
Helix Core P4Ruby Developer
Guide

2019.1
October 2019

Copyright © 1999-2019 Perforce Software, Inc..

All rights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sell it, or sell any documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License Statements" on page 69.

https://www.perforce.com/

Contents

How to use this guide 4
Syntax conventions 4

Feedback 4

Other documentation 5

P4Ruby 6
System Requirements and Release Notes 6

Installing P4Ruby 6

Programming with P4Ruby 7

Connecting to SSL-enabled servers 8
P4Ruby classes 8

P4 8
P4Exception 12
P4::DepotFile 12
P4::Revision 12
P4::Integration 13
P4::Map 13
P4::MergeData 14
P4::Message 15
P4::OutputHandler 15
P4::Progress 15
P4::Spec 16
Class P4 16
Class P4Exception 37
Class P4::DepotFile 38
Class P4::Revision 38
Class P4::Integration 40
Class P4::Map 41
Class P4::MergeData 43
Class P4::Message 46
Class P4::OutputHandler 47
Class P4::Progress 48
Class P4::Spec 49

Glossary 51
License Statements 69

3

How to use this guide
This guide contains details about using the derived API for Ruby to create scripts that interact with Helix
Core server. You can download the API from the Perforce web site. The derived API depends on the
Helix C/C++ API. For details, see theHelix Core C/C++ Developer Guide.

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning
literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-f] The enclosed elements are optional. Omit the brackets when you compose
the command.

... Previous argument can be repeated.

 n p4 [g-opts] streamlog [-l -L -t -m max] stream1
...
means 1 or more stream arguments separated by a space

 n See also the use on ... in Command alias syntax in the Helix Core P4
Command Reference

Tip
... has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

element1 |
element2

Either element1 or element2 is required.

Feedback
How can we improve this manual? Email us at manual@perforce.com.

4

https://www.perforce.com/downloads/helix-core-api-ruby
https://www.perforce.com/
http://www.perforce.com/perforce/doc.current/manuals/p4api/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation
See https://www.perforce.com/support/self-service-resources/documentation.

To find earlier versions of this guide, use the following URL and replace v17.1 with the version number
you are looking for: https://www.perforce.com/manuals/v17.1/p4ruby/index.html

5

https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/manuals/v17.1/p4ruby/index.html

P4Ruby
P4Ruby is an extension to the Ruby programming language that allows you to run Helix Core server
commands from within Ruby scripts, and get the results in a Ruby-friendly format.

The main features are:

 n Get Helix server data and forms in hashes and arrays.

 n Edit Helix server forms by modifying hashes.

 n Exception based error handling.

 n Controllable handling of warnings such as "File(s) up-to-date." on a sync.

 n Run as many commands on a connection as required.

 n The output of a command is returned as a Ruby array. For non-tagged output, the elements of the
array are strings. For tagged output, the elements of the array are Ruby hashes. For forms, the
output is an array of P4::Spec objects.

 n Thread-safe and thread-friendly; you can have multiple instances of the P4 class running in
different threads.

 n Exception-based error handling. Trap P4Exceptions for complete, high-level error handling.

System Requirements and Release Notes
P4Ruby is supported on Windows, Linux, and OS X.

For system requirements, see the release notes at
https://www.perforce.com/perforce/doc.current/user/p4rubynotes.txt.

Note
When passing arguments, make sure to omit the space between the argument and its value, such as
in the value pair -u and username in the following example:

change = p4.run_changes("-uusername", "-m1")[0]

If you include a space ("-u username"), the command fails.

Installing P4Ruby
As of version 2015.1, the recommended mechanism for installing P4Ruby is via gems.

Outside of Windows, the p4ruby gem installs must be compiled locally against your installation of
Ruby. If you can build the core Ruby distribution locally, you likely can install P4Ruby without incident.
On Windows, precompiled gems will be made available.

 $ gem install p4ruby -- --with-p4api-dir=__DIR__

6

https://www.perforce.com/perforce/doc.current/user/p4rubynotes.txt

Programming with P4Ruby

In the example above, the DIR is the path to a local copy of the Helix C/C++ API distribution. The Helix
C/C++ API should match the major and minor version of P4Ruby. If you omit the --with-p4api-
dir option, the gem attempts to download a version of the API itself from ftp.perforce.com.

Download from https://www.perforce.com/downloads/helix-core-api-ruby.

More installation options are described in the P4Ruby project in the Perforce Workshop:

https://swarm.workshop.perforce.com/projects/perforce-software-p4ruby

Programming with P4Ruby
The following example shows how to create a new client workspace based on an existing template:

 require "P4"

 template = "my-client-template"

 client_root = 'c:\p4-work'

 p4 = P4.new

 p4.connect

 begin

 # Run a "p4 client -t template -o" and convert it into a Ruby hash

 spec = p4.fetch_client("-t", template, "my-new-client")

 # Now edit the fields in the form

 spec["Root"] = client_root

 spec["Options"] = spec["Options"].sub("normdir", "rmdir")

 # Now save the updated spec

 p4.save_client(spec)

 # Point to the newly-created client

 p4.client="my-new-client"

 # And sync it.

 p4.run_sync

 rescue P4Exception

 # If any errors occur, we'll jump in here. Just log them

7

https://www.perforce.com/downloads/helix-core-api-ruby
https://swarm.workshop.perforce.com/projects/perforce-software-p4ruby

Connecting to SSL-enabled servers

 # and raise the exception up to the higher level

 p4.errors.each { |e| $stderr.puts(e) }

 raise

 end

Connecting to SSL-enabled servers
Scripts written with P4Ruby use any existing P4TRUST file present in their operating environment (by
default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file associated
with the script’s run-time environment, your script will (and should!) fail to connect to the server.

P4Ruby classes
The P4 module consists of several public classes:

 n P4

 n P4Exception

 n P4::DepotFile

 n P4::Revision

 n P4::Integration

 n P4::Map

 n P4::MergeData

 n P4::Message

 n P4::OutputHandler

 n P4::Progress

 n P4::Spec

The following tables provide brief details about each public class.

P4
The main class used for executing Perforce commands. Almost everything you do with P4Ruby will
involve this class.

