O
HelixCore

Solutions Overview: Helix
Core Version Control System

2019.2
November 2019

PERFORCE

WWW. perforce. com

Copyright © 2015-2020 Perforce Software, Inc..
Allrights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sellit, or sellany documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License Statements” on page 43.

https://www.perforce.com/

Howtouse thisquide 5
Syntax CONVENtIONS 5
Feedback ... il 5
Otherdocumentation 6

The basics of versioncontrol 7
Helix server as a version control implementation 8

Multiple useraccess toaset of files 9
Balancing stability and innovation: the mainline model 10
S CaAMS il 12
Organizing your work: jobs and labels 14
Working together and working apart: centralized and distributed development 14
Performance, scaling, and high availability 16
Using proxies to improve performance 16
Commit-edge architecture .. . 18
Securning the SY S emM | 18

Clients, IDEs, builds 20

USe CaSeS . 21
Software development .. 21
Digital asset management 21
Hybrid product development . .. 21
Ease of use for Helix server administration 22
Growing into the future 22
Gt at SCale .. 22

Support for Global Teams ... 22
Reduced Overhead and TOOIING 22
Centrally Manage All Digital Assets 23
Git Continuous Integration and Delivery 23

To learn more about Helixserver 24

GlOSSaNY 25

License Statements 43

How to use this guide

This manual introduces Helix server, a version control system that is secure, scalable, and supports
parallel development and high availability. Topics include version control, centralized versus distributed
development, client applications, use cases, a list resources to help you succeed, and a glossary to
terms.

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-£] The enclosed elements are optional. Omit the brackets when you compose
the command.

Previous argument can be repeated.

m p4 [g-opts] streamlog [-1 -L -t -m max] streaml

means 1 or more stream arguments separated by a space

m Seealsotheuseon . .. in Command alias syntax in the Helix Core P4
Command Reference

Tip
. . . has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

element1 | Either element1 or element2 is required.
element2

Feedback

How can we improve this manual? Email us at manual@perforce.com.

(3}

https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

https://www.perforce.com/support/self-service-resources/documentation

The basics of version control

The basics of version control

When you work alone on a document, the latest is usually the greatest: you successively open the
document, make changes, and save the document. Each time you save, you overwrite the existing copy.
The situation is different when you are working with a large, globally distributed team on a project
consisting of hundreds, or even thousands, of files. In this case, it is important to track authorship and
changes, and to resolve conflicts when users make conflicting changes to the same file. Version control
systems allow you to do this. You can track and manage changes to any large collection of digital assets:
documents, source code, web sites, audio files, and so on.

One technique of version control systems is versioning. Rather than overwriting earlier versions of afile
when it is saved, each saved copy of the file is versioned and assigned a number or letter that reflects the
order in which it was saved.

In addition to identifying a file version within a sequence of versions, a version control system
automatically associates certain information with each version: it records who made the change, when
the change was made, and why the change was made. This information provides an audit trail that you
can always consult to understand how a project developed and when specific changes were made.
Because no version of afile is overwritten, when bugs arise, it is possible to identify the point at which
the bug was introduced. This can be critical in fixing bugs that cannot be reproduced. In addition, looking
at file history and understanding why certain decisions were made can help project participants stay on
track or find appropriate options for future directions.

Sharing data under version control requires a certain amount of gatekeeping to determine who can
access the data and how conflicts are resolved when two users make changes to the same file. To
support this gatekeeping function, version control systems introduce the additional step of checking out a
file and checking in or submitting a file.

The basic version control workflow looks like this:

Assets under version control are placed in a specified repository.

Assets are associated with specific permissions that enable users to read or modify them.
A user checks out a working copy of an asset and makes changes.

Another user checks out a working copy of the same asset and makes changes.

The first user saves changes to the local working copy and checks in that copy.

The second user saves changes to the local working copy and attempts to check in that copy.

N o g~ D=

The version control system detects the fact that the same asset was changed in parallel, and it
asks the second user to merge changes with those of the first user before the second user’s
changes can be checked in. The work of comparing and merging changes is called resolving.

In this way, the version control system makes sure that changes are predictable, manageable, and
auditable.

Version control systems are traditionally either centralized or distributed:

Helix server as a version control implementation

m Cenitralized version control systems use a single repository from which users check out one or

more files to work on locally.

m Distributed version control systems allow users to host repositories locally, work independently of

one another, and combine their work through merging when necessary.

