field in the repo spec simplifies pushing and cloning branches.

In addition, you can push:
m asingle branch by specifying the branch name, which creates a repo with only that branch:

$ git push git@ConnectorHost:graphbDepotName/repoName
branchName

» all branches by passing inthe —=—a 11 option, which creates a repo with all branches:
$ git push git@ConnectorHost:graphbDepotName/repoName --all

= all branches and Git tags by passing in the "% : *" option, which creates a repo with all branches
and Git tags.

$ git push git@ConnectorHost:graphbDepotName/repoName "*:*"

Manage access to graph depots and repos

Withthe p4 grant-permission command, you can control access rights of users and groups to
graph depots and their underlying repos. This includes permissions to:

m create, delete, and view repos
m update, force-push, delete, and create branches and branch references
= write to specific files only

This allows for scenarios where a user can clone a repo but may only push changes to a subset of
the files in that repo.

32

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_repo.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Set up client workspaces

m delegate the administration of authorizations to the owner of a depot or repo

In most cases, delegating authorization management at the graph depot level should suffice
because related repos typically reside in the same graph depot. However, if needed, repo owners
can grant and revoke permissions for their repos.

For example, to grant user bruno permission to read and update files in graph depot graphDepot,
you can run the following command:
$ p4 grant-permission -d graphDepot -u bruno -p write-all
To limit this permission to repo repol, which resides in depot graphDepot, you can run the following
command:
$ p4 grant-permission -n //graphDepot/repol -u bruno -p write-all
By default, the following users have permission to run the p4 grant-permission command:
m The owner of the graph depot or repo
m The superuser user for all graph depots

= admin users for a particular graph depot or repo

You can view access controls by running the p4 show-permission command. To revoke access
controls, you can run the p4 revoke-permission command.

For initial setup instructions, see Granting permissions.

For a detailed list of permissions and their description, see p4 grant-permission in P4 Command
Reference.

Set up client workspaces

A client workspace is a set of directories on a user's machine that mirrors a subset of the files in the
depot. More precisely, it is a named mapping of depot files to workspace files. The workspace view
defines which depots you can sync to your client workspace.

A view consists of mappings, one per line. The left-hand side of the mapping specifies the depot files and
the right-hand side the location in the workspace where the depot files reside when they are retrieved
from the depot.

When you create a client workspace, a classic depot is mapped to your workspace by default. However,
a depot of type graph requires that you manually configure the mapping by editing the vi ew field in the
client workspace specification. You can also edit the spec to view only a portion of a depot or to change
the correspondence between depot and workspace locations.

In the following example, a graph depot called graphDepot includes a repository called repol. Itis
mapped to a dedicated folder called workspace such that all files located in the
//graphbDepot/repol directory on the Helix Server appear in the
//workspace/graphDepot/repol directory on the machine where the client workspace
resides.

//graphbepot/repol/... //workspace/graphbepot/repol/...

33

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Sync files from graph depots

For advanced workflows, you could also have a mixed workspace to accommodate the mapping of both
a classic depot and a graph depot. In this case, your mapping could look like this:

//graphbepot/repol/... //mixed-client/graphDepot/repol...
//depotl/moduleA/... //mixed-client/depotl/moduleA/...

For more information on mixed client workspaces, see Including Graph Depots and repos in your client in
P4 Command Reference.

For more information on configuring workspace views, see Configure workspace views in Helix
Versioning Engine User Guide.

1. Tocreate a depot client specification and its view, run the following command:
$ p4 client clientName

2. Edit the workspace view to meet your requirements.

Sync files from graph depots

You can sync an entire graph depot or one or more repos to a client workspace with appropriate mappings
using the p4 sync command. When syncing information from a graph depot, this command can only
take on a limited number of options.

By default, if you do not specify a branch, p4 sync syncs the master branch of the repo, unless the
DefaultBranch field in the repo spec specifies a different branch (for more information on specifying
a default branch, see "Specify a default branch" on page 32). You can also append the branch name to
the command to sync a different branch, as follows:

$ p4 sync branchName

In addition, you can sync:

= a Git commit associated with a SHA-1 hashkey
m a particular reference or commit of a repo
m repos associated with a specific label

m repos/files containing a Helix Server wildcard

Note that it is not possible to sync individual files with the p4 Sync command. You can only gain
control of individual files if you specify them in the Vi ew field of the client workspace specification.
Otherwise, the whole repo is synced, even if you specify a file in the command line.

For details and a list of examples, see Working with a depot of type graph in P4 Command Reference.

Sync using an automatic label 35

34

https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_client.html#Including_Graph_Depots_repos_in_your_client
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html#P4Guide/configuration.workspace_view.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/p4_sync.html#Working_with_a_depot_of_type_graph
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Sync using an automatic label

Sync using an automatic label

Helix Server's automatic label feature enables you to specify which repos you want to sync with which
branches, tags, or commits. This enables you to sync to multiple repos, not all of which are at the same
branch, tag, or commit.

This might be useful when you are building a Git project that is dependent on other projects that are at a
particular release version, tag, or commit (SHA-1). In non-Helix Server Git solutions, the manifest file
traditionally performs this function.

Note
To sync more narrowly than at the repo level, use the Vi ew field in the client (workspace)
specification. See the topic p4 client in P4 Command Reference.

To use automatic labels with Git repos, you edit the label specification (spec) by issuing the p4 Tabe’
command. In particular, you edit two fields: Revision and View:

= The Revision field must always be set to "#head" when using automatic labels with Git
repo data.

= The Vi ew field contents vary according to what you want to sync to.
With the following label spec settings, Helix Server syncs:
= the collection of repos under depot //androidtotagandroid-7.1.1_r23

= the collection of repos under //android/platform/build tobranchmaster

= therepo//android/platform/build/kati tocommit SHA-1
341a2ceccb836ab23f92c0ba96d0a0e73142576

A Perforce Label Specification.

#

Label: releasel _build

Update: The date this specification was Tast modified.
Access: The date of the Tast 'labelsync' on this Tabel.
Owner: bruno

Options: Label update options: [un]Tlocked, [noJautoreload.
Revision: "#head"

View: Lines to select depot files for the Tlabel.

#

Use 'p4 help label' to see more about label views.

Label: releasel_build

owner: bruno

35

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_client.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Sync using an automatic label

Description:
Created by bruno.

Options: unlocked noautoreload

Revision: "#head"

View: Lines to select depot files for the Tlabel.
View:

//android/..@refs/tags/android-7.1.1_r23
//android/platform/build/. @master

//android/platform/build/kati/..@341a2ceccb836ab23f92c0ba96d0ale73142576

For more information on automatic labels, see the chapter Labels in Helix Versioning Engine User Guide.

36

https://www.perforce.com/perforce/doc.current/manuals/p4guide/chapter.labels.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

One-way mirroring from Git servers

Helix4Git can duplicate ("mirror") commits from a Git repo managed by one of the following Git servers:

= GitHub

= GitLab (Community Edition or Enterprise Edition)

m Gerrit Code Review

m Helix TeamHub

A typical use case for mirroring one or more external Git repos into Helix is to enable a single instance of
a Cl tool, such as Jenkins, to build a complex job that syncs contents from both classic Helix and Git

repos.

The mirroring is one-way: from the Git server into Helix.

Tip

graph-push-commi t triggers are supported with mirroring. See the Helix Versioning Engine
Administrator Guide: Fundamentals chapter on "Using triggers to customize behavior".

You, the system administrator for Helix and the Git server, configure a webhook in the Git server and the
Git Connector server, which enables this flow:

1.
2.
3.