8

P4

Method Description
identify Return the version of P4Ruby in use (class method).

new Construct a new P4 object (class method).

api_level= Set desired API compatibility level.

api_level Return current API compatibility level.

at_
exception_
level

Execute the associated block under a specific exception level, returning to
previous exception level when block returns.

charset= Set character set when connecting to Unicode servers.

charset Get character set when connecting to Unicode servers.

client= Set client workspace (P4CLIENT).

client Get current client workspace (P4CLIENT).

connect Connect to the Helix Core server, raise P4Exception on failure.

connected? Test whether or not session has been connected and/or has been dropped.

cwd= Set current working directory.

cwd Get current working directory.

delete_
<spectype>

Shortcut methods for deleting clients, labels, etc.

disconnect Disconnect from the Helix Core server.

each_
<spectype>

Shortcut methods for iterating through clients, labels, etc.

env Get the value of a Perforce environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user preferences.

errors Return the array of errors that occurred during execution of previous
command.

exception_
level=

Control which types of events give rise to exceptions (P4::RAISE_NONE,
RAISE_ERRORS, or RAISE_ALL).

exception_
level

Return the current exception level.

fetch_
<spectype>

Shortcut methods for retrieving the definitions of clients, labels, etc.

9

P4

Method Description
format_spec Convert fields in a hash containing the elements of a Perforce form (spec) into

the string representation familiar to users.

format_
<spectype>

Shortcut method; equivalent to:

 p4.format_spec("<spectype>", aHash)

handler= Set output handler.

handler Get output handler.

host= Set the name of the current host (P4HOST).

host Get the current hostname.

input= Store input for next command.

maxlocktime= Set MaxLockTime used for all following commands.

maxlocktime Get MaxLockTime used for all following commands.

maxresults= Set MaxResults used for all following commands.

maxresults Get MaxResults used for all following commands.

maxscanrows= Set MaxScanRows used for all following commands.

maxscanrows Get MaxScanRows used for all following commands.

messages Returns all messages from the server as P4::Message objects.

p4config_
file

Get the location of the configuration file used (P4CONFIG).

parse_
<spectype>

Shortcut method; equivalent to:

 p4.parse_spec("<spectype>", aString)

parse_spec Parses a Perforce form (spec) in text form into a Ruby hash using the spec
definition obtained from the server.

password= Set Perforce password (P4PASSWD).

password Get the current password or ticket.

port= Set host and port (P4PORT).

port Get host and port (P4PORT) of the current Perforce server.

prog= Set program name as shown by p4 monitor show -e.

10

P4

Method Description
prog Get program name as shown by p4 monitor show -e.

progress= Set progress indicator.

progress Get progress indicator.

run_cmd Shortcut method; equivalent to:

 p4.run("cmd", arguments...)

run Runs the specified Perforce command with the arguments supplied.

run_filelog Runs a p4 filelog on the fileSpec provided, returns an array of
P4::DepotFile objects.

run_login Runs p4 login using a password or ticket set by the user.

run_password A thin wrapper to make it easy to change your password.

run_resolve Interface to p4 resolve.

run_submit Submit a changelist to the server.

run_tickets Get a list of tickets from the local tickets file.

save_
<spectype>

Shortcut method; equivalent to:

 p4.input = hashOrString

 p4.run("<spectype>", "-i")

server_case_
sensitive?

Detects whether or not the server is case sensitive.

server_level Returns the current Perforce server level.

server_
unicode?

Detects whether or not the server is in unicode mode.

set_env On Windows or OS X, set a variable in the registry or user preferences.

streams= Enable or disable support for streams.

streams? Test whether or not the server supports streams

tagged Toggles tagged output (true or false). By default, tagged output is on.

tagged= Sets tagged output. By default, tagged output is on.

tagged? Detects whether or not tagged output is enabled.

ticketfile= Set the location of the P4TICKETS file.

11

P4Exception

Method Description
ticketfile Get the location of the P4TICKETS file.

track= Activate or disable server performance tracking.

track? Detect whether server performance tracking is active.

track_output Returns server tracking output.

user= Set the Perforce username (P4USER).

user Get the Perforce username (P4USER).

version= Set your script’s version as reported to the server.

version Get your script’s version as reported by the server.

warnings Returns the array of warnings that arose during execution of the last
command.

P4Exception
Used as part of error reporting and is derived from the Ruby RuntimeError class.

P4::DepotFile
Utility class allowing access to the attributes of a file in the depot. Returned by P4#run_filelog().

Method Description
depot_file Name of the depot file to which this object refers.

each_revision Iterates over each revision of the depot file.

revisions Returns an array of revision objects for the depot file.

P4::Revision
Utility class allowing access to the attributes of a revision P4::DepotFile object. Returned by
P4#run_filelog().

Method Description
action Action that created the revision.

change Changelist number.

12

P4::Integration

Method Description
client Client workspace used to create this revision.

depot_file Name of the file in the depot.

desc Short changelist description.

digest MD5 digest of this revision.

filesize Returns the size of this revision.

integrations Array of P4::Integration objects.

rev Revision number.

time Timestamp.

type Perforce file type.

user User that created this revision.

P4::Integration
Utility class allowing access to the attributes of an integration record for a P4::Revision object.
Returned by P4#run_filelog().

Method Description
how Integration method (merge/branch/copy/ignored).

file Integrated file.

srev Start revision.

erev End revision.

P4::Map
A class that allows users to create and work with Perforce mappings without requiring a connection to the
 Helix Core server.

Method Description
new Construct a new map object (class method).

join Joins two maps to create a third (class method).

clear Empties a map.

13

P4::MergeData

Method Description
count Returns the number of entries in a map.

empty? Tests whether or not a map object is empty.

insert Inserts an entry into the map.

translate Translate a string through a map.

includes? Tests whether a path is mapped.

reverse Returns a new mapping with the left and right sides reversed.

lhs Returns the left side as an array.

rhs Returns the right side as an array.

to_a Returns the map as an array.

P4::MergeData
Class encapsulating the context of an individual merge during execution of a p4 resolve command.
Passed as a parameter to the block passed to P4#run_resolve().

