@
HelixCore

Helix Core Extensions
Developer Guide

2019.2
November 2019

PERFORCE

WWW. perforce. com

Copyright © 1999-2020 Perforce Software, Inc..
Allrights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sellit, or sellany documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License Statements" on page 66.

https://www.perforce.com/

How to use this developerguide 5
Syntax CONVENtIONS 5
Feedback ... il 5
Otherdocumentation 5

Extension OVervieW . 6
Server extension creationl 7

Workflow to create and deploy a serverextension 7
Server extension configuration (global and instance specs) 8
Server Extension JSON manifest fields L 10

Il 10

Example manifest.json ... il 12
EXteNSION DaSICS 13

INStallation . 13

Listing €XteNSIONS 13

Disabling and re-enabling an extension 13

Deleting an eXteNSiON ... 13

DIreC O S L 13

Additional information .. 14
Server extension callbacks 15

Event Callbacks 15
Server extension session variables 20
Server extension errors and troubleshooting 30
Third party libraries for EXtensions i 31

Classes and methods 32

Class P4 PA il 32
Class Methods ... 32
Instance Methods 32

Class PA.MaD 41
DS CriptiON il 41
Class Methods L 41
Instance Methods 41

Class PA.MESSAQE L 43
DS CriptiON il 43

Class HeliX.COore.SeIVer 44
Class MethOAS 44
Class Helix.Core.Server.MF A il 46
Class Properties .. il 46
Class Helix.Core. Server.il8n .. 46
Class methods L 46
GlOS S aANY 48

License Statements . . 66

How to use this developer guide

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-£] The enclosed elements are optional. Omit the brackets when you compose
the command.

Previous argument can be repeated.

m p4 [g-opts] streamlog [-1 -L -t -m max] streaml

means 1 or more stream arguments separated by a space

m Seealsotheuseon . .. in Command alias syntax in the Helix Core P4
Command Reference

Tip
. . . has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

element1 | Either element1 or element2 is required.
element2

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

(3}

https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

Extension Overview

Extension Overview

Helix Core server extensions are a means for administrators to customize workflow. These extensions
allow you to extend product behavior in a close integration between the Helix Core server runtime and
your custom logic.

Server extensions are self-contained bundles of code, metadata and other assets that interface with
Helix Core server through the extensions "Classes and methods" on page 32. The extension code
runtime is embedded within the Helix Core server.

Server extensions are versioned in a special extensions depot.
You manage your server extensions withthe p4 extension command.

Some built-in advantages of server extensions when compared with triggers:

m asingle scripting language supports portability to any platform that Helix Core server supports
m programmatic API allows for integration of an extension with the Helix Core server
m configurable on a global or per depot basis

m users that the superuser has authorized to configure extensions, can do so without super-user
involvement within the repo or depot that user owns

m forward compatible across product upgrades (API/runtime pinning)
m server-managed installation, execution, and replication
m Internationalization (i18n) compatibility

m can issue pre-authenticated Perforce client commands, so no need to manage a ticket for the
server extension

m easy administration for installation, update or removal, by using the p4 extension command and
the global and instance specs (instead of the flat triggers table). See "Server extension
configuration (global and instance specs)" on page 8.

m includes libraries for issuing web requests, sending email, storage

Server extension creation ... 7
Workflow to create and deploy a serverextension 7
Server extension configuration (global and instance specs) 8
Server Extension JSON manifest fields 10
IS 10
Example manifest. SON . 12
Extension basics 13
INStallatioN L 13
LiSting €XteNSIONS . . . L 13
Disabling and re-enabling an extension 13
Deleting an eXteNSiON . L 13
D] (=Te3 (o] (=T 13
Additional information 14

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_extension.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_extension.html

Server extension creation

Server extension creation

Workflow to create and deploy a server extension

Create

1. Ontheclient,runp4 extension --sample extName to create a skeleton of a server
extension under the extName directory.

2. Edit the placeholder data in the extName/manifest. json file. (See "Server Extension
JSON manifest fields" on page 10.)

3. Code the server extension by editing extName /main . 1ua to put in the logic.

See the examples at https://swarm.workshop.perforce.com/files/guest/perforce
software/extensions/main.

4. Runp4 extension --package extName tocreate extName.p4-extension.

Test

Test the server extension, make any changes, and retest until the server extension is ready for
production. See also "Server extension errors and troubleshooting” on page 30.

Deploy
1. Install the server extension withp4 extension --install extName.p4-
extension
2. Configure the server extension:
a. Configure the global settings withp4 extension --configure extName

b. Configure the instance settings withp4 extension --configure extName --
name extCfg

See "Server extension configuration (global and instance specs)" on the next page

About versions and code lines

m Multiple versions of a server extension can be installed. For example, you can keep the first
version in the bug-fix branch and install a different version in the new-feature branch.

m Multiple versions of a server extension can be running simultaneously. For example,
Releasel.0-fileSizeCheck might be runningin //depot/main while
Releasel.l-fileSizeCheckisrunningin //depot/dev

https://swarm.workshop.perforce.com/files/guest/perforce_software/extensions/main
https://swarm.workshop.perforce.com/files/guest/perforce_software/extensions/main
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_extension.html

Server extension configuration (global and instance specs)

About the data directory

m Each version of a server extension can have a different data directory.

m For a given version of a server extension, the data directory is shared between all instances.
Consider whether concurrent access to data could affect your server extensions. For example,
you might need a write lock on a log file.

m A server extension’s data directory is not replicated.

Note
m The server extension is responsible for parsing and using any data the user enters in response
to the global GlobalConfigFields and the instance TnstanceConfigFields functions.
See Helix Core Extensions Developer Guide > Class Helix.Core.Server.

m A server extension is loaded into the Helix Core server memory when an event occurs that
launches that server extension. For example, when a client submits a file to the server's depot.
The server extension persists in server memory for the lifetime of that client's connection to
the server.

Other examples

See the server extension examples at https://swarm.workshop.perforce.com/files/guest/perforce_
software/extensions/main

Server extension configuration (global and instance specs)

After you have installed the server extension, configure the extension specs:

global Usage: p4 extension --configure namespace: :extensionName

The global spec applies to all instances of the server extension. For example, to enable
all instances of a server extension to send an email, the name of the mail server would be
configured globally.