Helix server supports either model, as well as a hybrid of the two.

Version control systems can be used as stand-alone applications or they can be integrated into
development or authoring tools as a means of managing the assets produced by these tools.

Helix server as a version control implementation 8
Multiple useraccess toaset of files 9
Balancing stability and innovation: the mainlinemodel 10
ST CAMS il 12
Organizing your work: jobs and labels 14
Working together and working apart: centralized and distributed development .._14
Performance, scaling, and high availability 16
Using proxies to improve performance 16
Commit-edge architecture 18
Securing the system . 18

Helix server as a version control implementation

Helix server uses a client-server architecture to implement version control management.

m The Helix server (also known as the Helix Core server or p4d) manages shared file repositories,
or depots, that contain every revision of every file under version management. Files are organized
into directory trees. The server also maintains a database to track data associated with files and

client activity: logs, user permissions, metadata, configuration values, and so on.

m Helix server clients provide an interface that allows you, and other users working in parallel, to
check files in and out of the depot, resolve conflicts, track change requests, and more.

Helix server clients include a command-line client (p4), a graphical user interface client (P4V),

and various plugins that work with commercial IDEs and productivity software. A Helix server
server can provide services to a mix of Helix server clients.

You use Helix server clients to manage a special area of your computer called a workspace.

Directories in the depot are mapped to directories in your workspace, which contain local copies of

managed files. You always work on managed files in your workspace:
1. You check the files out of the depot (and into your workspace).
2. You modify the files.
3. You check them back into the depot.
4

If the changes you try to submit conflict with changes that other users have already
submitted, you must resolve conflicts.

Multiple user access to a set of files

The next figure shows the mapping between depot files (shown on the left) and workspace files (shown
on the right). Until files are checked out from the depot, they remain as read-only in the workspace. To
have Helix server update your workspace so that it reflects current work on the depot, synchronize your
workspace to the depot by getting the latest revision of the files.

Get
Latest
Revision

g

depot files
transferred
to workspace

|

[
(Lo SRS ol]
i T

] e

B
T
[}

{0
0

BB

BERE
DO

We have explained about checking files in and out of the depot, suggesting that single files may be
checked in and out. To check files in and out of the depot, you use a changelist. A changelist must
contain at least one file and can contain tens of thousands. A changelist is numbered and allows you to
track all changes with respect to the contents of the depot: file modifications, the addition of afile, or the
deletion of afile.

The changelist is the simplest way to organize your work. A changelists also represents the atomic unit
of work in Helix server: if a changelist includes multiple files, changes are submitted to the depot for ALL
the files or NONE of the files. For example, if a network connection between the client and the server
fails during changelist submission, the entire submit fails.

Multiple user access to a set of files

Version control systems must address the fundamental need for multiple users to work on the same
project simultaneously. Helix server offers two ways to do this:

m File locking: Helix server locks a file while someone is working in it. This controls access to the
file: if several users want to edit the same file, it is possible to merge changes into one mutually
acceptable version.

m Branching and merging: By branching streams and then merging them later, multiple users can
work on the same files simultaneously. See "Balancing stability and innovation: the mainline
model" on the next page.

Balancing stability and innovation: the mainline model

Balancing stability and innovation: the mainline model

So far, we have explained how version control systems handle the problem of different users working on
the same file at the same time: when the different copies of the file are checked in, all but the first user
must resolve changes by deciding which changes will be preserved in the latest version of the file.

This is the simplest use case for parallel development. More complicated cases arise when large
development projects require many people to work in parallel both because they must support multiple
releases and because they involve multiple functional teams working together to create the desired
product.

For example, a game development company depends on the combined efforts of artists, musicians,
programmers, testers, and build engineers to create a release. One way to organize this effort is to split
the set of files that make up the project into multiple parallel branches, allowing development and testing
to occur along each branch. Integration then occurs across branches to promote everyone’s work into a
releasable product.

Consider the following cases:

m Extremely short release cycles, such as occur with fast changing web content, require
overlapping cycles of testing and release.

Release 1.x

Development

To handle this case, we move code through the branches shown above. Development occurs
along the development line. When a milestone is reached, code is copied up to the QA line where
it is thoroughly tested. After it clears all tests, it is copied up to the Beta test line where it is
subjected to real-world use. Having satisfied Beta users, it can then be copied up to a release line.
Note the purple dashed lines, which indicate the flow of code as it is copied up through the branch
hierarchy.