Method Description
your_
name

Returns the name of "your" file in the merge. (file in workspace)

their_
name

Returns the name of "their" file in the merge. (file in the depot)

base_
name

Returns the name of "base" file in the merge. (file in the depot)

your_
path

Returns the path of "your" file in the merge. (file in workspace)

their_
path

Returns the path of "their" file in the merge. (temporary file on workstation into which
their_name has been loaded)

base_
path

Returns the path of the base file in the merge. (temporary file on workstation into
which base_name has been loaded)

result_
path

Returns the path to the merge result. (temporary file on workstation into which the
automatic merge performed by the server has been loaded)

merge_
hint

Returns hint from server as to how user might best resolve merge.

14

P4::Message

Method Description
run_
merge

If the environment variable P4MERGE is defined, run it and return a boolean based on
the return value of that program.

P4::Message
Utility class allowing access to the attributes of a message object returned by P4#messages().

Method Description
severity Returns the severity of the message.

generic Returns the generic class of the error.

msgid Returns the unique ID of the error message.

to_s Returns the error message as a string.

inspect Converts the error object into a string for debugging purposes.

P4::OutputHandler
Handler class that provides access to streaming output from the server; set P4#handler() to an
instance of a subclass of P4::OutputHandler to enable callbacks:

Method Description
outputBinary Process binary data.

outputInfo Process tabular data.

outputMessage Process information or errors.

outputStat Process tagged output.

outputText Process text data.

P4::Progress
Handler class that provides access to progress indicators from the server; set P4#progress() to an
instance of a subclass of P4::Progress with the following methods (even if the implementations are
empty) to enable callbacks:

15

P4::Spec

Method Description
init Initialize progress indicator as designated type.

total Total number of units (if known).

description Description and type of units to be used for progress reporting.

update If non-zero, user has requested a cancellation of the operation.

done If non-zero, operation has failed.

P4::Spec
Subclass of hash allowing access to the fields in a Perforce specification form. Also checks that the
fields that are set are valid fields for the given type of spec. Returned by P4#fetch__
<spectype>_().

Method Description
spec._fieldname Return the value associated with the field named fieldname.

spec._fieldname= Set the value associated with the field named fieldname.

spec.permitted_
fields

Returns an array containing the names of fields that are valid in this
spec object.

Class P4
Main interface to the Helix server client API. Each P4 object provides you with a thread-safe API level
interface to Helix server. The basic model is to:

 1. Instantiate your P4 object.

 2. Specify your Helix server client environment.

 n client

 n host

 n password

 n port

 n user

 3. Set any options to control output or error handling:

 n exception_level

 4. Connect to the Perforce service.

16

Class P4

The Helix server protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including P4Ruby)
should ensure that a separate connection is used for each thread, or that only one thread may use
a shared connection at a time.

 5. Run your Helix server commands.

 6. Disconnect from the Perforce service.

Class Methods

P4.identify -> aString
Return the version of P4Ruby that you are using. Also reports the version of the OpenSSL library used for
building the underlying Helix C/C++ API with which P4Ruby was built.

 ruby -rP4 -e 'puts(P4.identify)'

Some of this information is already made available through the predefined constants P4::VERSION,
P4::OS, and P4::PATCHLEVEL.

P4.new -> aP4
Constructs a new P4 object.

 p4 = P4.new()

Instance Methods

p4.api_level= anInteger -> anInteger
Sets the API compatibility level desired. This is useful when writing scripts using Helix server commands
that do not yet support tagged output. In these cases, upgrading to a later server that supports tagged
output for the commands in question can break your script. Using this method allows you to lock your
script to the output format of an older Helix server release and facilitate seamless upgrades. This method
must be called prior to calling P4#connect().

 p4 = P4.new

 p4.api_level = 67 # Lock to 2010.1 format

 p4.connect

 ...

For more information about the API integer levels, see the Support Knowledgebase article, "Helix Client
Protocol Levels".

17

https://community.perforce.com/s/article/3197
https://community.perforce.com/s/article/3197

Class P4

p4.api_level -> anInteger
Returns the current Helix C/C++ API compatibility level. Each iteration of the Helix Core server is given
a level number. As part of the initial communication, the client protocol level is passed between client
application and the Helix Core server. This value, defined in the Helix C/C++ API, determines the
communication protocol level that the Helix server client will understand. All subsequent responses from
the Helix Core server can be tailored to meet the requirements of that client protocol level.

For more information, see:

http://kb.perforce.com/article/512

p4.at_exception_level(lev) { …​ } -> self
Executes the associated block under a specific exception level. Returns to the previous exception level
when the block returns.

 p4 = P4.new

 p4.client = "www"

 p4.connect

 p4.at_exception_level(P4::RAISE_ERRORS) do

 p4.run_sync

 end

 p4.disconnect

p4.charset= aString -> aString
Sets the character set to use when connect to a Unicode enabled server. Do not use when working with
non-Unicode-enabled servers. By default, the character set is the value of the P4CHARSET environment
 variable. If the character set is invalid, this method raises a P4Exception.

 p4 = P4.new

 p4.client = "www"

 p4.charset = "iso8859-1"

 p4.connect

 p4.run_sync

 p4.disconnect

p4.charset -> aString
Get the name of the character set in use when working with Unicode-enabled servers.

18

http://kb.perforce.com/article/512

Class P4

 p4 = P4.new

 p4.charset = "utf8"

 puts(p4.charset)

p4.client= aString -> aString
Set the name of the client workspace you wish to use. If not called, defaults to the value of P4CLIENT
taken from any P4CONFIG file present, or from the environment as per the usual Helix server
convention. Must be called before connecting to the Helix server.

 p4 = P4.new

 p4.client = "www"

 p4.connect

 p4.run_sync

 p4.disconnect

p4.client -> aString
Get the name of the Helix server client currently in use.

 p4 = P4.new

 puts(p4.client)

p4.connect -> aBool
Connect to the Helix Core server. You must connect before you can execute commands. Raises a
P4Exception if the connection attempt fails.

 p4 = P4.new

 p4.connect

p4.connected? -> aBool
Test whether or not the session has been connected, and if the connection has not been dropped.

 p4 = P4.newp4.connected?

p4.cwd= aString -> aString
Sets the current working directly. Can be called prior to executing any Helix server command.
Sometimes necessary if your script executes a chdir() as part of its processing.

 p4 = P4.new

 p4.cwd = "/home/bruno"

19

Class P4

p4.cwd -> aString
Get the current working directory.

 p4 = P4.new

 puts(p4.cwd)

p4.delete_<spectype>([options], name) -> anArray
The delete methods are simply shortcut methods that allow you to quickly delete the definitions of
clients, labels, branches, etc. These methods are equivalent to:

 p4.run("<spectype>", '-d', [options], "spec name")

For example:

 require "P4"

 require "parsedate"

 include ParseDate

 now = Time.now

 p4 = P4.new

 begin

 p4.connect

 p4.run_clients.each do

 |client|

 atime = parsedate(client["Access"])

 if((atime + 24 * 3600 * 365) < now)

 p4.delete_client('-f', client["client"])

 end

 end

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.disconnect -> true
Disconnect from the Helix Core server.