The super user supplies the global details about the server extension configuration
that apply to all instances of this extension, such as:

m the list of groups whose members can create instances of this particular extension
= runtime limits, such as maximum number of users or maximum number of files

Note: The default namespace is ExampleInc and the the default extension name is
extName

See.

https://www.perforce.com/manuals/extensions/Content/Extensions/helix.server.html#GlobalConfigFields
https://www.perforce.com/manuals/extensions/Content/Extensions/helix.server.html#InstanceConfigFields
http://www.perforce.com/perforce/doc.current/manuals/extensions/index.html
https://www.perforce.com/manuals/extensions/Content/Extensions/helix.server.html
https://swarm.workshop.perforce.com/files/guest/perforce_software/extensions/main
https://swarm.workshop.perforce.com/files/guest/perforce_software/extensions/main

Server extension configuration (global and instance specs)

Usage: p4 extension --configure ExampleInc::extName --name
instanceOfExtensionName

Forexample, p4 extension --configure Examplelnc::extName --
name Releasel.0O-fileSizeCheck

One or more "instance" specs are required. For example, Releasel . 0-
fileSizeCheck-instancel might apply to //depot/test and specify a
certain maximum file size and maximum number of files, while Releasel . 0-
fileSizeCheck-instance2 might apply to //depot/main and specify a
different maximum file size and maximum number of files.

Use the —configure and —name flags together to create a named instance of the
server extension, parameterizing the server extension to be run with specific settings:

m the —name flag takes the name of the configuration to create or modify

m the —configure flag takes the name of the extension.

See.

Pre-populated, read-only fields of the extension spec

Some read-only fields are pre-populated with data from the "Server Extension JSON manifest fields" on
the next page.

Corresponding

. ; Meani

Spec field JSON field eaning

ExtName name The name of the server extension.

ExtDescription description The description of the server extension.

ExtVersion version The version number of the server
extensions.

ExtUUID key The universally unique identifier of the server
extension.

Fields that can be modified

ExtMaxScriptTime The number of seconds the server extension is allowed to run for before
the server terminates it.

ExtMaxScriptMem The number of bytes of RAM the server extension is allowed to allocate
before the server terminates it.

Server Extension JSON manifest fields

ExtAllowedGroups The list of groups whose depot/repo owner members are allowed to
create instances of the server extension. This applies to file-based
events, such as change-submi t.

Note
This does not apply to a global event, such as form-out that

occurs whenever the server generates a form for display to the user.

ExtEnabled Enable/disable an instance configuration.

ExtP4USER The user account to use for the automatic logins.

Name The name of the instance configuration.

Owner The user who created the config.

Update When the config was modified.

Description User-supplied description of the instance config.

ExtConfig A server extension can supply its own user-input fields here. These fields

are key / value types.

ExtRev The depot-rev of the extension installed in the depot. For example,
3

Server Extension JSON manifest fields

The server extension manifest is a UTF-8 encoded JSON file containing supporting metadata that the
Helix Core Server uses.

Fields 10

Fields

api_version The version of the API exposed to the runtime. Valid values are: '1' (2018.2) and
'20191' (2019.1). This is a required field.

compatible_ An array enumerating the list of Helix products the server extension works with. Valid

products values are 'p4' or 'p4d'. This is a required field.
default_ When no locale is specified or detected, use this value for translated messages. This
locale is a required field.

10

Fields

description A block of text giving a high-level description of the server extension. This is a
required field.

developer The name of the server extension developer (or company). This is a required field.

homepage_ URL where information regarding the server extension can be found. This is a

url required field.

key UUID for the server extension. The sample server extension created by the p4
extension --sample command creates arandom value for this, but any valid
UUID can be used. This is a required field.

license The name of the license the server extension is released under. This is a required
field.

license_ The body of the license text.

body

manifest_ This number specifies the format of the manifest. Incompatible changes to the

version manifest in future server releases will increment it. Valid value is 1. This is a required
field.

name This is the name of the server extension. It must consist of the characters in[0-9a -
zA-Z -], thatis, number, letters, underscore, and hyphen. No other special
characters are allowed. The name is a required field.

namespace This is the organization that authored the server extension. For example,
ExampleInc. This, combined with the name field form the fully-qualified name for
the server extension. For example, ExampleInc: : extName and thisis a
required field.

script_ Name and version of the scripting runtime. Valid values are: 'Lua’ and '5.3". For

runtime example,
"language":"Lua",
"version":"5.3"

supported_ List of locales the server extension will work with.

locales

update_url URL where automatic updates can be checked for.

version This is the numeric version of the server extension. Forexample, 1. 2. 3 and this is
a required field.

version_ This is the named version string of the server extension. Forexample, '1.2.3

name alpha'or"1.2.3 alpha"

The ‘Perforce’ and ‘Helix’ names are reserved for Perforce, so do not use them for
server extension that you write.

11

Example manifest.json

Example manifest.json
{

"manifest version":1,
"api version":1,
"script runtime":{
"language":"Lua",

"version":"5.3"

}y

" memn —_ —_ —_ —_ nw
key":"aaaaa-aaaa-aaaa-aaaa-aaaaa",

"name" :"ExtName",

"namespace" :"ExampleInc",

"version":"1.0",

"version name":"1.0 beta",

" J J m.mn J J n
description":"Example Extension to illustrate concepts.",

"compatible products": [
"pad"
1y
"default locale":"en",
"supported locales":|[
"en",
"p"
1y

"developer":{

"name":"Example Extensions Inc.",
"url":"https://pd-extensions.example.com/"

}y

"homepage url":"https://pé4-extensions.example.org/ExtName",

"license":"BSD",

"license body":"Redistribution and use in source and binary
forms..."

12

Extension basics

Extension basics

Installation

Whenyourunp4 extension --install, the server extension is transferred from your client
machine to the Helix Core server, where built-in validation occurs. For example, the server notifies you if
the manifest is missing or is invalid.