10

Balancing stability and innovation: the mainline model

m Unforeseen delays cause some features under development to miss deadlines. Not wanting to
imperil the project as a whole, the project is released while development continues for the laggard
components.

Development Mainline

R X
B o
B 8
5 o
o 5
o
5
B
o

Project X development . >
) P . Project Z development

ProjectY development

In the model shown above, projects X, Y, and Z have been branched off from the development
mainline and worked on independently. When work has completed and projects X and Y have
passed development tests, they are copied up to the mainline. Project Z however could not be
completed and work continues on that project without putting the larger release at risk.

What does branching have to offer? It allows us to balance the need for stability with the need for
innovation. On the one hand, we have release branches that hold the most tested and stable code; on the
other hand, we have development branches that allow for experimentation and exploration without putting
the release at risk.

Branches can be organized in a variety of ways: you can create branches for different platforms, you can
create branches along organizational lines, and so on. One common model used for product development
is the Mainline model shown below:

Patch 2.0.1

More
stable
Release 2.x
Release 1.x / >
Mainline @ < \ >

Project X : >
Project Z

Less
ProjectY Project Z-1 stable

The Mainline forms the trunk from which release branches and development branches are created. Each
branch normally contains a subset of the Mainline files. Release branches might contain fewer files
because files needed for testing are excluded; development branches might contain a different subset of
files because the projects they represent focus on discrete product features. In the Mainline model, the
“up” direction indicates increased stability or confidence.

11

Streams

Release 1.x More
- P stable
Gf’?f;lﬁlﬁlﬁﬁﬁ
SeEse Bee
0o '@ %ﬁ
Mainline @ T >
el
oo @Eﬂ - >
= 51@ Project X \
ag > Less
= [l Project X-1 stable
[t ol
B &3
=

When you create branches, you are free to integrate changes in any direction you like. Unfortunately, this
can lead to big problems if you inadvertently integrate untested changes into an otherwise stable branch.
For this reason, in addition to defining branches that isolate changes, the Mainline model is most useful
when it can implement some protocols that limit what changes can be made and in what direction.

Streams

Helix server streams implement the Mainline model, adding intelligence that determines what changes
can be made and in what order they must be made.

Let’s look at the Mainline example again and add some information to indicate flow of change:
Patch 2.0.1

More
stable
Release 2.x
Release 1.x)
/ o /
>

*
*
*
*
*

Project Z

Mainline @

Less
ProjectY Project Z-1 stable

m Project Y has been branched from Mainline; work and testing continues until it is complete. It is
then ready to be copied back up to the mainline. However, while development has taken place in
Y, Mainline has continued to change. Before we can copy the contents up to the Mainline, we
need to make sure that Project Y files reflect changes that have been made in Mainline; we merge
those changes into Project Y before we copy Project Y files to Mainline.

m A bugis found in Release 1.x. The bug is fixed and tested. We now want the bug fix in Mainline,
so we merge files from Release 1.x down to Mainline. We do not copy anything up because
Release 1.x should not include any features added after it has been branched.

12

Streams

The Mainline model arranges branches in terms of stability: the most stable branches are at the top; the
least stable branches are at the bottom. The flow of change needs to support this model by merging
changes down and copying up.

Typically, when you work with streams, you define and populate the mainline first. You then create
development streams and release streams as children of the Mainline stream. The type of a stream and
its relationship to other streams determines what sort of changes can be made and in what order they are
made.

Rather than using a timeline, the streams GUIl—found in the Helix Visual Client (P4V)--represents related
streams as shown below:

S0 rel2a o rel2.2

R ¢ R/

Nothing to integrate
Can integrate now
- Cannot integrate now

it i1 11

¢ dev2.1 ¢ dev2.2 ¢ dev2.3

The children of Main are shown both above and below Main. Release type streams are at the top;
development and task streams are at the bottom. Stability grows as streams near the top of the diagram.
The direction and color of arrows linking streams indicate both the direction of flow and the order of flow.

When you create a stream, you specify its type, its relationship to other streams, and how files are to be
treated for merging and branching. The information you provide is then used by the streams application to
encourage good behavior.