20

Class P4

 p4 = P4.new

 p4.connect

 p4.disconnect

p4.each_<spectype<(arguments) -> anArray
The each_<spectype> methods are shortcut methods that allow you to quickly iterate through
clients, labels, branches, etc. Valid <spectype>s are clients, labels, branches, changes,
streams, jobs, users, groups, depots and servers. Valid arguments are any arguments
that would be valid for the corresponding run_<spectype> command.

For example, to iterate through clients:

 p4.each_clients do

 |c|

 # work with the retrieved client spec

 end

is equivalent to:

 clients = p4.run_clients

 clients.each do

 |c|

 client = p4.fetch_client(c['client'])

 # work with the retrieved client spec

 end

p4.env -> string
Get the value of a Helix server environment variable, taking into account P4CONFIG files and (on
Windows and OS X) the registry or user preferences.

 p4 = P4.new

 puts p4.env("P4PORT")

p4.errors -> anArray
Returns the array of errors which occurred during execution of the previous command.

 p4 = P4.new

 begin

 p4.connect

 p4.exception_level(P4::RAISE_ERRORS) # ignore "File(s) up-to-date"

 files = p4.run_sync

21

Class P4

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.exception_level= anInteger -> anInteger
Configures the events which give rise to exceptions. The following three levels are supported:

 n P4::RAISE_NONE disables all exception raising and makes the interface completely
procedural.

 n P4::RAISE_ERRORS causes exceptions to be raised only when errors are encountered.

 n P4::RAISE_ALL causes exceptions to be raised for both errors and warnings. This is the
default.

 p4 = P4.new

 p4.exception_level = P4::RAISE_ERRORS

 p4.connect # P4Exception on failure

 p4.run_sync # File(s) up-to-date is a warning so no exception is

raised

 p4.disconnect

p4.exception_level -> aNumber
Returns the current exception level.

p4.fetch_<spectype>([name]) -> aP4::Spec
The fetch_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 p4.run("<spectype>", '-o', ...).shift

For example:

 p4 = P4.new

 begin

 p4.connect

 client = p4.fetch_client()

 other_client = p4.fetch_client("other")

 label = p4.fetch_label("somelabel")

22

Class P4

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.format_spec("<spectype>", aHash)-> aString
Converts the fields in a hash containing the elements of a Helix server form (spec) into the string
representation familiar to users.

The first argument is the type of spec to format: for example, client, branch, label, and so on.
The second argument is the hash to parse.

There are shortcuts available for this method. You can use:

 p4.format_<spectype>(hash)

instead of:

 p4.format_spec("<spectype>", hash)

where <spectype> is the name of a Helix server spec, such as client, label, etc.

p4.format_<spectype> aHash -> aHash
The format_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 p4.format_spec("<spectype>", aHash)

p4.graph= -> aBool
Enable or disable support for graph depots. By default, support for depots of type graph is enabled at
2017.1 or higher (P4#api_level() >= 82). Raises a P4Exception if you attempt to enable graph
depots on a pre-2017.1 server. You can enable or disable support for graph depots both before and after
connecting to the server.

 p4 = P4.new

 p4.graph = false

p4.graph? -> aBool
Detects whether or not support for Helix server graph depots is enabled.

 p4 = P4.new

 puts (p4.graph?)

23

Class P4

 p4.graph = false

 puts (p4.graph?)

p4.handler= aHandler -> aHandler
Set the current output handler. This should be a subclass of P4::OutputHandler.

p4.handler -> aHandler
Get the current output handler.

p4.host= aString -> aString
Set the name of the current host. If not called, defaults to the value of P4HOST taken from any
P4CONFIG file present, or from the environment as per the usual Helix server convention. Must be
called before connecting to the Helix server.

 p4 = P4.new

 p4.host = "workstation123.perforce.com"

 p4.connect

 ...

 p4.disconnect

p4.host -> aString
Get the current hostname.

 p4 = P4.new

 puts(p4.host)

p4.input= (aString|aHash|anArray) -> aString|aHash|anArray
Store input for the next command.

Call this method prior to running a command requiring input from the user. When the command requests
input, the specified data will be supplied to the command. Typically, commands of the form p4 cmd -
i are invoked using the P4#save_<spectype>() methods, which call P4#input() internally;
there is no need to call P4#input() when using the P4#save_<spectype>() shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user) an array of
strings or hashes. If you pass an array, note that the array will be shifted each time Helix server asks the
user for input.

 p4 = P4.new

 p4.connect

24

Class P4

 change = p4.run_change("-o").shift

 change["Description"] = "Autosubmitted changelist"

 p4.input = change

 p4.run_submit("-i")

 p4.disconnect

p4.maxlocktime= anInteger -> anInteger
Limit the amount of time (in milliseconds) spent during data scans to prevent the server from locking
tables for too long. Commands that take longer than the limit will be aborted. The limit remains in force
until you disable it by setting it to zero. See p4 help maxlocktime for information on the
commands that support this limit.

 p4 = P4.new

 begin

 p4.connect

 p4.maxlocktime = 10000 # 10 seconds

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

 ensure

 p4.disconnectend

p4.maxlocktime -> anInteger
Get the current maxlocktime setting.