The server stores the server extension in the extension depot. See p4 depot for Form Fields >
Type: >extension. The server extensions depot is a new depot type because the files associated
with a server extension are separate from the files in other types of Helix Core depots.

Viewing the history of extensions

A super user can run p4 changes on the extension depot to see the history of installs, upgrades, and
deletes.

Listing extensions

Seep4 extension inHelix Core P4 Command Reference, which explains the —-1ist option.

Disabling and re-enabling an extension

To disable or re-enable a server extension, in the global configuration or in the instance configuration,
change the value of ExtEnabled. See "Fields that can be modified" on page 9.

Deleting an extension

To delete a server extension, use p4 extension --delete extName

This deletes the depot file and removes the server extension’s resource directory.

Directories

When a server extension is committed to the extensions depot, the server creates a subdirectory for the
server extension. This directory is specified by the server.extensions.dir configurable. By
default, the name of this directory matches the configurable's name, server.extensions.dir,
and is located under the PAROOT directory. Each server extension gets two subdirectories under the
directory specified at server .extensions.dir, one forits resources and one that can be used as
a persistent scratch space.

SeealsotheHelix .Core.Server.GetArchDirFileName and
Helix.Core.Server.GetDataDirFileName functions in the Helix Core Extensions
Developer Guide > Class Helix.Core.Server.

13

https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_depot.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_changes.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_extension.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_extension.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.extensions.dir
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4ROOT.html
http://www.perforce.com/perforce/doc.current/manuals/extensions/index.html
http://www.perforce.com/perforce/doc.current/manuals/extensions/index.html
https://www.perforce.com/manuals/extensions/Content/Extensions/helix.server.html

Additional information

Additional information

supported, but not
DVCS

Prerequisite Knowledge of Lua.

Limitation Any plain-Lua library is compatible, provided that it matches version
of the server extension runtime. However, external Lua libraries that
require native machine code for a specific processor are not
compatible.

Replication Server extensions are stored as normal depot files and use the

existing file replication mechanism for transfer to replicas. Replicas
install extensions as soon they received them from the commit
server.

However, if your server extension has files that are stored in the
server.extension.dir directory, those files will not be
replicated.

DVCS instances do not receive server extensions.

Backup and
restore

Server extensions are depot files and server extension specs are
included in checkpoints.

However, the contents of the server.extensions.dir
directory should be added to the list of depot directories to back up.
Some of these files might be in an inconsistent state if they are
accessed while the server is running because they are owned by
your server extensions rather than by the Helix Core server.

Inthe case of aloss of the server . extensions.dir data,
the server will automatically recreate the files on first access
because that data is on the server in the depot of type extension.

Internationalization

The server extensions AP| and manifest allow extensions to return
messages localized by locale to the user. Message strings are
encoded as UTF-8 and can be converted to other character sets. See
the Helix Core "Internationalization Notes".

command-line

Diag nostics / To log line-delimited JSON from within a server extension, use the

debugging Helix.Core.Server.log () function. See Helix Core
Extensions Developer Guide > Class Helix.Core.Server.

Documentation Seep4 help serverextensionintro

from the

14

https://www.lua.org/manual/5.3/
https://www.perforce.com/perforce/doc.current/user/i18nnotes.txt
http://www.perforce.com/perforce/doc.current/manuals/extensions/index.html
http://www.perforce.com/perforce/doc.current/manuals/extensions/index.html
https://www.perforce.com/manuals/extensions/Content/Extensions/helix.server.html

Server extension callbacks

This section:

m assumes you have read the introductory material about server extensions in the Triggers and
Extensions chapter of Helix Core Server Administrator Guide.

m compares the function syntax of a server extension to the equivalent logic in a trigger.

Example usage of a server extension compared to a trigger

Triggers Server extension

Triggers: function InstanceConfigEvents ()
name form-in change return { ["form-in"] = "change" }
script.pl end

function FormIn ()

end
Triggers: function InstanceConfigEvents ()
. change-submit return { ["change-submit"] = {
//a/b/c/... script.sh “//a/b/c/...", "“//a/c/d/...", "=//a/d/e/..." }
. change-submit }
//a/c/d/... script.sh end
. change-submit - function ChangeSubmit ()
//a/d/e/... script.sh
end

Event Callbacks

The following table lists the Helix Core events that can cause a server extension to run. Instead of
managing a trigger table, the server extensions use InstanceConfigFields () function to bind
themselves to events.

Note
In the following table,

15

https://www.perforce.com/manuals/p4sag/Content/P4SAG/chapter.scripting.html
https://www.perforce.com/manuals/p4sag/Content/P4SAG/chapter.scripting.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Event Callbacks

m aform type can be: "branch", "change", "client", "depot", "group", "job", "label", "protect”,

"server", "spec", "stream", "triggers", "typemap", "user"

m server IDs might be similar to “build-123”, "commit1"

U

m a“pre-user-” and “post-user-’ example might be similar to {"pre-user-obliterate”, “post-user-

add’}
Event
(same as Returns
trigger
name)
archive depot Archive() boolean

paths

auth- "auth" AuthCheckSSO() boolean
check-
$SO
auth- "auth" Authinvalidate() boolean
invalidate
auth-pre- "auth" AuthPreSSO() boolean,
$SO optional string,

optional boolean

bgtask unset BGTask() boolean
change- depot ChangeCommit() boolean
commit paths
change- depot ChangeContent() boolean
content paths
change- depot ChangeFailed() boolean
failed paths
change- depot ChangeSubmit() boolean
submit paths
comman “pre- Command() boolean
d user-*"

and

“post-

user-*"
edge- depot EdgeContent() boolean
content paths

16

Event Callbacks

Event

e Es Method Returns

trigger

L ET LY

edge- depot EdgeSubmit() boolean

submit paths

fix-add "fix" FixAdd() boolean

fix- "fix" FixDelete() boolean

delete

form- aform FormCommit() boolean

commit type

form- aform FormDelete() boolean

delete type

form-in aform Formin() boolean
type

form-out aform FormOut() boolean
type

form- aform FormSave() boolean

save type

graph- repo GraphForkRepo() boolean

fork-repo paths

graph-Iifs- repo GraphLFSPush() boolean

push paths

graph- repo GraphComplete() boolean

push- paths

complete

graph- repo GraphPushReferenceComplet boolean

push- paths e()