Streams provide visual clues for where and how to branch and merge. They guide behavior that supports
stability and innovation. Using streams eliminates much of the work needed to define branches, to create
workspaces, and to manage integrations.

An additional advantage of using streams is that when you switch from one stream to another, the
contents of your workspace are updated automatically to reflect the contents of the current stream.

Streams automate branching, but you do not have to use them. You can create your own branches and
manage them as you see fit. Custom branching gives you finer grained control but you lose the
convenience of built-in flow control and workspace updating.

For information on streams, see the Helix Core Server User Guide.

13

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Organizing your work: jobs and labels

Organizing your work: jobs and labels

In addition to using changelists and streams to organize your work, you can use two other methods: jobs
and labels.

m Jobs provide lightweight issue tracking that integrates well with third party defect tracking and
workflow systems. They allow you to track the status of a bug or an enhancement request. Jobs
have a status and a creator and are associated with changelists that implement the bug fix or the
enhancement. An administrator can customize the type of information tracked by jobs add more
fine grained status values, or define additional fields for information to be tracked: which customer
the enhancement is for; what was done to test the fix, and so on.

You can integrate the jobs function with third-party defect tracking and workflow systems. For
more information, see the Defect Tracking Gateway page.

m Labels are sets of tagged file revisions that allow you to handle a heterogeneous group of files as
one unit. While a changelist refers only to the contents of a given set of files at the time they were
submitted, a label can refer to a group of file revisions from different points in time. You might want
to use labels to define the group of files contained in a particular release, to sync a set of files, to
populate a workspace, or to specify a set of file revisions to be branched. You can also use a label
as an alias for a changelist number, which makes it easier to remember the changelist and easier
torefertoit in issuing commands.

For information about jobs and labels from a user’s perspective, see the Helix Core Server User Guide.

For information about managing jobs and labels, see the Helix Core Server Administrator Guide.

Working together and working apart: centralized and
distributed development

We mentioned earlier that version control systems can implement either a centralized model or a
distributed model:

m Centralized version control systems use a single repository from which users check out one or
more files to work on in their local directories.

m Distributed version control systems allow users to host repositories locally, check out entire
repositories with history—or, in the case of Helix server, a subset of repositories—work
independently of one another, and combine their work through merging when necessary.

Helix server supports either model, as well as a hybrid of the two.

In the centralized model, clients work with a depot on a shared server. A mapping of files from the depot
to their workspace determines which files they are able to work with in their workspace:

14

http://www.perforce.com/product/components/defect-tracking-gateway
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Working together and working apart: centralized and distributed development

yoliy

—

sl ——
' mm ' EmE
= . = .
A N

Users check files out of the same depot, work on them, and check in their changed files. If multiple users
work on the same file, they use merging and conflict resolution to make sure the resulting version is
satisfactory to all authors. Although users can disconnect from the shared server and continue to work on
the files in their workspace, some manual work is required to sync back to the server and to check in files
when the user reconnects. For information on working with Helix server using this model, see the Helix
Core Server User Guide.

In the distributed model, users work with a depot on personal servers that are then connected to a shared
server. The depot on their personal server might contain a subset or the entire set of files on the shared
server. Each user can work disconnected from the shared server but still be able to access all the files in
their workspace and place these under version control using their personal server. Each user can access
the entire history of afile locally, rewrite and revise history, and manage the files and streams on their
local machine without interacting with the shared server:

B

o=)

..

B

b

.
()

..

When users decide to share their code or digital assets with other users, they connect to and then push
their content to the shared server. This allows other users to fetch that content from the shared server
and work with it on their own personal server. Users might need to merge content before pushing if their
changes conflict with changes made by others.

15

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Performance, scaling, and high availability

In addition to supporting these two models, Helix server also allows for a hybrid architecture in which
some users connect directly to the shared server while others connect to personal servers that are
connected to the shared server.

For more information about distributed development and file management, see Using Helix Core Server
for Distributed Versioning.

Performance, scaling, and high availability

Version control systems are key to managing large projects: with Helix server, “large” can be large
indeed. With enterprise-level features that you can use to fine tune and improve performance, Helix
server lets you scale your system to accommodate a global workforce, and to automate failover for a
highly available system. For example, Helix server can accommodate the needs of a gaming
development company whose files might take up hundreds of terabytes or even petabytes of data; or it
can support the work of a software company, whose activity level includes massive automated testing
as well as focused, analytic bug fixing and tracking work.