 p4 = P4.new

 puts(p4.maxlocktime)

p4.maxresults= anInteger -> anInteger
Limit the number of results Helix server permits for subsequent commands. Commands that produce
more than this number of results will be aborted. The limit remains in force until you disable it by setting it
to zero. See p4 help maxresults for information on the commands that support this limit.

 p4 = P4.new

 begin

25

Class P4

 p4.connect

 p4.maxresults = 100

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

 ensure

 p4.disconnect

 end

p4.maxresults -> anInteger
Get the current maxresults setting.

 p4 = P4.new

 puts(p4.maxresults)

p4.maxscanrows= anInteger -> anInteger
Limit the number of database records Helix server will scan for subsequent commands. Commands that
attempt to scan more than this number of records will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxscanrows for information on the commands that
support this limit.

 p4 = P4.new

 begin

 p4.connect

 p4.maxscanrows = 100

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

 ensure

 p4.disconnectend

p4.maxscanrows -> anInteger
Get the current maxscanrows setting.

 p4 = P4.new

 puts(p4.maxscanrows)

26

Class P4

p4.messages -> aP4::Message
Returns a message from the Helix server in the form of a P4::Message object.

 p4 = P4.new

 p4.exception_level = P4::RAISE_NONE

 p4.run_sync

 p4.run_sync # this second sync should return "File(s) up-to-date."

 w = p4.messages[0]

 puts (w.to_s)

p4.p4config_file -> aString
Get the path to the current P4CONFIG file.

 p4 = P4.new

 puts(p4.p4config_file)

p4.parse_<spectype>(aString) -> aP4::Spec
This is equivalent to:

 p4.parse_spec("<spectype>", aString)

p4.parse_spec("<spectype>", aString) -> aP4::Spec
Parses a Helix server form (spec) in text form into a Ruby hash using the spec definition obtained from
the server.

The first argument is the type of spec to parse: client, branch, label, and so on. The second
argument is the string buffer to parse.

Note that there are shortcuts available for this method. You can use:

 p4.parse_<spectype>(buf)

instead of:

 p4.parse_spec("<spectype>", buf)

Where <spectype> is one of client, branch, label, and so on.

p4.password= aString -> aString
Set your Helix server password, in plain text. If not used, takes the value of P4PASSWD from any
P4CONFIG file in effect, or from the environment according to the normal Helix server conventions. This
password will also be used if you later call p4.run_login to login using the 2003.2 and later ticket
system.

27

Class P4

 p4 = P4.new

 p4.password = "mypass"

 p4.connect

 p4.run_login

p4.password -> aString
Get the current password or ticket. This may be the password in plain text, or if you’ve used P4#run_
login(), it’ll be the value of the ticket you’ve been allocated by the server.

 p4 = P4.new

 puts(p4.password)

p4.port= aString -> aString
Set the host and port of the Helix server you want to connect to. If not called, defaults to the value of
P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from the environment.

 p4 = P4.new

 p4.port = "localhost:1666"

 p4.connect

 ...

 p4.disconnect

p4.port -> aString
Get the host and port of the current Helix server.

 p4 = P4.new

 puts(p4.port)

p4.prog= aString -> aString
Set the name of the program, as reported to Helix server system administrators running p4 monitor
show -e in Helix server 2004.2 or later releases.

 p4 = P4.new

 p4.prog = "sync-script"

 p4.connect

 ...

 p4.disconnect

28

Class P4

p4.prog -> aString
Get the name of the program as reported to the Helix server.

 p4 = P4.new

 p4.prog = "sync-script"

 puts(p4.prog)

p4.progress= aProgress -> aProgress
Set the current progress indicator. This should be a subclass of P4::Progress.

p4.progress -> aProgress
Get the current progress indicator.

p4.reset() -> anArray
Reset messages, warnings, and errors from a previous run() call. The returned array is always empty.

p4.run_<cmd>(arguments) -> anArray
This is equivalent to:

 p4.run("cmd", arguments...)

p4.run(aCommand, arguments…​) -> anArray
Base interface to all the run methods in this API. Runs the specified Helix server command with the
arguments supplied. Arguments may be in any form as long as they can be converted to strings by to_
s. However, each command's options should be passed as quoted and comma-separated strings, with
no leading space. For example:

p4.run("print","-o","test-print","-q","//depot/Jam/MAIN/src/expand.c")

Failing to pass options in this way can result in confusing error messages.

The P4#run() method returns an array of results whether the command succeeds or fails; the array
may, however, be empty. Whether the elements of the array are strings or hashes depends on (a) server
support for tagged output for the command, and (b) whether tagged output was disabled by calling
p4.tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the time, P4#run()
will raise a P4Exception. If the current exception level is below the threshold for the error/warning,
P4#run() returns the output as normal and the caller must explicitly review P4#errors() and
P4#warnings() to check for errors or warnings.

 p4 = P4.new

 p4.connect

29

Class P4

 spec = p4.run("client", "-o").shift

 p4.disconnect

Shortcuts are available for P4#run(). For example:

 p4.run_command(args)

is equivalent to:

 p4.run("command", args)

There are also some shortcuts for common commands such as editing Helix server forms and
submitting. Consequently, this:

 p4 = P4.new

 p4.connect

 clientspec = p4.run_client("-o").shift

 clientspec["Description"] = "Build client"

 p4.input = clientspec

 p4.run_client("-i")

 p4.disconnect

may be shortened to:

 p4 = P4.new

 p4.connect

 clientspec = p4.fetch_client

 clientspec["Description"] = "Build client"

 p4.save_client(clientspec)

 p4.disconnect

The following are equivalent:

p4.delete_<spectype>() p4.run("<spectype>", "-d")

p4.fetch_<spectype>() p4.run("<spectype>", "-o").shift

p4.save_<spectype>(
spec)

p4.input = specp4.run("<spectype>",
"-i")

As the commands associated with P4#fetch_<spectype>() typically return only one item, these
methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by P4#fetch_change() can be
passed to P4#run_submit. For example:

 p4 = P4.new

 p4.connect

30

Class P4

 spec = p4.fetch_changespec["Description"] = "Automated change"

 p4.run_submit(spec)

 p4.disconnect

p4.run_filelog(fileSpec) -> anArray
Runs a p4 filelog on the fileSpec provided and returns an array of P4::DepotFile results
when executed in tagged mode, and an array of strings when executed in non-tagged mode. By default,
the raw output of p4 filelog is tagged; this method restructures the output into a more user-friendly
(and object-oriented) form.