referenc

e_

complete

graph- repo GraphPushReference() boolean

push- paths

reference

17

Event Callbacks

Event

e Es Method Returns

trigger

L ET LY

graph- repo GraphPushStart() boolean

push- paths

start

journal- server JnIRotateLock() boolean

rotate- IDs

lock

journal- server JnlRotate() boolean

rotate IDs

auth-init- ~ "auth" MFABegin() Helix.Core.Server MFA.Statu

2fa s,
Helix.Core.Server.MFA.Schem
e!
string, string

auth- "auth" MFACheck() Helix.Core.Server MFA.Statu

check- s, string

2fa

auth-pre- "auth" MFAPre() Helix.Core.Server .MFA.Statu

2fa s, table

pull- “pull” PullArchive() boolean

archive

push- depot PushCommit() boolean

commit paths

push- depot PushContent() boolean

content paths

push- depot PushSubmit() boolean

submit paths

service- "auth" ServiceCheck() boolean

check

shelve- depot ShelveCommit() boolean

commit paths

18

Event Callbacks

Event

(same as Method Returns
trigger

L ET LY

shelve- depot ShelveDelete() boolean
delete paths

shelve- depot ShelveSubmit() boolean
submit paths

19

Server extension session variables

This section assumes you have read:

m the introductory material about server extensions in the Triggers and Extensions chapter of Helix
Core Server Administrator Guide.

m the "Server extension callbacks" on page 15 page

A server extension can get the data about the current command context from the server. The server
extension is responsible for interpreting and using these appropriately.

The maxError.. variables refer to circumstances that prevented the server from completing a
command. For example, an operating system resource issue. Note also that client-side errors are not
always visible to the server and might not be included in the maxError count.

The terminated variable indicates whether the command exited early and why.

Argument

$action%

Description

Either null or a string
reflecting an action taken
to a changelist or job.

For example,"pending
change 123 added"
or"submitted
change 124
deleted" are possible
%$action% values on
change forms, and
"Job000123
created"or
"jJob000123 edited"
are possible $action$%
values for job forms.

Available for type

form-commit

%$archiveList$%

Filename containing
files to be pulled

pull-archive

%argcs

Command argument
count.

all except archive

%args%s

Command argument
string.

all except archive

20

https://www.perforce.com/manuals/p4sag/Content/P4SAG/chapter.scripting.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Server extension session variables

Argument Description Available for type

%argsQuoted% Command argument string all except archive
that contains the
command arguments as a
percent-encoded comma-
separated list.

%changelist¥, The number of the change-submit
%change% changelist being push-submit
submitted. The change-content
abbreviated form push-content
%change% is equivalent change-commit
to ¥changelist%. push-commit
fix-add

A change-submit
event is passed the
pending changelist
number; a change-
commi t event receives
the committed changelist
number.

fix-delete
form-commit
shelve-commit
shelve-delete

A shelve-commit or
shelve-delete event
receives the changelist

number of the shelf.
%changeroot$% The root path of files change-commit
submitted. push-commit
%client$% Calling user’s client all

workspace name.

%clientcwd$% Client’s current working all except archive
directory.
%clienthost$% Hostname of the user’s all

workstation (even if
connected through a
proxy, broker, replica, or
an edge server.)

%clientip$% The IP address of the all
user’s workstation (even if
connected through a
proxy, broker, replica, or
an edge server.)

21

Server extension session variables

Argument Description Available for type

%clientprog$ The name of the user's all
client application. For
example, P4V, P4Win

%$clientversion$ The version of the user’'s all
client application.

$command$ Command name. all except archive
$depotName$% The graph depotin graph-push-start
which the repo resides. graph-push-reference
graph-push-reference-
complete

graph-push-complete

temail$% The user's email auth-pre-2fa
address. auth-init-2fa
auth-check-2fa

$file% Path of archive file based archive
on depot’s Map : field. If
the Map : fieldis relative
to PAROOT, the $file%
is a server-side path
relative to PAROOT. If the
Map : field is an absolute
path, the $£ile% is an
absolute server-side path.

$firstPushedChang First new changelist command

e% number.

%formfile% Path to temporary form form-commit
specification file. To form-save
modify the form from an form-in
inorout event, form-out

overwrite this file. The file form-delete
is read-only for events of
type save anddelete.

$formname% Name of form (for form-commit,
instance, abranchnameor form-save
a changelist number). form-in
form-out

form-delete

22

Server extension session variables

Argument Description Available for type
$formtype% Type of form (for instance, form-commit,
branch, change, and form-save
soon). form-in
form-out
form-delete
%$fullname$% The user's fullname. auth-pre-2fa
auth-init-2fa
auth-check-2fa
$groups$ List of groups to which the all except archive
user belongs, space-
separated.
$host% The IP address of the auth-pre-2fa

host of the user.

auth-init-2fa
auth-check-2fa

%$intermediateServ
ice%

A broker or proxy is
present.

all except archive

%jobs%

A string of job numbers,
expanded to one argument
for each job number
specifiedonap4 fix
command or for each job
number added to (or
removed from) the Jobs :
fieldinap4 submit, or
P4 change form.

fix-add,
fix-delete

%lastPushedChang
e%

Last new changelist
number.

command

$maxErrorSeverit
V&

One of empty, error,
orwarning.

all except archive

$maxErrorText$%

23

Error number and text.

all except archive

Server extension session variables

Argument Description

$maxLockTime$% A user-specified value that
specifies the number of
milliseconds for the
longest permissible
database lock. If this
variable is set, it means
the user has overridden the

group setting for this value.

Available for type

all except archive

$maxResults$ A user-specified value that
specifies the amount of
data buffered during
command execution. If
this variable is set, it
means the user has
overridden the group

setting for this value.

all except archive

$maxScanRows$ A user-specified value that
specifies the maximum
number of rows scanned in
a single operation. If this
variable is set, it means
the user has overridden the

group setting for this value.

all except archive

$method% The authentication
method from list-
methods (may be set to

"unknown").