A Git user pushes a branch to the Git server.
The external repo in the Git server receives a commit of a Git repo or tag, which fires the webhook.

The Git Connector receives the webhook message and fetches the commit from the Git server
repo that is the source for mirroring.

The Helix Server receives the update from the Git Connector.

5. Optionally, a Cl tool, such as Jenkins, polls on a Helix workspace to detect changes across

multiple repos and performs a build.

GitHub or GitLab configuration 38
GitHub or GitLab HT TP . 38
GitHub or GitLab SSH .. 40

Gerrit configuration . 42
System requirements with Gerrit 42
N Xt S O ol 43
Installation of the mirror hOOKS L 43
Configure Gerritfor HT TP ... 43
Configure Gerrit for SSH 45
Testing the mirror hook 47
Troubleshooting Gerrit one-way mirroring i, 47

Helix TeamHub configuration 48
OV IV W 48
System requirements ..l 49

37

https://github.com/
https://about.gitlab.com/
https://www.gerritcodereview.com/
https://helixteamhub.cloud/docs/user/
https://www.perforce.com/perforce/doc.current/manuals/p4sag/
https://www.perforce.com/perforce/doc.current/manuals/p4sag/

GitHub or GitLab configuration

Installation of Helix TeamHub On-Premise 49
N Xt S D 49
Helix TeamHUb HT TP el 50
Helix TeamHUb SSH . 53
Git Connector configuration for fail-over to another Githost_.._.__............... 56
ProCeaUIe . 57
EXample 58
1 =Y o: S 60
Command-line Help ..o 60
NeXt S O DS 60

GitHub or GitLab configuration

"GitHub or GitLab HTTP " below
"GitHub or GitLab SSH" on page 40

GitHub or GitLab HTTP

Tip
If the repo is private or internal, consider creating an personal access token:

m For GitHub - Creating a personal access token for the command line -
https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/

m For GitLab - Personal access tokens - https://docs.gitlab.com/ce/user/profile/personal_
access_tokens.html

1. Loginto the Git Connector server as root.

2. Set the environment variable GCONN_CONFIG to the absolute path to the gconn . conf file:
export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf

38

https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/
https://docs.gitlab.com/ce/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ce/user/profile/personal_access_tokens.html

GitHub or GitLab HTTP

3. Configure the webhook for mirroring:
Important
The target repo must NOT already exist in Helix Server.

The source repo must not be empty.

./bin/gconn --mirrorhooks add graphDepotName/repoName
https://access-token:secret@GitHost.com/project/repoName.git

where access-token:secret relates to your GitHub or GitLab personal access token.

Tip
Copy the URL from your project's HTTP drop-down box.

4. Save the webhook secret token that the —-mi rrorhooks command generates, which is not
related to the personal access token for GitHub or GitLab.

Tip

The secret token is also stored in /opt/perforce/git-
connector/repos/
graphbDepotName/repoName.git/.mirror.config

Mirror a repo over HTTP

1. Go to the hooks URL, which might resemble
https://GitHost/project/repo/hooks and represents the web hook URL for your
Git client:
m For GitLab see https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
m For GitHub, see https://developer.github.com/webhooks/creating/

2. Paste the URL of the Git Connector into the URL text box:
https://GitConnector.com/mirrorhooks

Paste the webhook secret token in the Secret Token text box.
Uncheck Enable SSL verification.
Click Add Webhook.

Click the lower right corer Test button to validate the web hook is correctly set up.

o ok~ w

Troubleshooting

If there are any issues, review the following files, or send them to Perforce Technical Support:

39

https://docs.gitlab.com/ce/user/project/integrations/webhooks.html
https://developer.github.com/webhooks/creating/

GitHub or GitLab SSH

/opt/perforce/git-
connector/repos/graphbDepot/repoName.git/.mirror.config

/opt/perforce/git-connector/repos/graphbepot/repoName.git/push_log
/opt/perforce/git-connector/repos/graphbepot/repoName.git/fetch_Tlog
/opt/perforce/git-connector/repos/graphbepot/repoName.git/.mirror.log
/opt/perforce/git-connector/gconn.conf
/opt/perforce/git-connector/logs/gconn.log

/opt/perforce/git-connector/logs/p4gc.log

GitHub or GitLab SSH

1. Onthe Git Connector server, log in as the root userand use the SU command to become a
web-service-user

su -s /bin/bash - www-data su -s /bin/bash - apache

2. Createa . ssh directory for the web-service-user user:
mkdir /var/www/.ssh

3. Assign the owner of the directory:
chown web-service-user:gconn-auth /var/www/.ssh

4. Switchtothe web-service-user:
su -s /bin/bash - web-service-user
and generate the public and private SSH keys for the Git Connector instance:

ssh-keygen -t rsa -b 4096 -C web-service-
user@gitConnector.com

then follow the prompts.

5. Locate the public key:
/var/www/.ssh/id_rsa.pub

6. Copy this public key to the GitLab or GitHub server and add /var/www/.ssh/id_rsa.pub
to the user account (helix-user) that performs clone and fetch for mirroring.

40

GitHub or GitLab SSH

7. Onthe Git Connector, as the web-service-user, set the environment variable GCONN_

CONFIG tothe absolute path to the gconn. conf file:
export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf

8. Configure the mirror hooks by running the following as the web-service-user:

Important
The target repo must NOT already exist in Helix Server.

The source repo must not be empty.
./bin/gconn --mirrorhooks add graphbepotName/repoName
git@GitHost.com/project/repoName.git

Tip
Copy the URL from your project's SSH drop-down box.

9. Save the secret token that the ——mi rrorhooks command generates.

Tip
The secret token is also stored in /opt/perforce/git-
connector/repos/graphDepotName/repoName.git/.mirror.config

Mirror a repo over SSH

o o M 0 N =

Go to https://GitHost.com/project/repoName/hooks

Paste the URL of the Git Connector into the URL text box: https.//GitConnector.com/mirrorhooks
Paste the webhook secret token in the Secret Token text box.

Uncheck Enable SSL verification.

Click Add Webhook.

Click the lower-right corner Test button to validate the web hook is correctly set up

Troubleshooting

If there are any issues, review the following files, or send them to Perforce Technical Support:

/opt/perforce/qgit-
connector/repos/graphbDepot/repoName.qgit/.mirror.config

/opt/perforce/git-connector/repos/graphbDepot/repoName.qgit/push_log

/opt/perforce/git-connector/repos/graphbepot/repoName.qgit/fetch_log

41

Gerrit configuration

/opt/perforce/git-connector/repos/graphbepot/repoName.git/.mirror.log
/opt/perforce/git-connector/gconn.conf
/opt/perforce/git-connector/logs/gconn.Tog

/opt/perforce/qgit-connector/logs/p4gc.log

Gerrit configuration

Perforce provides a custom Python plug-in script named gconn-change-merged. py. When
properly renamed, the script enables Gerrit to generate a webhook for a specific type of Git commit, either
change-merged or ref-update. You might want to have two copies of the script, one for each type of
action.

System requirements with Gerrit ... 42
NeXt S eD il 43
Installation of the mirror hooks 43
Configure Gerrit for HTTP . 43
Configure Gerrit for SSH . 45
Testing the mirror hooK 47
Troubleshooting Gerrit one-way mirroring 47

System requirements with Gerrit

m Helix Git Connector 2017.1 July patch

« If yourinstallation of the Git Connector is prior to the July 2017 patch, see "Upgrading Git
Connector" on page 18.