 p4 = P4.new

 begin

 p4.connect

 p4.run_filelog("index.html").shift.each_revision do

 |r|

 r.each_integration do

 |i|

 # Do something

 end

 end

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.run_login(arg…​) -> anArray
Runs p4 login using a password or ticket set by the user.

p4.run_password(oldpass, newpass) -> anArray
A thin wrapper to make it easy to change your password. This method is (literally) equivalent to the
following code:

 p4.input([oldpass, newpass, newpass])

 p4.run("password")

For example:

31

Class P4

 p4 = P4.new

 p4.password = "myoldpass"

 begin

 p4.connect

 p4.run_password("myoldpass", "mynewpass")

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.run_resolve(args) [block] -> anArray
Interface to p4 resolve. Without a block, simply runs a non-interactive resolve (typically an
automatic resolve).

 p4.run_resolve("-at")

When a block is supplied, the block is invoked once for each merge scheduled by Helix server. For each
merge, a P4::MergeData object is passed to the block. This object contains the context of the
merge.

The block determines the outcome of the merge by evaluating to one of the following strings:

Block string Meaning
ay Accept Yours.

at Accept Theirs.

am Accept Merge result.

ae Accept Edited result.

s Skip this merge.

q Abort the merge.

For example:

 p4.run_resolve() do

 |md|

 puts("Merging...")

 puts("Yours: #{md.your_name}")

 puts("Theirs: #{md.their_name}")

 puts("Base: #{md.base_name}")

32

Class P4

 puts("Yours file: #{md.your_path}")

 puts("Theirs file: #{md.their_path}")

 puts("Base file: #{md.base_path}")

 puts("Result file: #{md.result_path}")

 puts("Merge Hint: #{md.merge_hint}")

 result = md.merge_hint

 if(result == "e")

 puts("Invoking external merge application")

 result = "s" # If the merge doesn't work, we'll skip

 result = "am" if md.run_merge()

 end

 result

 end

p4.run_submit([aHash], [arg…​]) -> anArray
Submit a changelist to the server. To submit a changelist, set the fields of the changelist as required and
supply any flags:.

 change = p4.fetch_change

 change._description = "Some description"

 p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the command line:

 p4.run_submit("-d", "Some description", "somedir/...")

p4.run_tickets() -> anArray
Get a list of tickets from the local tickets file. Each ticket is a hash object with fields for Host, User,
and Ticket.

p4.save_<spectype>(hashOrString, [options]) -> anArray
The save_<spectype> methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

 p4.input = hashOrStringp4.run("<spectype>", "-i")

For example:

33

Class P4

 p4 = P4.new

 begin

 p4.connect

 client = p4.fetch_client()

 client["Owner"] = p4.user

 p4.save_client(client)

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.server_case_sensitive? -> aBool
Detects whether or not the server is case-sensitive.

p4.server_level -> anInteger
Returns the current Helix server level. Each iteration of the Helix server is given a level number. As part
of the initial communication this value is passed between the client application and the Helix server. This
value is used to determine the communication that the Helix server will understand. All subsequent
requests can therefore be tailored to meet the requirements of this Server level.

For more information about the Helix server version levels, see the Support Knowledgebase article,
"Helix server Version Levels".

p4.server_unicode? -> aBool
Detects whether or not the server is in unicode mode.

p4.set_env= (aString, aString) -> aBool
On Windows or OS X, set a variable in the registry or user preferences. To unset a variable, pass an
empty string as the second argument. On other platforms, an exception is raised.

 p4 = P4.new

 p4.set_env = ("P4CLIENT", "my_workspace")

 p4.set_env = ("P4CLIENT", "")

34

https://community.perforce.com/s/article/3194

Class P4

p4.streams= -> aBool
Enable or disable support for streams. By default, streams support is enabled at 2011.1 or higher
(P4#api_level() >= 70). Raises a P4Exception if you attempt to enable streams on a pre-
2011.1 server. You can enable or disable support for streams both before and after connecting to the
server.

 p4 = P4.new

 p4.streams = false

p4.streams? -> aBool
Detects whether or not support for Helix server Streams is enabled.

 p4 = P4.new

 puts (p4.streams?)

 p4.streams = false

 puts (p4.streams?)

p4.tagged(aBool) { block }
Temporarily toggles the use of tagged output for the duration of the block, and then resets it when the
block terminates.

p4.tagged= aBool -> aBool
Sets tagged output. By default, tagged output is on.

 p4 = P4.new

 p4.tagged = false

p4.tagged? -> aBool
Detects whether or not you are in tagged mode.

 p4 = P4.new

 puts (p4.tagged?)

 p4.tagged = false

 puts (p4.tagged?)

p4.ticketfile= aString -> aString
Sets the location of the P4TICKETS file.

35

Class P4

 p4 = P4.new

 p4.ticketfile = "/home/bruno/tickets"

p4.ticketfile -> aString
Get the path to the current P4TICKETS file.

 p4 = P4.new

 puts(p4.ticketfile)

p4.track= -> aBool
Instruct the server to return messages containing performance tracking information. By default, server
tracking is disabled.

 p4 = P4.new

 p4.track = true

p4.track? -> aBool
Detects whether or not performance tracking is enabled.

 p4 = P4.new

 p4.track = true

 puts (p4.track?)

 p4.track = false

 puts (p4.track?)

p4.track_output -> anArray
If performance tracking is enabled with p4.track=, returns a list of strings corresponding to the
performance tracking output for the most recently-executed command.

 p4 = P4.new

 p4.track = true

 p4.run_info

 puts (p4.track_output[0].slice(0,3)) # should be "rpc"

p4.user= aString -> aString
Set the Helix server username. If not called, defaults to the value of P4USER taken from any
P4CONFIG file present, or from the environment as per the usual Helix server convention. Must be
called before connecting to the Helix server.