To support these tasks, Helix server uses the following additional server types:

m Proxies are used where bandwidth to remote sites is limited; they mediate between remote clients
and the versioning service. By caching frequently used files, the proxy reduces demand on the
server and keeps network traffic to a minimum.

m Brokers mediate between clients and servers to implement policies that solve routing or security
problems.

m Replicas duplicate server data. They can be used to provide a warm standby server or to reduce
load on a primary server.

The following sections explain how these servers are used singly or how they are combined to provide
enterprise-level performance. For complete information about using proxies, brokers, and replicas, see
Helix Core Server Administrator Guide.

See also "Git at scale" on page 22.

Using proxies to improve performance

To improve performance for users accessing a shared Helix server repository across a WAN, you can
configure a proxy on the side of the network close to the users and configure the users to access the
service through the proxy; then configure the proxy to access the master Helix server service.

The following diagram illustrates a typical proxy configuration:

16

http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html
http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Using proxies to improve performance

Central Outpost

P4PORT=central: 1666 P4PORT=outpost:1666

Helix Versioning Helix
Engine Proxy

DR

|

/src/paroot/... /var/proxyroot/...

In this configuration, file revisions requested by users at a remote development site are fetched first from
a shared server (p4d running on Central) and transferred over a relatively slow WAN. Subsequent
requests for that same revision, however, are delivered from the Helix Proxy, (p4p running on Outpost),
over the remote development site’s LAN; this architecture reduces both network traffic across the WAN
and CPU load on the shared server.

Using a replica for disaster recovery

Replication is the duplication of server data from one Helix server to another. The replicated serveris
called the master server; its replica is called a replica server. You can use replication to provide a warm
standby server, or to reduce load and downtime on a primary server when performing builds. The
following figure shows how you set up a replica to provide a warm standby to aid in disaster recovery.

Master Replica

B—E

==y

Client

When you create the replica, you specify which server it should get its data from. The replica then
periodically updates itself by copying files and metadata from the master. If the master fails, all you need
do is reconfigure the replica to be the new master and then reconnect clients to communicate with it.

17

Commit-edge architecture

Edge servers and workspace servers, described in the following sections, are special examples of
replica servers.

Commit-edge architecture

This architecture supports optimal performance for geographically distributed work groups. At a minimum
it is made up of the following kinds of servers:

m A commit server that stores archives and metadata.

m An edge server that contains a replicated copy of the commit server data and a unique, local copy
of some workspace and work-in-progress information. This server can handle read-only operations
and operations that only write to the local data. You can connect multiple edge servers to a
commit server as shown in the next figure.

Commit
Server

//depot/...
—
=

Edge

Edge
Server1

Server2
//depot/...
-

replicated replicated
from Commit from Commit

//depot/...
—

Local Workspaces Local Workspaces

Since an edge server can handle most routine operations locally, the edge-commit architecture offloads a
significant amount of processing work from the commit server and reduces data transmission between
commit and edge servers. This greatly improves performance.

For more information about these options, see Helix Core Server Administrator Guide.

Securing the system

Independent of the Helix server architecture you use, secure communication is guaranteed both with
respect to communication between clients and servers as well as communication between servers.

18

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Securing the system

m User authentications can be done using passwords or tickets, and the strength of the password
can be defined by an administrator. Users can be authenticated against an Active Directory or
LDAP server, or against an internal Helix server user database.

m Communication between clients and servers can be secured using the SSL protocol, which you
specify when connecting to the server.

= Communication between servers in a distributed environment can be secured using a trust file and
by setting permissions for the service users that own the different servers in the environment.

In addition to user authentication, digital assets are further secured by a protection scheme to prevent
unauthorized access. Protections determine which Helix server commands can be run, on which files, by
whom, and from which host. This scheme provides the finest grained control possible.

For more information on security, see the Helix Core Server Administrator Guide and the Helix Core
Server Administrator Guide.

19

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Clients, IDEs, builds

Perforce products also include tools and software packages that allow you to work with and analyze your

data as well as seamlessly integrate Helix server into interactive development environments and build
solutions.