= Gerrit version 2.13 or 2.14 installed and working on the Git server with Python version of 2.7.x. or
later

» The Perforce webhook for Gerrit gconn-change-merged. py, which is in the
/opt/perforce/git-connector/bin directory of the Git Connector

m A userin the Gerrit application that is limited to the minimal privileges necessary for mirroring
m A source repo in Gerrit that already exists and is not empty

Important

The target repo must NOT already exist in Helix Server.

The source repo must NOT be empty.

42

Next step

Next step

Installation and script renaming

Installation of the mirror hooks

On the Gerrit server
1. Transferthe /opt/perforce/git-connector/bin/gconn-change-
merged. py file from the Git Connector into the hooks subdirectory of your Gerrit installation.

2. Rename the file in the hooks directory to changed-merged:
mv gconn-change-merged.py changed-merged
The hook changed-merged enables the default Gerrit behavior of a mandatory code review of
a repo before merging it into a protected branch.
Tip
If your organization allows direct ref commits without a mandatory code review, make a
second copy in the hook's subdirectory, this time with ref-update as the name:
cp changed-merged ref-update

The name ref-update enables direct ref commits.

3. Make changed-merged (and, optionally, ref-update) executable by the OS user running
Gerrit.

Configure Gerrit for HTTP

On the Git Connector server

1. Loginto the Git Connector server as root.
2. Set the environment variable GCONN_CONFIG to the absolute path to the gconn . conf file:
export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf

43

Configure Gerrit for HTTP

3. Configure the webhook for mirroring:

Important
The target repo must NOT already exist in Helix Server.

The source repo must not be empty.

./bin/gconn --mirrorhooks add graphDepotName/repoName
https://access-

token:secret@GerritHost.com/project/repoName.git

Tip
Copy the URL from your project's HTTP drop-down box.

If the repo is private or internal, create an access token when configuring the mirror hooks, as
in the example above.

4. Save the secret token that the ——mi rrorhooks command generates.
Tip
The secret token is also stored in /opt/perforce/git-
connector/repos/graphDepotName/repoName.git/.mirror.config

On the Gerrit server
1. Update the configuration file for the Gerrit repository in the $SGERRIT_SITE/git/repoName/config
file,

where $GERRIT_SITE represents the root directory of your Gerrit server.

[gconn]

mirror-url = https://GitConnector.com/mirrorhooks

token = <secret_token from /opt/perforce/git-
connector/repos/graphbDepot/repoName.git/.mirror.config>

git-http-url = <upstream_url from /opt/perforce/git-
connector/repos/graphbDepot/repoName.git/.mirror.config>

[gconn "http"]

sslverify = false

44

Configure Gerrit for SSH

Next step

"Testing the mirror hook " on page 47

Configure Gerrit for SSH

Set up the SSH keys

1.

On the Git Connector server, log in as the root userand use the SU command to become a
web-service-user

su -s /bin/bash - www-data su -s /bin/bash - apache

Create a . ssh directory for the web-service-user user:
mkdir /var/www/.ssh

Assign the owner of the directory:
chown web-service-user:gconn-auth /var/www/.ssh

Switch to the web-service-user:
su -s /bin/bash - web-service-user
and generate the public and private SSH keys for the Git Connector instance:

ssh-keygen -t rsa -b 4096 -C web-service-
user@gitConnector.com

then follow the prompts.

Locate the public key:
/var/www/.ssh/id_rsa.pub

Copy this public key to the Gerrit server and add /var/www/ .ssh/id_rsa. pub to the user
account (helix-user) that performs clone and fetch for mirroring.

On the Git Connector, as the web-service-user, set the environment variable GCONN_
CONFIG tothe absolute path to the gconn. conf file:

export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf

45

Configure Gerrit for SSH

8. Configure the mirror hooks by running the following as the web-service-user:

Important
The target repo must NOT already exist in Helix Server.

The source repo must not be empty.

./bin/gconn --mirrorhooks add graphbDepotName/repoName
ssh://helix-user@GerritHost.com/repoName.git

9. Save the secret token that the ——mi rrorhooks command generates.
Tip
The secret token is also stored in /opt/perforce/git-
connector/repos/graphDepotName/repoName.git/.mirror.config

On the Gerrit server

1. Update the configuration file for the Gerrit repository in the GERRIT_SITE/git/repoName/config
file,

where GERRIT_SITE represents the root directory of your Gerrit server.

[gconn]
mirror-url = https://GitConnector.com/mirrorhooks

token = <secret_token from /opt/perforce/git-
connector/repos/graphbDepot/repoName.git/.mirror.config>

git-ssh-url = <upstream_url from /opt/perforce/git-
connector/repos/graphbDepot/repoName.git/.mirror.config>

[gconn "http"]

sslverify = false

Next step

"Testing the mirror hook " on the facing page

46

Testing the mirror hook

Testing the mirror hook

On the Gerrit server

1. Set the environment variable GIT_DIR to the absolute path to the Gerrit repository:
export GIT_DIR=GERRIT_SITE/git/repoName.git
where GERRIT_SITE represents the root directory of your Gerrit server.

2. Fromthe GERRIT_SITE directory, issue the command:
./hooks/change-merged

3. Check whether the hook displays the message that indicates successful mirroring:

GConn Hook HTTP response: mirror from
http://GerritHost.com/repoName.git to
//graphbepot/repoName.git

4. |If there are problems, see "Troubleshooting Gerrit one-way mirroring" below.

Troubleshooting Gerrit one-way mirroring

Note
Mirroring occurs upon commit or merge (depending on the Gerrit workflow), so pushing a Gerrit code
review on a pseudo-branch, such as

git push origin HEAD:refs/for/master

is not sufficient to fire the webhook.

Important
To verify which repo is being mirrored, at the Git Connector command line, issue the following
command:

bin/gconn --mirrorhooks list
The response might be similar to:
//graphbepot/repoName <<< http://GerritHost.com/repoName.git

which indicates that the // graphbDepot/ repoName destination repo mirrors the
http://GerritHost.com/repoName.git source repo.

Tip
To view command-line help:
From the GERRIT_SITE directory, issue the command:

./hooks/change-merged --help

47

Helix TeamHub configuration

If there are any issues, review the following files, or send them to Perforce Technical Support:
On the Gerrit server:
GERRIT_SITE/git/repoName.git/config

On the Git Connector server:

/opt/perforce/qgit-
connector/repos/graphbDepot/repoName.git/.mirror.config

/opt/perforce/git-connector/repos/graphbepot/repoName.git/push_log
/opt/perforce/git-connector/repos/graphbepot/repoName.git/fetch_Tlog
/opt/perforce/git-connector/repos/graphbepot/repoName.qgit/.mirror.log
/opt/perforce/git-connector/gconn.conf
/opt/perforce/git-connector/logs/gconn.log

/opt/perforce/qgit-connector/logs/p4gc.log

Helix TeamHub configuration

Overview

You, the administrator of Helix TeamHub and Helix4Git, can set up mirroring a Git repository into the
Helix Versioning Engine. You can choose what triggers mirroring to occur:

@ Trigger when repository receives new commits
™ Trigger when a branch is created or deleted
& Trigger when a tag is created or deleted

Sequence of events

An end-user does a git push from the local computer to the Helix TeamHub server.
The user's action fires a Repository Webhook in Helix TeamHub to notify the Helix Git Connector.
Helix Git Connector fetches the new changes.

The Helix Git Connector mirrors the Git repo into the specified Helix graph depot.

o o Dd =

Optionally, an automated build occurs, using a tool such as Jenkins, which is supported by
p4Jenkins.

48

System requirements

Limitations
This use case is for Helix TeamHub on-premise, not the cloud version of Helix TeamHub.