36

Class P4Exception

 p4 = P4.new

 p4.user = "bruno"

 p4.connect

 ...

 p4.disconnect

p4.user -> aString
Returns the current Helix server username.

 p4 = P4.new

 puts(p4.user)

p4.version= aString -> aString
Set the version of your script, as reported to the Helix server.

p4.version -> aString
Get the version of your script, as reported to the Helix server.

p4.warnings -> anArray
Returns the array of warnings that arose during execution of the last command.

 p4 = P4.new

 begin

 p4.connect

 p4.exception_level(P4::RAISE_ALL) # File(s) up-to-date is a warning

 files = p4.run_sync

 rescue P4Exception => ex

 p4.warnings.each { |w| puts(w) }

 ensure

 p4.disconnect

 end

Class P4Exception
Shallow subclass of RuntimeError to be used for catching Helix server-specific errors. Doesn’t
contain any extra information. See P4#errors() and P4#warnings for details of the errors giving
rise to the exception.

37

Class P4::DepotFile

Class Methods
None.

Instance Methods
None.

Class P4::DepotFile

Description
Utility class providing easy access to the attributes of a file in a Helix server depot. Each
P4::DepotFile object contains summary information about the file, and a list of revisions
(P4::Revision objects) of that file. Currently, only the P4#run_filelog() method returns an
array of P4::DepotFile objects.

Class Methods
None.

Instance Methods

df.depot_file -> aString
Returns the name of the depot file to which this object refers.

df.each_revision { |rev| block } -> revArray
Iterates over each revision of the depot file.

df.revisions -> aArray
Returns an array of revisions of the depot file.

Class P4::Revision

Description
Utility class providing easy access to the revisions of a file in a Helix server depot. P4::Revision
objects can store basic information about revisions and a list of the integrations for that revision. Created
by P4#run_filelog().

38

Class P4::Revision

Class Methods
None.

Instance Methods

rev.action -> aString
Returns the name of the action which gave rise to this revision of the file.

rev.change -> aNumber
Returns the change number that gave rise to this revision of the file.

rev.client -> aString
Returns the name of the client from which this revision was submitted.

rev.depot_file -> aString
Returns the name of the depot file to which this object refers.

rev.desc -> aString
Returns the description of the change which created this revision. Note that only the first 31 characters
are returned unless you use p4 filelog -L for the first 250 characters, or p4 filelog -l for
the full text.

rev.digest -> aString
Returns the MD5 digest for this revision of the file.

rev.each_integration { |integ| block } -> integArray
Iterates over each the integration records for this revision of the depot file.

rev.filesize -> aNumber
Returns size of this revision.

rev.integrations -> integArray
Returns the list of integrations for this revision.

rev.rev -> aNumber
Returns the number of this revision of the file.

39

Class P4::Integration

rev.time -> aTime
Returns the date/time that this revision was created.

rev.type -> aString
Returns this revision’s Helix server filetype.

rev.user -> aString
Returns the name of the user who created this revision.

Class P4::Integration

Description
Utility class providing easy access to the details of an integration record. Created by P4#run_
filelog().

Class Methods
None.

Instance Methods

integ.how -> aString
Returns the type of the integration record - how that record was created.

integ.file -> aPath
Returns the path to the file being integrated to/from.

integ.srev -> aNumber
Returns the start revision number used for this integration.

integ.erev -> aNumber
Returns the end revision number used for this integration.

40

Class P4::Map

Class P4::Map

Description
The P4::Map class allows users to create and work with Helix server mappings, without requiring a
connection to aHelix server.

Class Methods

Map.new ([anArray]) -> aMap
Constructs a new P4::Map object.

Map.join (map1, map2) -> aMap
Join two P4::Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-hand side of the
second mapping. For example:

 # Map depot syntax to client syntax

 client_map = P4::Map.new

 client_map.insert("//depot/main/...", "//client/...")

 # Map client syntax to local syntax

 client_root = P4::Map.new

 client_root.insert("//client/...", "/home/bruno/workspace/...")

 # Join the previous mappings to map depot syntax to local syntax

 local_map = P4::Map.join(client_map, client_root)

 local_path = local_map.translate("//depot/main/www/index.html")

 # local_path is now /home/bruno/workspace/www/index.html

Instance Methods

map.clear -> true
Empty a map.

41

Class P4::Map

map.count -> anInteger
Return the number of entries in a map.

map.empty? -> aBool
Test whether a map object is empty.

map.insert(aString, [aString]) -> aMap
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

 # called with two arguments:

 map.insert("//depot/main/...", "//client/...")

 # called with one argument containing both halves of the mapping:

 map.insert("//depot/live/... //client/live/...")

 # called with one argument containing a half-map:

 # This call produces the mapping "depot/... depot/..."

 map.insert("depot/...")

map.translate (aString, [aBool])-> aString
Translate a string through a map, and return the result. If the optional second argument is true, translate
forward, and if it is false, translate in the reverse direction. By default, translation is in the forward
direction.

map.includes? (aString) -> aBool
Tests whether a path is mapped or not.

 if(map.includes?("//depot/main/..."))

 ...

 end

map.reverse -> aMap
Return a new P4::Map object with the left and right sides of the mapping swapped. The original object
is unchanged.

42

Class P4::MergeData

map.lhs -> anArray
Returns the left side of a mapping as an array.

map.rhs -> anArray
Returns the right side of a mapping as an array.

map.to_a -> anArray
Returns the map as an array.

Class P4::MergeData

Description
Class containing the context for an individual merge during execution of a p4 resolve.

Class Methods
None.