$newValue$% Graph depot new SHA

value.

graph-push-reference

%oldchangelist% If a changelist is
renumbered on submit,
this variable contains the

old changelist number.

change-commit
push-commit

%o0ldPassword% The old value of the

password.

auth-set

$oldvalue% Graph depot previous

SHA value.

graph-push-reference

24

Server extension session variables

Argument Description Available for type

sop% Operation: read, archive
write, ordelete.

%password% The value of the auth-check
password.
%peerhost% If the command was sent all

through a proxy, broker,
replica, or edge server, the
hostname of the proxy,
broker, replica, or edge
server. (If the command
was sent directly,
%peerhost$% matches
$clienthost$%)

%peerip% If the command was sent all
through a proxy, broker,
replica, or edge server, the
IP address of the proxy,
broker, replica, or edge
server. (If the command
was sent directly,
$peerip% matches

%$clientip$%)
SP4PORTS The host port to which the auth-check-sso (client-side
client connects. If the script only)

client connects to the
server through an
intermediary, this will hold
the port number of the
intermediary. If there’s no
intermediary, this will hold
the same value as the

$serverAddress$%
variable.
spusher% The user credited with graph-push-start
the push. graph-push-reference
graph-push-reference-
complete
graph-push-complete
gquote$ A double quote character. all

25

Server extension session variables

Argument Description Available for type
Sreference% Graph depot reference graph-push-reference
SrefFlags% information.
srefType%
¥repo% Therepo, whichhas .git graph-push-start
as a suffix, but otherwise graph-push-reference
is identical to graph-push-reference-
$repoName$. complete
graph-push-complete
$repoName$ The name of the repo.
srev$ Revision of archive file archive
$scheme% The authentication auth-init-2fa
scheme set by init-auth
(canbe setto
"unknown").
$serverAddress$ The IP address and portof ~ auth-check-sso (client-side
the Helix Core server, script only)
passable only in the
context of a client-side
script specified by
P4LOGINSSO.
%serverhost$% Hostname of the Helix all
Core server.
%serverid$% The value of the Helix all
Core server's
server.id. Seep4
serverid inthe Helix
Core P4 Command
Reference for details.
%serverip% The IP address of the all
server.
%servername$ The value of the Helix all

Core server's PANAME.

26

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Server extension session variables

Argument Description Available for type

%serverport$% The transport, IP address all
and port of the Helix Core
server, in the format
prefix:ip
address:port.

prefixcanbe one of
ssl, tcp6,orsslé6.
This means that the
commandp4 -p
%$serverport$% canbe
used to connect to the
server no matter which
type of connection the
server uses.

$serverroot$ The P4ROOT directory of all
the Helix Core server.

$serverservices$ A string specifying therole all except archive
of the server. One of the
following:

= standard
m replica
m broker

E proxy

= commit-
server

m edge-server

s forwarding-
replica

m build-server
m P4AUTH
m PACHANGE

%¥serverVersion% Version string for the all except archive
server that terminated if
the command exited early.
Reason for termination is
givenin $termType%.

27

Server extension session variables

Argument Description Available for type
%specdef$ Expanded to the spec form

string of the form in

question.
%submitserverid$% If this is not a distributed change-submit

installation,
$submitserverid$%
is always empty.

In a distributed installation,
for any change event:

m if the submit was
run on the commit
server,
$submitserve
rid$% equals

$serverid$%.

m if the submit was
run on the edge
server,
$submitserve
rid$% does not
equal
$serverid%. In
this case,
$submitserve
rid$% holds the
edge server’s
serverid.

If there is a forwarding
replica between the
commit server and the
edge server, then
$submitserverid$%
actually holds the
forwarding replica’s server
id.

Seep4 serveridin
the Helix Core P4
Command Reference.

change-content
change-commit

Not available forpush-* events.

28

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Server extension session variables

Argument Description Available for type
%terminated$% The value of 0 indicates
that the command

completed. A value of 1
indicates that the
command did not
complete.

$termType% The reason for early all except archive
termination. This might be
one of the following:

= 'p4 monitor
terminate'

m client
disconnect

® maxScanRows
m maxLockTime

® maxResults

See also
%$serverVersion%.

$token% The stashed token from auth-init-2fa
the last init-auth (can be

empty).

$triggerdir$ Pull.trigger.dir used for edge-content
tmp files.

$triggerMeta Third field in server all except archive
depotFile% extension definition. Fora

change-submit event, it is

the path for which the

server extension is

expected to match. Fora

form-out event, it might be

the form type to which the

server extension is

expected to apply.
$triggerMeta Server extension name: all except archive
name$ first field from server

extension definition.

29

Server extension errors and troubleshooting

Argument Description Available for type
$triggerMeta Server extension type: all except archive
trigger$% second field in server

extension definition.

$user% Helix server username of all
the calling user.

Server extension errors and troubleshooting

As seen from the client-side, here are some errors and where to look for answers:

extName When a trigger or server extension has a failure, the logged by server
validation message can be presented. It is an intentionally uninformative message
failed: because trigger or server extension failures can include stack traces for that
logged by user code, which might be sensitive information. The server’s log file will
server contain the full output.

Partner This message means that the remote procedure call (RPC) connection
exited between the client and server was not gracefully closed. The cause could be in

unexpectedly the physical network connection or the server.

The server’s log file might provide more details about the problem. For example,
the following error indicates a server crash:

Perforce server error: Process 1234 exited on a
signal 11!

This should be reported to Perforce Technical Support.

https://www.perforce.com/support/request-support

Third party libraries for Extensions

The following libraries are bundled with the Helix Core server for use with Extensions:

The cURL data transfer library via the Lua-cURLv3 binding.
The SQLite3 SQL database via the LuaSQLite3 binding.

The cjson JSON encoder/decoder.

31

https://curl.haxx.se/
https://github.com/Lua-cURL/Lua-cURLv3
https://sqlite.org/index.html
http://lua.sqlite.org/index.cgi/index
https://github.com/openresty/lua-cjson/

Classes and methods

The"Class P4.P4 " belowdeals with general things, such as connecting to the server, and the
"Class Helix.Core.Server" on page 44 classis specific to serverextensions.