Repo access is through username/password or SSH key. Helix TeamHub on-premise does not support
for SSO or two-factor authentication.

For mirroring, use a repository hook, not a company hook or a project hook. For details, see
https://helixteamhub.cloud/docs/user/webhooks/general/.

Authentication
Both HTTP and SSH are supported. To use SSH, the public key needs to be added to Helix TeamHub.

System requirements

m Ubuntu 14.04 LTS, Ubuntu 16.04 LTS, CentOS or Red Hat 6.x, CentOS or Red Hat 7.x

m Must be an administrator for a working Helix TeamHub, so that you can set up a Repository
Webhook

m Must be an administrator on the Git Connector server, so you can run the command to add a mirror
hook

= A working Git Connector with patch release string 2017.1/1572461
m A working Helix Versioning Engine server, either 17.1 patch 2017.1/1574018 or 17.2

m A Helix TeamHub repository that is not empty. This repository will be the source for mirroring into
the Helix graph depot.

m A Helix TeamHub bot account you can use instead of personal credentials. The two options are:
« Aregular bot with access to relevant projects and repositories on the team view
« A company admin bot account, which has access to every repository inside the company

For more information, see https://helixteamhub.cloud/docs/user/bots/

Installation of Helix TeamHub On-Premise

You, the Helix4Git administrator:

1. Goto https://www.perforce.com/downloads/helix-teamhub-enterprise

2. Locate the Helix TeamHub package to download.
See the installation instructions at https://helixteamhub.cloud/docs/admin/getting-started/ or
https://helixteamhub.cloud/docs/admin/installation/combo/

3. Runthe package for an on-premise installation of Helix TeamHub.

Next step
Configure for HTTP or SSH:

49

https://helixteamhub.cloud/docs/user/webhooks/general/
https://helixteamhub.cloud/docs/user/bots/
https://www.perforce.com/downloads/helix-teamhub-enterprise
https://www.perforce.com/downloads/helix-teamhub-enterprise
https://helixteamhub.cloud/docs/admin/installation/combo/

Helix TeamHub HTTP

Helix TeamHub HTTP

Tip
Use a bot account instead of personal credentials. The two options are:

m Use aregular bot, and give it access to relevant projects and repositories on the team view

m Use a company admin bot account, which has access to every repository inside the company

o @

[2 MNew project

&, Mew collaborator
&£, MNew group

€5 New bot

For more information, see https://helixteamhub.cloud/docs/user/bots/

1.

Log into the Git Connector server as root.

2. Set the environment variable GCONN_CONFIG to the absolute path to the gconn . conf file:

50

export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf
Configure the webhook for mirroring:

Important

The target repo must NOT already exist in Helix Server.

The source repo must not be empty.

./bin/gconn --mirrorhooks add graphDepotName/repoName
https://bot:password@

HelixTeamHubServer

/ companyName/projects/projectName/repositories/git/repoName

Tip
Copy the URL from your project's HTTP drop-down box.

https://helixteamhub.cloud/docs/user/bots/

Helix TeamHub HTTP

4. Save the secret token that the —-mi rrorhooks command generates.

Tip

The secret token is also stored in /opt/perforce/git-
connector/repos/
graphbDepotName/repoName.git/.mirror.config

Mirror a repo over HTTP

Add Hook
€ repoName b4
Webhook hd

Trigger when repository receives new commits
Trigger when a branch is created or deleted
Trigger when a tag is created or deleted

Hook attributes

https:# GitConnector.com/mirrorhooks
json (application/json) w
Secret ©

Insecure ssl

Advanced settings >

1. Select Hooks, Add Hook, and select a repository from the drop-down.
2. Select the service WebHook from the drop-down.

3. Check the triggers that you want to launch a mirroring action.

51

Helix TeamHub HTTP

4. Under Hook attributes:

a. Paste the URL of the Git Connector into the URL text box:
https://GitConnector.com/mirrorhooks

b. Select content-type of json (application/json) from the drop-down.
c. Paste the mirrorhook secret token in the Secret text box.

d. Check the Insecure ssl checkbox because no certificate is associated with the webhook.
5. Click Save hook.

6. Validate that mirroring is in place by running the following command on the Git Connector:
gconn --mirrorhooks 1ist

This displays the repositories that are mirrored and the Git Host. For example:

gconn --mirrorhooks 1ist

//hth/repoName <<<

http://HelixTeamHub.com/hth/projects/projectName/repositories/qgit/rep
oName.git ...

//hth/repoName2 <<<
http://HelixTeamHub.com/hth/projects/projectName/repositories/git/rep
oName2.git ... Not mirrored by this Gconn instance (no mirror config

)

Troubleshooting

If there are any issues, review the following files, or send them to Perforce Technical Support:

Helix TeamHub log at /var/log/hth/resque/current

and from the Git Connector:

/opt/perforce/qgit-
connector/repos/graphbDepot/repoName.git/.mirror.config

/opt/perforce/git-connector/repos/graphbepot/repoName.git/push_log
/opt/perforce/git-connector/repos/graphbepot/repoName.git/fetch_Tlog
/opt/perforce/git-connector/repos/graphbepot/repoName.git/.mirror.log
/opt/perforce/git-connector/gconn.conf
/opt/perforce/git-connector/logs/gconn. Tog

/opt/perforce/qgit-connector/logs/p4gc.log

52

Helix TeamHub SSH

Helix TeamHub SSH

Tip
Use a bot account instead of personal credentials to store the SSH public key required for the
GitConnector. (The web-service-user mentioned below).

The two options are:

m Use aregular bot, and give it access to relevant projects and repositories on the team view

m Use a company admin bot account, which has access to every repository inside the company

L, @

[2 MNew project
& New user

Mew collaborator

&
&, Mew group
¢ New bot

& New hook

For more information, see https://helixteamhub.cloud/docs/user/bots/

1.

On the Git Connector server, log in as the root user and use the SU command to become a
web-service-user

su -s /bin/bash - www-data su -s /bin/bash - apache

Create a . Ssh directory for the web-service-user user:
mkdir /var/www/.ssh

Assign the owner of the directory:
chown web-service-user:gconn-auth /var/www/.ssh

Switch to the web-service-user:
su -s /bin/bash - web-service-user
and generate the public and private SSH keys for the Git Connector instance:

ssh-keygen -t rsa -b 4096 -C web-service-
user@gitConnector.com

then follow the prompts.

53

https://helixteamhub.cloud/docs/user/bots/

Helix TeamHub SSH

5. Locate the public key:
/var/www/.ssh/id_rsa.pub

6. Copy this public key to the Helix TeamHub server and add /var/www/.ssh/id_rsa.pub
to the user account (helix-user) that performs clone and fetch for mirroring.

7. Onthe Git Connector, as the web-service-user, set the environment variable GCONN_
CONFIG tothe absolute path to the gconn . conf file:

export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf
8. Configure the mirror hooks by running the following as the web-service-user:
Important
The target repo must NOT already exist in Helix Server.

The source repo must not be empty.

./bin/gconn --mirrorhooks add graphbDepotName/repoName

gita@

HelixTeamHubServer
/companyName/projects/projectName/repositories/gitrepoName

Tip
Copy the URL from your project's SSH drop-down box.