Helix client applications include:

m A command line interface available for all platforms
m A GUI interface for Mac OS X, UNIX, Linux, and Windows

m [ntegrations, or plug-ins, that work with commercial IDEs and productivity software

Interactive development environment integrations include:

= The Helix Plugin for Visual Studio, short P4VS, embeds the power of Helix serverfeatures into the
Microsoft Visual Studio IDE.

m The P4Eclipse plugin integrates the strengths of Helix server with Eclipse’s powerful IDE.

m P4Connect, the Helix Plugin for Unity, enables you to perform Helix server operations directly
from within Unity.

You also have access to many community-built integration plugins, which are summarized on the
Perforce website, on the Helix Plugins & Integrations page.

Build and reporting integrations include:

m The Jenkins integration allows Jenkins users to use Helix repositories directly. The plugin makes

it simple to pull code, automate reviews, apply labels, and so on. Helix4Git can be part of a
environment that uses Jenkins.

m The P42DB integration replicates Helix server metadata to open source and commercial SQL
databases.

20

https://www.perforce.com/plugins-integrations

Use cases

The Ace Rocket company develops software to manage the production and distribution of their space
rockets and rocket launchers. They have a variety of technical needs, all of which can be met by
members of the Helix server product family. The following sections describe these needs and the Helix
server products that address them.

Software development

Ace Rocket uses a variety of programming languages to develop the components and products that they
build. Because they use open source projects, they have numerous developers that use Git. For their
internal development teams, they prefer the flexibility of Helix server. Using Helix4Git, Ace Rocket can
track their Git commits in the Helix Core server. This makes the Helix Core server a single source of truth
for all of their assets and provides an unbroken history.

Ace’s software developers use both Swarm to collaborate and communicate about the code they write.
Ace Rocket’s Windows developers take advantage of the native Microsoft Visual Studio integration
(P4VS), which makes it easy for them to kick off code reviews from within their IDE. Ace’s Java
developers get the full power of Helix server inside of their IDE of choice: Eclipse.

Using the Jenkins plugin, the Ace Rocket testing team continually tests code as it is checked into a
single place by both Helix server and Git developers.

Digital asset management

The Ace Rocket Company tracks design versions of their products using Helix server. They track
versions of their CAD/CAM files as well as large test datasets. Ace takes advantage of Helix server’s file
locking to ensure that multiple people do not attempt to change a model at the same time.

Using configurable storage, Ace Rocket chooses to limit its storage consumption to only 20 versions of
each file. Using Helix server's multi-site deployment architecture, Ace seamlessly replicates these large
files across the globe to improve access times for their engineers.

Hybrid product development

With both source code and CAD/CAM files tracked in Helix server, Ace Rocket can easily track
dependencies between their code and their models. Developers take advantage of Helix server’s fluid
distributed workflows, while Ace’s model engineers use locking to obtain the tight control they need to
collaborate with each other.

Ace Rocket’s IT team takes advantage of the numerous Helix server APIs to build custom tools that
meet their unique needs and to integrate Helix server into all of their systems. In addition, they enjoy the
benefits of Helix server’s native Active Directory support to make it easy to manage all of their users.

21

Ease of use for Helix server administration

Another type of hybrid product development is combining Helix4Git with classic Helix server. See
Helix4Git Administration.

Ease of use for Helix server administration

Ace Rocket employs an outside agency for contractors. They want to give these contractors access to
only a certain subset of the depot, while they want to give in-house developers full access. Because
Helix server permissions are highly configurable, it's easy for an administrator to use finely grained
access control to manage access for different types of users.

Growing into the future

As Ace Rocket grows and develops offices in Shanghai, Buenos Aires, and Johannesburg, they deploy
edge servers and replicas to support thousands of developers in these remote offices. Both developers
and digital asset managers in remote offices benefit from having local access to their software or assets.

Helix server is keeping one unified view, worldwide, of digital assets content and history so the
distributed teams can collectively work as one.

Git at scale

Ace Rocket benefits from having scalable Git environments in one place. Helix4Git, with its Git
Connector component, enables Ace Rocket to have rapid mirroring of Git repos into Helix server, and
supports real-time visibility into Ace Rocket's Continuous Integration (Cl) activities with an automated
build tool, such as Jenkins.

Support for Global Teams

m Ace Rocket enjoys good performance and usability across distributed geographic locations.

m Ace Rocket's enterprise teams have fast and stable development environments, wherever they
are in the world.

Reduced Overhead and Tooling

= No danger of repo sprawl.

m Scalability for large digital assets, large numbers of files, and large total repo sizes are supported
with streamlined repository management.