Instance Methoas 32
Class PA.VaD . 41
DS eIl ON . 41
Class Methods ... 41
INnstance Methods 41
Class PA.MeSSaQCo 43
DS eIl ON . 43
INnstance Methods 43
Class Helix.Core.Server 44
Class MEthOOS . .. 44
Class Helix.Core.Server.MF A . 46
Class PrOPertieS ... 46
Class Helix.Core.Server.i18n 46
Class MethOAS .. 46

Class P4.P4

An interface to the Helix server client API. See Examples of server extensions.

Class methods

P4.P4:new -> P4.P4

Constructs a new P4 . P4 object.

p4 = P4.P4d:new ()

Instance Methods

p4.api_level= number -> number

Sets the API compatibility level desired. Using this method allows you to lock your script to the output
format of an older Helix server release and facilitate seamless upgrades. This method, if called, should
be called prior to calling p4 : connect ()

32

https://swarm.workshop.perforce.com/files/guest/perforce_software/extensions/main

Instance Methods

p4 = P4.P4d:new ()
pd.api level = 86 # Lock to 2019.1 format
p4:connect ()

For more information about the API levels, see the Support Knowledgebase article, "Helix Client Protocol
Levels".

p4.api_level -> number

Returns the current Helix C/C++ APl compatibility level. Each iteration of the Helix Core server is given
alevel number. As part of the initial communication, the client protocol level is passed between client
application and the Helix Core server. This value, defined in the Helix C/C++ API, determines the
communication protocol level that the Helix server client will understand. All subsequent responses from
the Helix Core server can be tailored to meet the requirements of that client protocol level.

For more information, see "Helix Client Protocol Levels"

p4.charset= string -> string

Sets the character set to use when connecting to a Unicode-enabled server. Do not use when working
with non-Unicode-enabled servers.

p4 = P4.P4d:new ()
p4.charset = "utf-8"

p4:connect ()

p4.charset -> string

Get the name of the character set in use when working with Unicode-enabled servers.

p4.client= string

Set the name of the client workspace you wish to use. This method, if called, should be called prior to
callingp4 : connect ()

p4 = P4.P4d:new ()
pd.client = "www"

p4:connect ()

p4.client -> string

Get the name of the Helix server client currently in use.

p4 = P4.P4d:new ()
print (p4.client)

33

https://community.perforce.com/s/article/3197
https://community.perforce.com/s/article/3197
https://community.perforce.com/s/article/3197

Instance Methods

p4:connect() -> boolean

Connect to the Helix Core server. You must connect before you can execute commands.

p4 = P4.P4d:new ()

p4:connect ()

p4:is_connected() -> boolean

Test whether or not the session is connected.

p4 = P4.P4:new()

p4:is_connected()

p4.cwd -> string

Get the current working directory for this server extension.

p4 = P4.P4d:new ()
print (p4.cwd)

p4:disconnect() -> boolean

Disconnect from the Helix Core server.

p4 = P4.P4d:new ()
p4:connect ()

pé4:disconnect ()

p4.env(string) -> string

Get the value of a Helix server environment variable, taking into account PACONFIG files and (on
Windows and OS X) the registry or user preferences.

p4 = P4.P4d:new ()
print p4d.env("P4PORT")

p4.errors -> table

Returns the table of errors which occurred during execution of the previous command.

p4.exception_level = number

Enables or disables the throwing of exceptions. The following two levels are supported:

34

Instance Methods

m 0 disables all exception raising and makes the interface completely procedural.

m 1 causes exceptions to be raised for both errors and warnings. This is the default.

p4.exception_level -> number
Returns the current exception level.

If 0, exceptions are not used. When set to 1, exceptions are enabled.

p4.format_spec("<spectype>", table) -> string

Converts the fields in a table containing the elements of a Helix server form (spec) into the string
representation familiar to users.

The first argument is the type of spec to format: for example, client, branch, 1abel, and soon.
The second argument is the table to convert to a string.

p4.graph= boolean

Enable or disable support for graph depots. You can enable or disable support for graph depots both
before and after connecting to the server.

p4 = P4.P4d:new ()
p4.graph = false

p4.graph -> boolean

Returns whether or not support for Helix server graph depots is enabled.
p4 = P4.P4d:new ()

print (p4.graph)

p4.graph = false

print (p4.graph)

p4.host= string

Set the name of the current host. If not called, defaults to the value of PAHOST taken from any
P4CONFIG file present, or from the environment as per the usual Helix server convention. This method,
if called, should be called prior to calling p4 : connect ()

p4 = P4.P4d:new ()

p4d.host = "workstationl23.example.com"

p4:connect ()

35

Instance Methods

p4.host -> string
Get the current hostname.

p4 = P4.P4d:new ()
print (p4.host)

p4.input= (string|table) -> boolean
Store input for the next command.

Call this method prior to running a command requiring input from the user. When the command requests
input, the specified data will be supplied to the command.

You may pass a string, or (for commands that take multiple inputs from the user) a table of strings. If you
pass a table, note that the table will be shifted each time Helix server asks the user for input.

p4.messages -> table

Returns a table of P4 . Message objects.

p4.p4config_file -> string
Get the path to the current PACONFIG file.

p4 = P4.P4:new()
print (p4.pd4config file)

p4.parse_spec("<spectype>", string) -> table

Parses a Helix server form (spec) in text form into a table using the spec definition obtained from the
server.