9. Save the secret token that the ——mi rrorhooks command generates.
Tip

The secret token is also stored in /opt/perforce/git-
connector/repos/graphDepotName/repoName.git/.mirror.config

54

Helix TeamHub SSH

Mirror a repo over SSH

Add Hook
€ repoName b4
Webhook hd

Trigger when repository receives new commits
Trigger when a branch is created or deleted
Trigger when a tag is created or deleted

Hook attributes

https:# GitConnector.com/mirrorhooks
json (application/json) w

Secret ©

Insecure ssl

Advanced settings >

Select Hooks, Add Hook, and select a repository from the drop-down.
Select service WebHook from the drop-down

Check the triggers that you want to launch a mirroring action

A w0 N =

Under Hook attributes:

a. Paste the URL of the Git Connector into the URL text box:
https://GitConnector.com/mirrorhooks

b. Select content-type of json (application/json) from the drop-down.

c. Paste the mirrorhook secret token in the Secret text box.

d. Check the Insecure ssl checkbox because no certificate is associated with the webhook.
5. Click Save hook.

55

Git Connector configuration for fail-over to another Git host

6. Validate that mirroring is in place by running the following command on the Git Connector:
gconn --mirrorhooks 1ist

This displays the repositories that are mirrored and the Git Host. For example:

gconn --mirrorhooks Tist

//hth/repoName <<<

http://HelixTeamHub.com/hth/projects/projectName/repositories/git/rep
oName.git ...

//hth/repoName2 <<<
http://HelixTeamHub.com/hth/projects/projectName/repositories/git/rep
oName2.git ... Not mirrored by this Gconn instance (no mirror config

)

Troubleshooting

If there are any issues, review the following files, or send them to Perforce Technical Support:
Helix TeamHub log at /var/log/hth/resque/current

and from the Git Connector:

/opt/perforce/qgit-
connector/repos/graphbDepot/repoName.git/.mirror.config

/opt/perforce/git-connector/repos/graphbepot/repoName.git/push_log
/opt/perforce/git-connector/repos/graphbepot/repoName.git/fetch_Tlog
/opt/perforce/git-connector/repos/graphbepot/repoName.qgit/.mirror.log
/opt/perforce/git-connector/gconn.conf
/opt/perforce/git-connector/logs/gconn.log

/opt/perforce/qgit-connector/logs/p4gc.log

Git Connector configuration for fail-over to another Git host

ProCedUIe 57
EXample L 58
S} § (=T o 60
Command-line Helpo L 60
NeXt StePS . il 60

56

Procedure

Helix4Git can mirror from a Git server, such as GitLab, GitHub, Gerrit, or Helix TeamHub. If that Git
server becomes unavailable, Helix4Git supports the manual configuration of Helix4Git mirroring from the
fail-over server.

\/

" | E—F
) Git Connector
O 0
Initial Fail-over to
Git server secondary Git server

__/

s s -

NN -

old Git user push new Git user push

____/

Helix Versioning Engine

Note
m The two Git servers should be replicas of each other.

m The Git Connector can run on a machine separate from the Git server and the Helix Versioning
Engine (recommended), the same machine as a Git server (also recommended), or the
machine with Helix Versioning Engine (not recommended).

m Perforce has tested fail-over with GitLab and Gerrit.

Procedure

To perform a fail-over of the third-party Git server that the Git Connector fetches from, use the Helix Git
Connector setremote command.

We recommend you first use this command with the -n option:
gconn --mirrorhooks -n setremote oldurl newurl
where

= 01duUr1 is a pattern that matches the primary Git server URL for a set of one or more repos

= newuUr1 is replacement pattern containing the fail-over or secondary server URL, such that all
mirrored repos with MirroredFrom URLs matching the 01dUr1 pattern will be modified by
substitution

57

Example

m -Ndisplays in preview mode the names of the repos that would be affected, but does not perform
the operation
To perform the operation, omit the —n option:
gconn --mirrorhooks setremote oldurl newurl

Example

1. Set the environment variable GCONN_CONFIG to the absolute path to the gconn. conf file:
export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf
2. Runthe 11 st command to see the names of repos that are associated with webhooks:
gconn --mirrorhooks 1ist
The output might be:

gconn --mirrorhooks 1ist

//graphbepot/projectl <<<

http://
primaryGitHost/hth/projects/support/repositories/git/projectl.git
//graphDepot/project2 <<<
http://primaryGitHost/hth/projects/support/repositories/git/project2.
git ... Not mirrored by this Gconn instance (no mirror config)
//graphDepot/project3 <<<
http://primaryGitHost/hth/projects/support/repositories/git/project3.
git ... Not mirrored by this Gconn instance (no mirror config)

3. Include the —n option to see what the effect would be:

gconn -n --mirrorhooks setremote https://primaryGitHost
https://secondaryGitHost

The screen output indicates this is merely a test:

This is a report of a trial run. No MirroredFrom urls
are changed.

Execute without the '-n' option to update the urls.
//graphDepot/projectl: updating remote url from
http://primaryGitHost/hth/projects/support/repositor
ies/git/projectl.git

to
git@http://secondaryGitHost/hth/projects/support/rep
ositories/git/projectl.git

58

Example

4. To runthe command that switches to the secondary server, omit the —n option:

gconn --mirrorhooks setremote https://primaryGitHost
https://secondaryGitHost

59

Effect

5. Run the list command again to list the repos that now need to be associated with webhooks:
gconn --mirrorhooks 1ist

The output is:

gconn --mirrorhooks Tist

//graphbepot/projectl <<<

http://
secondaryGitHost/hth/projects/support/repositories/git/projectl.git
//graphDepot/project2 <<<
http://primaryGitHost/hth/projects/support/repositories/git/project2.
git ... Not mirrored by this Gconn instance (no mirror config)
//graphDepot/project3 <<<
http://primaryGitHost/hth/projects/support/repositories/git/project3.
git ... Not mirrored by this Gconn instance (no mirror config)

Effect

The setremote command affects both the Git Connector server and the Graph Depot server:

= On the Git Connector server, it reconfigures the .mi rror . conf1 g file to point to the
fail-over URL as the "upstream_url"

m On the Git Connector server, it reconfigures the upstream fetch URL of repo's cached git
repository.

= Onthe Helix server, it reconfigures the repo spec so that the Mi rroredFrom: field
points to the fail-over URL

Command-line Help

To get command-line Help on the setremote command, at your Git Connector command line, type
gconn --help

You will see, in addition to the explanations of the commands for add, remove, and 1ist, an
explanation of the setremote command.

Next Steps

First, configure the fail-over third-party Git server with a web hook for each repo that you want to
mirror.

Note: you can reuse the same secret token that is in the repository's .mirror.confiigfile.
For detailed steps on how to set up the web hook, see the instructions that match your situation:

60

Next Steps

m "GitHub or GitLabHTTP " on page 38
m "GitHub or GitLab SSH" on page 40

m "Configure Gerrit for HTTP" on page 43
m "Configure Gerrit for SSH" on page 45
m "Helix TeamHub HTTP " on page 50

m "Helix TeamHub SSH" on page 53

Finally, push to the currently active Git server and verify that the webhook causes the Git
Connector to fetch the change so that Helix4Git mirrors the change into a repo.

61

Configuring Git Connector to poll repos from Helix4Git

Configuring Git Connector to poll repos from Helix4Git

Your organization might have contributors in multiple locations that are geographically remote from one
another, like Brazil and Japan. The administrator of the Git Connector at each location might want the
local Git Connector to periodically get the latest version of a set of repos. This can enable the end-users
for a given location to experience fast clones and fetches.