22

https://www.perforce.com/perforce/doc.current/manuals/helix-for-git/

Centrally Manage All Digital Assets

Centrally Manage All Digital Assets

m The graph depot accepts repos from multiple sources.

m Users can centrally manage their assets with multi-repo support and traceability.

Git Continuous Integration and Delivery

= Automatic mirroring into Helix server from third-party Git servers, such as GitHub, GitLab, and
Gerrit, help Ace Rocket achieve rapid release iterations and development benchmarks.

m Helix4Git boosts performance with simplified builds of multi-repo, multi-asset projects.

P4 Jenkins
e e Client Workspace
Git Client Git Client
Graph Depot Classic Depot

| | Files Files
SSH HTTPS . ‘ ’

Connector
Interface

Git Connector Graph Depot Classic Depot
Helix
Server
Interface
Subset of repos accessed by users
Appears to Git clients h L. .
as a Git server Helix Versioning Engine

For more information, go to https://www.perforce.com and search for "Git at scale".

23

https://www.perforce.com/

To learn more about Helix server

To learn more about Helix server

To ..

Download Helix products

See ...

http://www.perforce.com/downloads

View tutorials explaining how Helix products
work

https://www.perforce.com/support/video-
tutorials

Get online help from within Helix server
applications

m Use the help menu from within graphical
Perforce applications

s Typep4 help from the command line
for help with the Command-Line Client

Access the Perforce Knowledgebase, which has
Support articles

https://community.perforce.com/s/

Access the Perforce Forums where users ask
and answer questions

http://forums.perforce.com/

Request Support by phone or email

https://www.perforce.com/support

Documentation for users, developers, and administrators is at https://www.perforce.com/support/self-

service-resources/documentation.

http://www.perforce.com/downloads
https://www.perforce.com/support/video-tutorials
https://www.perforce.com/support/video-tutorials
https://community.perforce.com/s/
http://forums.perforce.com/
https://www.perforce.com/support
https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/support/self-service-resources/documentation

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

25

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

26

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelistis submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. The default depot name is depot. See also
default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

27

Glossary

28

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

Glossary

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

29

Glossary

30

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflictis

a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide" on "Extensions".

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

Glossary

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same

31

Glossary

32

projects using their preferred tools.

graph depot

A depot of type graph thatis used to store Git repos in the Helix server. See also Helix4Git.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work

to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’'s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server's metadata.

33

Glossary

34

L

label
A named list of user-specified file revisions.

label view
The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy
A method used by Helix server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file
Afile that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot
Any depot located on the currently specified Helix server.

local syntax
The syntax for specifying a filename that is specific to an operating system.

lock
1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the PALOG environment variable or use
the p4d -L flag when starting the service.

Glossary

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are

35

Glossary

36

examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

(0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix server user who created a particular client, branch, or label.

P

p4
1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d
The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Glossary

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depotlocated on another Helix server accessed by the current Helix server.
replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

37

Glossary

38

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

Glossary

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

S

server data
The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4AROOT environment variable or use the p4d -r
flag.

service
In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job

39

Glossary

statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

40

Glossary

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide" on "Triggers".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation.

Vv

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenameV' or '1.changelist.gz'.

41

Glossary

view

A description of the relationship between two sets of files. See workspace view, label view, branch

view.

w

wildcard
A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; % %0
through % %39 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

42

License Statements

To get alisting of the third-party software licenses that Helix Core server uses, at the command line, type

thep4 help legal command.

To get alisting of the third-party software licenses that the local client (such as P4V) uses, at the
command line, typethep4 help -1 legal command.

43

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation

	The basics of version control
	Helix server as a version control implementation
	Multiple user access to a set of files

	Balancing stability and innovation: the mainline model
	Streams

	Organizing your work: jobs and labels
	Working together and working apart: centralized and distributed development
	Performance, scaling, and high availability
	Using proxies to improve performance
	Commit-edge architecture

	Securing the system

	Clients, IDEs, builds
	Use cases
	Software development
	Digital asset management
	Hybrid product development
	Ease of use for Helix server administration
	Growing into the future
	Git at scale
	Support for Global Teams
	Reduced Overhead and Tooling
	Centrally Manage All Digital Assets
	Git Continuous Integration and Delivery

	To learn more about Helix server
	Glossary
	License Statements