The first argument is the type of spec to parse: client, branch, 1abel, and soon. The second
argument is the string buffer to parse.

p4.password= string

Set your Helix server password or the ticket value to be used for this connection. If no password or ticket
is given, it uses the value of P4APASSWD from any P4 CONF IG file in effect, or from the environment
according to the normal Helix server conventions.

p4 = P4.P4d:new ()

p4.password = "mypass"

p4:connect ()

36

https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4PASSWD.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/P4CONFIG.html

Instance Methods

p4.password -> string

Get the current password or ticket. This may be the password in plain text, or if you've used P4#run_
login (), it'll be the value of the ticket you’ve been allocated by the server.

p4 = P4.P4d:new ()
print (p4.password)

p4.port= string

Set the host and port of the Helix server you want to connect to. If not used, the value defaults to the
value of P4PORT in any PACONFIG file in effect. If there is no such value, it defaults to the value of
P4PORT taken from the environment.

p4 = P4.P4d:new ()
pd4.port = "localhost:1666"

p4:connect ()
p4.disconnect ()

p4.port -> string
Get the value of the PAPORT of the current Helix server.

p4 = P4.P4d:new ()
print (pd.port)

p4.prog= string
Set the name of the script, as reported to Helix server system administrators.

p4 = P4.P4d:new ()
p4.prog = "sync-script"

p4:connect ()
p4.disconnect ()

p4.prog -> string
Get the name of the program as reported to the Helix server.

p4 = P4.P4d:new ()
p4.prog = "sync-script"
print (p4.prog)

37

Instance Methods

p4:reset()

Reset messages, warnings, and errors from a previous run() call to its default value.

p4.run(command, [arguments...]) -> table

Runs the specified Helix server command with the arguments supplied. The command arguments should
be passed as quoted and comma-separated strings, with no leading space. For example:

p4.run ("print","-o", "test-print","-g","//depot/Jam/MAIN/src/expand.c")

The method returns a table of results whether the command succeeds or fails. The array table, however,
be empty. Whether the elements of the table are strings or tables depends on (a) server support for
tagged output for the command, and (b) whether tagged output was disabled by callingp4 . tagged =
false.

In the event of errors or warnings, and depending on the exception level in force at the time, the method
will throw an exception. If the current exception level is below the threshold for the error/warning, the
methods returns the output as normal and the caller must explicitly review errors () and warnings
() tocheck for errors or warnings.

p4.server_level -> number

Returns the current Helix server level. Each iteration of the Helix server is given a level number. As part
of the initial communication this value is passed between the client application and the Helix server. This
value is used to determine the communication that the Helix server will understand. All subsequent
requests can therefore be tailored to meet the requirements of this Server level.

For more information about the Helix server version levels, see the Support Knowledgebase article,
"Helix server Version Levels".

p4.server_unicode -> boolean

Detects whether or not the server is in unicode mode.

p4.streams= boolean

Enable or disable support for streams. You can enable or disable support for streams both before and
after connecting to the server.

p4 = P4.P4d:new ()

p4.streams = false

p4.streams -> boolean

Detects whether or not support for Helix server Streams is enabled.

p4 = P4.P4d:new ()

print (pé4.streams)

38

https://community.perforce.com/s/article/3194

Instance Methods

p4.streams = false

print (p4.streams)

p4.tagged= boolean
Sets tagged output. By default, tagged output is on.

p4 = P4.P4d:new ()
p4.tagged = false

p4.tagged -> boolean

Detects whether or not you are in tagged mode.

p4 = P4.P4d:new ()
print (p4.tagged)
p4.tagged = false
print (pé4.tagged)

p4.ticket_file = string
Sets the location of the PATICKETS file.

p4 = P4.P4d:new ()
p4.ticket file = "/home/bruno/tickets"

p4.ticket_file -> string
Get the path to the current PATICKETS file.

p4 = P4.P4d:new ()
print (p4.ticket file)

p4.track= -> boolean

Instruct the server to return messages containing performance tracking information. By default, server
tracking is disabled.

p4 = P4.P4:new()
p4.track = true

p4.track -> boolean

Detects whether or not performance tracking is enabled.

39

Instance Methods

p4 = P4.P4d:new ()
p4d.track = true
print (pé4.track)
p4.track = false
print (pé4.track)

p4.user= string

Set the Helix server username. If not called, defaults to the value of PAUSER taken from any
P4ACONFIG file present, or from the environment as per the usual Helix server convention. If used,
should be called before connecting to the Helix server.

p4 = P4.P4d:new ()
p4.user = "bruno"

p4:connect ()
p4:disconnect ()

p4.user -> string

Returns the current Helix server username.

p4 = P4.P4d:new ()

print (p4.user)

p4.version= string

Set the version of your script, as reported to the Helix server.

p4.version -> string

Get the version of your script, as reported to the Helix server.

p4.warnings -> table

Returns a table of warnings that arose during execution of the last command.

40

Class P4.Map

Class P4.Map

Description

The P4 .Map class allows users to create and work with Helix server mappings without requiring a
connection to a Helix Core server.

Class Methods

Map.join (map1, map2) -> Map
Join two P4 . Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-hand side of the
second mapping. For example:

Map depot syntax to client syntax
client map = P4.Map:new ()

client map:insert("//depot/main/...", "//client/...")

Map client syntax to local syntax
client root = P4.Map:new ()

client root:insert("//client/...", "/home/bruno/workspace/...")
Join the previous mappings to map depot syntax to local syntax
local map = P4::Map:new ()

local map = local map:join(client map, client root)

local path = local map:translate("//depot/main/www/index.html")

local path is now /home/bruno/workspace/www/index.html

Instance Methods

map:clear() -> boolean
Empty a map.

map:count () -> number

Return the number of entries in a map.

41

Instance Methods

map:includes (string) -> boolean

Tests whether a path is mapped or not.

map:insert(string, [string]) -> Map
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

called with two arguments:

map:insert("//depot/main/...", "//client/...")

called with one argument containing both halves of the mapping:

map:insert ("//depot/live/... //client/live/...")

called with one argument containing a half-map:
This call produces the mapping "depot/... depot/..."

map:insert ("depot/...")

map:isempty() -> boolean

Test whether a map object is empty.

map:lhs() -> table

Returns the left side of a mapping as a table.

map:reverse()
Reverses the P4 . Map object with the left and right sides of the mapping swapped.

map:rhs() -> table

Returns the right side of a mapping as a table.

map:to_a() -> table

Returns the map as atable.

42

Class P4.Message

map:translate(string, [boolean]) -> string

Translates a file path from one side of a mapping to the other. If the optional second argument is true,
translate forward, and if it is false, translate in the reverse direction. By default, translation is in the
forward direction.