Procedure il 62
E=
= geconn poll-repos gconn poll-repos lIl
Git Cennector Git Connector
< >

in USA in Japan

In the Helix Versioning Engine
server spec for the

Japan Git Connector,

the ExternalAddress field
specifices the set of repos
that the Japan team wants

In the Helix Versioning Engine
server spec for the

USA Git Connector,

the ExternalAddress field
specifices the set of repos
that the USA team wants

to be polled to be polled
Helix Versioning Engine
//graphDepot/repol
//graphDepot/repo2
/fgraphDepot/repo3
//graphDepot/repo4
Procedure

1. The administrator in Brazil uses the p4 server command to edit the server specification that
corresponds to the ServerId for the instance of the Git Connector in Brazil. This administrator
populates the ExernalAddress: field in the server spec to contain a list of repos for which
Brazil wants the latest updates. The list can be comma-separated or space-separated, and can be
a subset of the repos:

ExternalAddress: //graphDepotName/repol
//graphDepotName/repo3 //graphDepotName/repo4

62

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_server.html%23p4_server%3FTocPath%3DCommands%2520-%2520alphabetical%2520list|p4%2520server|_____0

Procedure

2. At the Git Connector command-line, the Brazil administrator:

a. Sets the environment variable GCONN_CONFIG to the absolute path to the gconn . conf
file:
export GCONN_CONFIG=/opt/perforce/git-connector/gconn.conf

b. Runs the command gconn pol1-repos and verifies that this manual test has pulled
the latest for the set of repos:

Command-Line Output Meaning

Polling repo: //graphDepot/repol Brazil gets a new branch for
this repo

From p4gc://brazilURL/graphDepoA/repol

* [new branch] master ->

master

Polling repo: //graphDepot/repo3 2fzngasanupdaefm1ms
From p4gc://brazilURL/graphDepoA/repo3 "

784a8e8..e6a5604 master -> master

Polling repo: //graphDepot/repo4 Brazil is already has the latest

for this repo

3. The Brazil administrator configures the UNIX cron utility to schedule an automatic run of the
gconn poll-repos command at a specified interval. For example, etc/cron.d/gconn
can poll for updated repos every 10 minutes:

*/10 * * * * git /usr/bin/gconn poll-repos

Note

The administrator for Japan can edit the server spec associated with the Japan Git Connector such
that this server spec for Japan contains none, some, or all of the repos as the server spec for Brazil.
Similarly, the administrator for Japan might set up a different interval for polling.

63

Troubleshooting

The following sections indicate problems you might encounter, how to fix them, and how to facilitate
troubleshooting with "Special Git commands" on page 73.

Connection problems .. 64
SSH: user prompted for git's password 65
SSL certificate problem .. 66
HTTPS: userdoes Not exist 66

Permission problems .. 66
The gconn-user needs adminaccess 67
Unable to clone: missing read permission 67
Unable to push: missing create-repo permission ... 68
Unable to push: missing write-ref permission 68
Unable to push: not enabled by p4 protect 69
Unable to push a new branch: missing create-ref permission 69
Unable to delete a branch: missing delete-ref permission _.............................. 70
Unable to force a push: missing force-push permission 71

Branch problems .. 7
Push results in message about HEAD refnotexisting 71
Clone results in "remote HEAD refers to nonexistentref" 72

Special Git commands ...l 73

Connection problems

This section lists problems related to accessing graph depots or repos.

SSH: user prompted for git’s password 65
SSL certificate problem . 66
HTTPS: user does not exist 66

64

SSH: user prompted for git's password

SSH: user prompted for git's password

Problem Solution

git clone Try one or more of the following:

git@ 1:Run p4 protect toopen the spec form, and add the

ConnectorHost/gpl/repo8 gconn-user to the protections table with the wr1ite
permission:

causes the user to be prompted for
git’s password: Cloning into 'repo8'... write user gconn-user * //...

git@ConnectorHost's See p4 protect in P4 Command Reference.

password: 2:Runp4 show-permission tofind out whether
the gconn-user has adm1in permission.

p4 show-permission -u gconn-user -d gDl

If not, run p4 grant-permissiontograntadmin
access tothe gconn-user.

p4 grant-permission -p admin -d gDl -u
gconn-user * //...

See p4 grant-permission in P4 Command Reference.

3: Add the user's SSH public key to the Git Connector:

p4 pubkey -i -u user < id_rsa.pub

and wait ten minutes for the Git Connector to update the
Helix Server.

See p4 pubkey in P4 Command Reference.

65

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_pubkey.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

SSL certificate problem

SSL certificate problem

Problem Solution

git clone Turn off SSL validation:
https://ConnectorHost/gbl/repo8 git config --global
results in http.sslverify false
Cloning into 'gDl/repo8'... fatal: unable

to access

https://ConnectorHost/gbl/repo8/"': SSL
certificate problem:
Invalid certificate chain

HTTPS: user does not exist

Problem Solutio
n
git clone https://ConnectorHost/gpl/repo8 Create
) the
results in missing
Cloning into 'gbl/repo8'... user by
running
Username for https://ConnectorHost: bruno p4
Password for https://bruno@ConnectorHost: user
remote: User is not authenticated: User bruno doesn't exist. See p4
fatal: Authentication failed for EZ?””
https://ConnectorHost/gbl/repo8/. Comman
d
Referenc
e
Permission problems
This sections lists permission-related problems.
The gconn-user needs admin accessl 67
Unable to clone: missing read permission ..._........ ... 67
Unable to push: missing create-repo permission 68
Unable to push: missing write-ref permission 68

https://bruno@connectorhost/
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_user.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_user.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

The gconn-user needs admin access

Unable to push: not enabled by p4 protect 69
Unable to push a new branch: missing create-ref permission 69
Unable to delete a branch: missing delete-ref permission 70

Unable to force a push: missing force-push permission

The gconn-user needs admin access

Problem Solution

If As asuperuser, run p4 protect toopenthe
spec form, then add the gconn-user to the

git push origin master protections table with the wri te permission:

results in . .
write user gconn-user * //gbl/...
. GConn P4 user needs admin See p4 protect in P4 Command Reference.
access ...

and,

Runp4 show-permission tofind out
whether the gconn-user has admin
permission.

p4 show-permission -u gconn-user
-d gpl

If not, run p4 grant-permissionto
grant adm1i n access to the gconn-user for
the specified depot.

See p4 grant-permission in P4 Command
Reference.

Unable to clone: missing read permission

Problem Solution

git clone Grant the read permission:

https://bruno@ConnectorHost/gbl/r p4 grant-permission -u bruno -

epo8 p read -d gpl

results in: See p4 grant-permission in P4 Command
Reference.

No read permission

67

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://bruno@connectorhost/gD1/repo8
https://bruno@connectorhost/gD1/repo8
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Unable to push: missing create-repo permission

Unable to push: missing create-repo permission

Problem Solution

git push Grant the permission to create a repo:
git@ConnectorHost:gbl/repo8 p4 grant-permission -u bruno -p
master create-repo -d gbl

results in

See p4 grant-permission in P4 Command
Reference.

| [remote rejected] 8cf...b4d ->
master

(User bruno does not have
administrative privileges to
create

repo //gbl/repo8.)

Unable to push: missing write-ref permission

Problem Solution

git push origin master Grant the wri te-ref permission:
results in p4 grant-permission -u bruno -p
. User bruno does not have write-ref -d gpl
write-ref You can specify an entire depot or repo, or limit the

user to one or more branches or tags. See p4 grant-

privilege for reference permission in P4 Command Reference.

refs/heads/master.

Note
A user with the wri te-ref permission also
needs p4 protect Wri te access.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html

Unable to push: not enabled by p4 protect

Unable to push: not enabled by p4 protect

Problem Solution

If

Note
git push origin master Auserwﬂh th.ewr1 te-
ref permission also
results in

needs p4 protect

write access.
. Access for user 'bruno' has not been enabled

by 'p4 protect'...
Thewrite-ref
permission is the sole
permission that applies the
protection setting in the
protections table for a file or
directory. As a superuser,
run p4 protect toopen
the spec form, then add the
user to the protections table
withthewrite
permission:

write user bruno *
//9Dl/. ..

See p4 protect in P4
Command Reference.

Unable to push a new branch: missing create-ref permission

Problem Solution

git push origin dev Grant the permission to create a reference in the graph

) depot.
results in

p4 grant-permission -u bruno -p

I [remote rejected] 8cf...b4d
[s] create-ref -d gpl

-> master

(User bruno does not have
create-ref privilege for
reference
refs/heads/dev.)

See p4 grant-permission in P4 Command Reference.

69

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_protect.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Unable to delete a branch: missing delete-ref permission

Unable to delete a branch: missing delete-ref permission

Problem Solution

git push origin :dev Grant the permission to delete a repo in the graph

) depot:
results in

p4 grant-permission -u bruno -p
delete-ref -d gpl

See p4 grant-permission in P4 Command
Reference.

remote: ! [remote rejected] dev
(User bruno does not have delete-
ref privilege

for reference refs/heads/dev.)

70

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Unable to force a push: missing force-push permission

Unable to force a push: missing force-push permission

Problem Solution

Some organizations allow one or Grant the force-push permission to the special user.
more special users or administrators —

to overwrite other people’s work by p4 grant-permission -u bruno -p force-push
granting this user the force- -d gpl

push permission. The force-
push permission implies the
powers associated with the
following permissions: read,
write-ref,write-all
create-refanddelete-
ref.

See p4 grant-permission in P4 Command Reference.

If the user does not have the
force-push permission,

git push --force origin
master

results in

remote: ! [remote
rejected]

d59...2bf - master

(User bruno does not

have force-push privilege
for

reference
refs/heads/master.)

Branch problems
This section lists problems related to branches.

Push results in message about HEAD ref not existing 7
Clone results in "remote HEAD refers to nonexistent ref" 72

Push results in message about HEAD ref not existing

Running the following command:

71

https://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_grant-permission.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Clone results in "remote HEAD refers to nonexistent ref"

$ git push git@ConnectorHost:gbDl/repo8 main

results in:

Counting objects: 3, done.

wWriting objects: 100% (3/3), 226 bytes \| 0 bytes/s, done.

Total 3 (delta 0), reused 0 (delta 0)

remote: HEAD ref is "refs/heads/master", but this ref does not exist.
remote: Consider asking the admin for repo "gbl/repo8.git"

remote: to set its default branch to a valid ref so that

remote: "git clone" and "git checkout" can check out

remote: without specifying a branch name.
To git@xx.x.xx.xxx:repo/grepol

* [new branch] main -> main
Toresolve this issue, do one of the following:

= Edit the repo spec to specify refs/heads/main as the default branch to clone from. This is

required for any project not using the refs/heads /master default branch. For details, see
"Specify a default branch" on page 32.

= Run the following special command to set the default branch to refs /heads/main:
$ git clone
git@ConnectorHost:@defaultbranch:gbl/repo8=refs/heads/main

This results in the following output:

git clone git@ConnectorHost:@defaultbranch:gD1/repo8=refs/heads/main
Cloning into 'main’...

repo='gD1/repo8', old DefaultBranch=", new DefaultBranch="refs/heads/main’
fatal: Could not read from remote repository.

Please make sure you have the correct access rights and the repository exists.

Note
Because the special command is not standard Git syntax, Git cannot parse it and the
command terminates with:

Fatal: Could not read from remote repository.

You can also run @defaultbranch:gbl/repo8 to show the default branch and
@defaultbranch:gbl/repo8= to clear the default branch.

Clone results in "remote HEAD refers to nonexistent ref"

Running the following command:

72

Special Git commands

$ git clone git@ConnectorHost:gDl/repo8

results in:

Cloning into 'repo8'...

remote: Counting objects: 3, done.

remote: Total 3 (delta 0), reused 0 (delta 0)

Receiving objects: 100% (3/3), done.

Checking connectivity... done.

warning: remote HEAD refers to nonexistent ref, unable to checkout.

Toresolve this issue, do one of the following:

= Edit the repo spec to specify refs/heads/main as the default branch to clone from. This is
required for any repo not using the refs/heads/master default branch. For details, see
"Specify a default branch" on page 32.

= Run the following special command to set the default branch to refs /heads/main:

$ git clone
git@ConnectorHost:@defaultbranch:gbl/repo8=refs/heads/main
This results in the following output:

git clone git@ConnectorHost:@defaultbranch:gD1/repo8=refs/heads/main

Cloning into 'repo8=refs/heads/main’...

repo='gD1/repo8', old DefaultBranch=", new DefaultBranch="refs’/heads/main’
fatal: Could not read from remote repository.

Note
The special command sets the default branch even if Git cannot parse it and the commands

terminates with:

Fatal: Could not read from remote repository.

You can also run @defaultbranch:gbl/repo8 to show the default branch and
@defaultbranch:gbl/repo8= to clear the default branch.

Special Git commands

On a Git client, you can run special commands that extend Git command functionality. Each special
command begins with@it clone. Special commands work with SSH or HTTPS authentication, and
here we show SSH:

m git clone git@ConnectorHost:@help: Shows Git Connector special command
help.

» git clone git@ConnectorHost:@info: Shows Git Connector version information.

73

Special Git commands

m git clone git@ConnectorHost:@11st: Lists repositories available to you, based on
permissions.

= git clone git@ConnectorHost:@defaultbranch:graphbepot/repo:
Shows the default branch set for the repo.

» git clone git@ConnectorHost:@defaultbranch:graphDepot/repo=:
Clears the default branch set for the repo.

= git clone
git@ConnectorHost:@defaultbranch:graphbDepot/repo=branch: Sets the
default branch.

For example,

$ git clone git@ConnectorHost:@info

Results in the following output:

git clone git@connector.com:@info
Cloning into '@info'...
Perforce - The Fast Software Configuration Management System.
Copyright 1995-2016 Perforce Software. All rights reserved.
This product includes software developed by the OpenSSL Project
for use in the oOpenssL Toolkit Chttp://www.openssl.org/)
See 'p4 help legal' for full OpensSL Ticense information
Version of OpenSSL Libraries: OpensSL 1.0.27 26 Sep 2016
Rev. GCONN/LINUX26X86_64/2016.2.MAIN-TEST_ONLY/1460278 (2016/11/03).
uname: Linux gconn-centos6 2.6.32-504.e16.x86_64 #1 SMP wed oct 15
04:27:16 UTC 2014 x86_64
P4 Info:

caseHandling: sensitive

clientAddress: Xxx.X.XX.XXX

clientCase: sensitive

clientcwd: /home/git

clientHost: gconn-centos6

clientName: unknown

password: enabled

peerAddress: xx.x.xX.xxx:47041

serverAddress: xx.X.xx.xxx:16200

serverDate: 2016/11/07 14:13:41 -0800 PST

serverLicense: none

serverrRoot: /opt/perforce/servers/16200

74

Special Git commands

75

serverservices: standard
serverUptime: 76:01:42

serverVersion: P4D/LINUX26X86_64/2017.1.MAIN-TEST_ONLY/1460278
(2016/11/03)

tzoffset: -28800
userName: gconn-user
fatal: Could not read from remote repository.
Note
Because the special command is not standard Git syntax, Git cannot parse it, so the command

terminates with:

Fatal: Could not read from remote repository.