Class P4.Message

Description

P4 .Message objects contain error or other diagnostic messages from the Helix Core server. Retrieve
them by using the messages () method.

Instance methods

message.severity() -> number

Severity of the message.

message.generic() -> number

Returns the generic class of the error.

message.msgid() -> number

Returns the unique ID of the message.

message.to_s() -> string

Converts the message into a string.
message.inspect() -> string

To facilitate debugging, returns a string that holds a formatted representation of the entire P4 . Message
object.

43

Class Helix.Core.Server

Class Helix.Core.Server

Class methods

GetArchDirFileName(string) -> string

Gets the path to a file under the server extension archive directory.

Returns the path to the file in the server extension’s unpacked archive directory. This path is relative to
the server.extensions.dir configurable.

GetArchiveFilelnfo() -> string, number, string, number, string
Get information about the current file in the Archive() event

Returns:

string number string number string

name of the file the revision number of the file filetype size offile digest of file

GetDataDirFileName(string) -> string
Gets the path to a file under the server extension data directory.
Returns:

Passed a file name argument, returns the path in which the server extension will store the files it creates.

GetGlobalConfigData() -> table
Gets the global config table.

Returns:

A table of the values the user provided when filling out the global server extension config.

GetlInstanceConfigData() -> table
Gets the instance config table.
Returns:

A table of field names and sample values used during the instance configuration of an server extension.
This should be information the server extension needs for this instance of itself. It is the responsibility of
the server extension to validate and format this data. Field names must not contain whitespace.

44

https://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#server.extensions.dir

Class methods

GetVar(string) -> string

Returns:
The value of the requested server extension session variable. See "Server extension session variables"
on page 20.

GlobalConfigFields() -> table

Gets the global configuration setup.
Returns:

A table of field names and sample values used during the global configuration of a server extension . This
should be information the server extension needs for all instances of itself. It is the responsibility of the
server extension to validate and format this data. Field names must not contain whitespace.

InstanceConfigFields() -> table
Gets the instance configuration setup
Returns:

A table of field names and sample values used during configuration of an instance of a server extension .
This should be information the server extension needs to perform specific actions, such as the list of file
paths to monitor. It is the responsibility of the server extension to validate and format this data. Field
names must not contain whitespace.

InstanceConfigEvents() -> table
Server event registration. See "Server extension callbacks" on page 15.
Returns:

A table of events and parameters. The parameters are likely dependent on the data retrieved from the
instance configuration.

log(table)

Accepts a table of user data and appends it to the 1og . json file in the server extension data directory
as line-delimited JSON.

SetArchiveFileSys() -> FileSys

For archive server extensions, give the server a FileSys instance to use for accessing the archive
content.

Returns:

The FileSys object.

45

Class Helix.Core.Server MFA

SetClientMsg(string)

Sets the message to be sent to the user.

Class Helix.Core.Server. MFA

This class exposes the Helix Core Server multifactor authentication properties.

Class properties

Status

Values are:
= SUCCESS
s FAILURE
= NO_MFA

Scheme
Values are:
m OTP_GENERATED - A one-time-password generated by a user device
m OTP_REQUESTED - A one-time-password sent to the user
m CHALLENGE - A challenge/response based on a token displayed to the user
m EXTERNAL - A request to a 3rd-party prompting method, like an app-based push notification

Class Helix.Core.Server.i18n

Class methods

GetlLocale() -> string
Get the current locale for the user translations.

Returns a string.

SetlLocale(string)
Set the locale for the current user translations.

Only necessary if overriding the defaults.

46

Class methods

GetMessage(string, strings, ...) -> string
Get a translated message.

Parameters: string messageName, strings substitutions

47

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

48

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

49

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelistis submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. The default depot name is depot. See also
default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

50

Glossary

51

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

Glossary

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

52

Glossary

53

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflictis

a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide" on "Extensions".

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

Glossary

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same

54

Glossary

55

projects using their preferred tools.

graph depot

A depot of type graph thatis used to store Git repos in the Helix server. See also Helix4Git.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work

to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’'s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server's metadata.

56

Glossary

57

L

label
A named list of user-specified file revisions.

label view
The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy
A method used by Helix server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file
Afile that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot
Any depot located on the currently specified Helix server.

local syntax
The syntax for specifying a filename that is specific to an operating system.

lock
1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the PALOG environment variable or use
the p4d -L flag when starting the service.

Glossary

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are

58

Glossary

59

examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

(0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix server user who created a particular client, branch, or label.

P

p4
1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d
The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Glossary

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depotlocated on another Helix server accessed by the current Helix server.
replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

60

Glossary

61

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

Glossary

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

S

server data
The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4AROOT environment variable or use the p4d -r
flag.

service
In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job

62

Glossary

statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

63

Glossary

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide" on "Triggers".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation.

Vv

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenameV' or '1.changelist.gz'.

64

Glossary

view

A description of the relationship between two sets of files. See workspace view, label view, branch

view.

w

wildcard
A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; % %0
through % %39 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

65

License Statements

To get alisting of the third-party software licenses that Helix Core Server uses, at the command line,
type the p4 help legal command.

To get alisting of the third-party software licenses that the local client uses, at the command line, type
the p4 help -l legal command.

66

	How to use this developer guide
	Syntax conventions
	Feedback
	Other documentation

	Extension Overview
	 Server extension creation
	Workflow to create and deploy a server extension

	Server extension configuration (global and instance specs)
	Server Extension JSON manifest fields
	Fields
	Example manifest.json

	Extension basics
	Installation
	Listing extensions
	Disabling and re-enabling an extension
	Deleting an extension
	Directories
	Additional information

	Server extension callbacks
	Event Callbacks

	Server extension session variables
	Server extension errors and troubleshooting
	Third party libraries for Extensions

	Classes and methods
	Class P4.P4
	Class methods
	Instance Methods

	Class P4.Map
	Description
	Class Methods
	Instance Methods

	Class P4.Message
	Description
	Instance methods

	Class Helix.Core.Server
	Class methods

	Class Helix.Core.Server.MFA
	Class properties

	Class Helix.Core.Server.i18n
	Class methods

	Glossary
	License Statements