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'‘protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (ersioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

B

base

The file revision, in conjunction with the source revision, used to help determine what integration
changes should be applied to the target revision.

binary file type

A Helix Server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

76

Glossary

branch form

The form that appears when you use the 'p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix Server and is able to run scripts
on the commands before sending them to the Helix Server.

Cc

change review

The process of sending email to users who have registered their interest in changelists that include
specified files in the depot.

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelistis the basic unit of versioned work in Helix Server. The changes specified in the
changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

The unique numeric identifier of a changelist. By default, changelists are sequential.

77

Glossary

check in

To submit a file to the Helix Server depot.

check out

To designate one or more files for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix Server files that is not streams-based. The default depot name is depot. See
also default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix Server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

78

Glossary

79

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist or a file within a change.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix Server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelistis specified. A
default pending changelistis created automatically when a file is opened for edit.

Glossary

deleted file

In Helix Server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix Server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Versioning Engine. It contains all versions of all files ever
submitted to the depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix Server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files are compared. A conflictis a pair of unequal

diffs between each of two files and a base. (verb) To compare the contents of files or file revisions.
See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

80

Glossary

81

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

F

file conflict
In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix Server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix Server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix Server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

Glossary

form

A screen displayed by certain Helix Server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicat servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix Server users to collaborate on the same
projects using their preferred tools.

graph depot

A depot of type graph thatis used to store Git repos in the Helix Server. See also Helix4Git.

group

A feature in Helix Server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix Server

The Helix Server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Versioning Engine.

82

Glossary

83

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix Server depots.

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix Server. The job template determines what information is
tracked. The template can be modified by the Helix Server system administrator. A job describes

work to be done, such as a bug fix. Associating a job with a changelist records which changes fixed
the bug.

job specification

A form describing the fields and possible values for each job stored in the Helix Server machine.

job view

A syntax used for searching Helix Server jobs.

journal

A file containing a record of every change made to the Helix Server's metadata since the time of the
last checkpoint. This file grows as each Helix Server transaction is logged. The file should be
automatically truncated and renamed intoa numbered journal when a checkpointis taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

Glossary

journaling

The process of recording changes made to the Helix Server's metadata.

L
label
A named list of user-specified file revisions.
label view
The view that specifies which filenames in the depot can be stored in a particular label.
lazy copy
A method used by Helix Server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.
license file
A file that ensures that the number of Helix Server users on your site does not exceed the number for
which you have paid.
list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.
local depot
Any depot located on the currently specified Helix Server.
local syntax
The syntax for specifying a filename that is specific to an operating system.
lock

1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

84

Glossary

log

Error output from the Helix Server. To specify a log file, set the PALOG environment variable or use
the p4d -L flag when starting the service.

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix Server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix Server from two conflicting file revisions.

metadata

The data stored by the Helix Server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata includes all the data stored in the
Perforce service except for the actual contents of the files.

modification time or modtime

The time a file was last changed.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

85

Glossary

numbered changelist

A pending changelist to which Helix Server has assigned a number.

0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix Server user who created a particular client, branch, or label.

P

p4
1. The Helix Versioning Engine command line program. 2. The command you issue to execute
commands from the operating system command line.

p4d

The program that runs the Helix Server; p4d manages depot files and metadata.

pending changelist

A changelist that has not been submitted.

project

In Helix Swarm, a group of Helix Server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix Server’s protections table.
proxy server

A Helix Server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix Server clients.

86

Glossary

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix Server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix Server but not
make any changes.

remote depot

A depotlocated on another Helix Server accessed by the current Helix Server.

replica

A Helix Server that contains a full or partial copy of metadata from a master Helix Server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file. You can choose to
resolve conflicts by selecting the source or target file to be submitted, by merging the contents of
conflicting files, or by making additional changes.

reverse delta storage
The method that Helix Server uses to store revisions of text files. Helix Server stores the changes

between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

87

Glossary

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client

names.

S

server data
The combination of server metadata (the Helix Server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the PAROOT environment variable or use the p4d -r
flag.

service
In the Helix Versioning Engine, the shared versioning service that responds to requests from Helix
Server client applications. The Helix Server (p4d) maintains depot files and metadata describing the
files and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix Server without checking in a changelist.

88

Glossary

89

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix Server depot for processing.

super access

An access level that gives the user permission to run every Helix Server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix Server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix Server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix Server file type assigned to a file that contains only ASCII text, including Unicode text. See also

binary file type.

Glossary

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script automatically invoked by Helix Server when various conditions are met. (See "Helix
Versioning Engine Administrator Guide: Fundamentals" on "Using triggers to customize behavior")

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix Server in which you assign file types to files.

U

user

The identifier that Helix Server uses to determine who is performing an operation.

Vv

versioned file

Source files stored in the Helix Server depot, including one or more revisions. Also known as a depot
file or source file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

90

Glossary

91

w

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix Server: * matches anything except a slash; ... matches anything including slashes; %%0
through % %39 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

License Statements

Perforce Software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce Software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce Software includes software developed by the OpenLDAP Foundation
(http://www.openldap.org/).

Perforce Software includes software developed Computing Services at Camegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

92

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

	How to Use this Guide
	Feedback
	Other documentation
	Syntax conventions

	What’s new in this guide for the 2017.2 release
	New features

	Overview
	Architecture and components
	P4Jenkins support

	Workflow
	One-time tasks
	Recurring tasks
	Git client tasks

	Installation and configuration
	System requirements
	Install the Git Connector
	Upgrading Git Connector
	Upgrading to version 2017.2 from the 2017.1 patch
	Upgrading helix-git-connector that is prior to the 2017.1 patch

	Configure the Git Connector
	Perform Connector-specific Helix Server configurations
	Grant permissions
	Create graph depots
	Create repos
	Configure a client workspace to sync repos
	Sync a repo

	Set up Git users to work with the Git Connector
	SSH
	HTTPS

	Verify the Git Connector configuration
	Push, clone, and pull repos
	SSH syntax
	HTTPS syntax

	Depots and repos
	Create graph depots
	Create and view repos
	Specify a default branch

	Manage access to graph depots and repos
	Set up client workspaces
	Sync files from graph depots
	Sync using an automatic label

	One-way mirroring from Git servers
	GitHub or GitLab configuration
	GitHub or GitLab HTTP
	GitHub or GitLab SSH

	Gerrit configuration
	System requirements with Gerrit
	Next step
	Installation of the mirror hooks
	Configure Gerrit for HTTP
	Configure Gerrit for SSH
	Testing the mirror hook
	Troubleshooting Gerrit one-way mirroring

	Helix TeamHub configuration
	Overview
	System requirements
	Installation of Helix TeamHub On-Premise
	Next step
	Helix TeamHub HTTP
	Helix TeamHub SSH

	Git Connector configuration for fail-over to another Git host
	Procedure
	Example
	Effect
	Command-line Help
	Next Steps

	Configuring Git Connector to poll repos from Helix4Git
	Procedure

	Troubleshooting
	Connection problems
	SSH: user prompted for git’s password
	SSL certificate problem
	HTTPS: user does not exist

	Permission problems
	The gconn-user needs admin access
	Unable to clone: missing read permission
	Unable to push: missing create-repo permission
	Unable to push: missing write-ref permission
	Unable to push: not enabled by p4 protect
	Unable to push a new branch: missing create-ref permission
	Unable to delete a branch: missing delete-ref permission
	Unable to force a push: missing force-push permission

	Branch problems
	Push results in message about HEAD ref not existing
	Clone results in remote HEAD refers to nonexistent ref

	Special Git commands

	Glossary
	License Statements