Instance Methods

md.your_name() -> aString
Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.

 p4.run_resolve() do

 |md|

 yours = md.your_name

 md.merge_hint # merge result

 end

md.their_name() -> aString
Returns the name of "their" file in the merge. This is typically a path to a file in the depot.

 p4.run_resolve() do

 |md|

 theirs = md.their_name

 md.merge_hint # merge result

 end

43

Class P4::MergeData

md.base_name() -> aString
Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.

 p4.run_resolve() do

 |md|

 base = md.base_name

 md.merge_hint # merge result

 end

md.your_path() -> aString
Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.

 p4.run_resolve() do

 |md|

 your_path = md.your_path

 md.merge_hint # merge result

 end

md.their_path() -> aString
Returns the path of "their" file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData#their_name() have been loaded.

 p4.run_resolve() do

 |md|

 their_name = md.their_name

 their_file = File.open(md.their_path)

 md.merge_hint # merge result

 end

md.base_path() -> aString
Returns the path of the base file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData#base_name() have been loaded.

 p4.run_resolve() do

 |md|

 base_name = md.base_name

 base_file = File.open(md.base_path)

44

Class P4::MergeData

 md.merge_hint # merge result

 end

md.result_path() -> aString
Returns the path to the merge result. This is typically a path to a temporary file on your local machine in
which the contents of the automatic merge performed by the server have been loaded.

 p4.run_resolve() do

 |md|

 result_file = File.open(md.result_path)

 md.merge_hint # merge resultend

md.merge_hint() -> aString
Returns the hint from the server as to how it thinks you might best resolve this merge.

 p4.run_resolve() do

 |md|

 puts (md.merge_hint) # merge result

 end

md.run_merge() -> aBool
If the environment variable P4MERGE is defined, P4::MergeData#run_merge() invokes the
specified program and returns a boolean based on the return value of that program.

 p4.run_resolve() do

 |md|

 if (md.run_merge())

 "am"

 else

 "s"

 end

 end

45

Class P4::Message

Class P4::Message

Description
P4::Message objects contain error or other diagnostic messages from the Helix Core server; retrieve
them by using the P4#messages() method.

Script writers can test the severity of the messages in order to determine if the server message consisted
of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED/E_FATAL).

Class methods
None.

Instance methods

message.severity() -> anInteger
Severity of the message, which is one of the following values:

Value Meaning
E_EMPTY No error

E_INFO Informational message only

E_WARN Warning message only

E_FAILED Command failed

E_FATAL Severe error; cannot continue.

message.generic() -> anInteger
Returns the generic class of the error.

message.msgid() -> anInteger
Returns the unique ID of the message.

message.to_s() -> aString
Converts the message into a string.

46

Class P4::OutputHandler

message.inspect() -> aString
To facilitate debugging, returns a string that holds a formatted representation of the entire
P4::Message object.

Class P4::OutputHandler

Description
The P4::OutputHandler class is a handler class that provides access to streaming output from
the server. After defining the output handler, set P4#handler() to an instance of a subclass of
P4::OutputHandler (or use a p4.with_handler(handler) block) to enable callbacks.

By default, P4::OutputHandler returns P4::REPORT for all output methods. The different return
 options are:

Value Meaning
P4::REPORT Messages added to output.

P4::HANDLED Output is handled by class (don’t add message to output).

P4::CANCEL Operation is marked for cancel, message is added to output.

Class Methods

new P4::MyHandler.new -> aP4::OutputHandler
Constructs a new subclass of P4::OutputHandler.

Instance Methods

outputBinary -> int
Process binary data.

outputInfo -> int
Process tabular data.

outputMessage -> int
Process informational or error messages.

47

Class P4::Progress

outputStat -> int
Process tagged data.

outputText -> int
Process text data.

Class P4::Progress

Description
The P4::Progress class is a handler class that provides access to progress indicators from the
server. After defining the output handler, set P4#progress() to an instance of a subclass of
P4::Progress (or use a p4.with_progress(progress) block) to enable callbacks.

You must implement all five of the following methods: init(), description(), update(),
total(), and done(), even if the implementation consists of trivially returning 0.

Class Methods

new P4::MyProgress.new -> aP4::Progress
Constructs a new subclass of P4::Progress.

Instance Methods

init -> int
Initialize progress indicator.

description -> int
Description and type of units to be used for progress reporting.

update -> int
If non-zero, user has requested a cancellation of the operation.

total -> int
Total number of units expected (if known).

done -> int
If non-zero, operation has failed.

48

Class P4::Spec

Class P4::Spec

Description
The P4::Spec class is a hash containing key/value pairs for all the fields in a Helix server form. It
provides two things over and above its parent class (Hash):

 n Fieldname validation. Only valid field names may be set in a P4::Spec object. Note that only
the field name is validated, not the content.

 n Accessor methods for easy access to the fields.

Class Methods

new P4::Spec.new(anArray) -> aP4::Spec
Constructs a new P4::Spec object given an array of valid fieldnames.

Instance Methods

spec._<fieldname> -> aValue
Returns the value associated with the field named <fieldname>. This is equivalent to spec[
"<fieldname>"] with the exception that when used as a method, the fieldnames may be in
lowercase regardless of the actual case of the fieldname.

 client = p4.fetch_client()

 root = client._root

 desc = client._description

spec._<fieldname>= aValue -> aValue
Updates the value of the named field in the spec. Raises a P4Exception if the fieldname is not valid
for specs of this type.

 client = p4.fetch_client()

 client._root = "/home/bruno/new-client"

 client._description = "My new client spec"

 p4.save_client(client)

49

Class P4::Spec

spec.permitted_fields -> anArray
Returns an array containing the names of fields that are valid in this spec object. This does not imply that
values for all of these fields are actually set in this object, merely that you may choose to set values for
any of these fields if you want to.

 client = p4.fetch_client()

 spec.permitted_fields.each do

 | field |

 printf ("%14s = %s\n", field, client[field])

 end

50

Glossary

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depot in which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

B

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

51

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the 'p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

C

change review

The process of sending email to users who have registered their interest in changelists that include
specified files in the depot.

52

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. The default depot name is depot. See also
default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

53

Glossary

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

54

Glossary

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site has in a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depot is the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

55

Glossary

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/

diff

(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflict is
a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate', and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide: Fundamentals"
on "Extensions".

F

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file that is not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

56

Glossary

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same

57

Glossary

projects using their preferred tools.

graph depot

A depot of type graph that is used to store Git repos in the Helix server. See also Helix4Git.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

I

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

58

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

J

job

A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work
to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server’s metadata.

59

Glossary

L

label

A named list of user-specified file revisions.

label view

The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy

A method used by Helix server to make internal copies of files without duplicating file content in the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file

A file that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

list access

A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot

Any depot located on the currently specified Helix server.

local syntax

The syntax for specifying a filename that is specific to an operating system.

lock

1. A file lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

60

Glossary

M

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are

61

Glossary

examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

O

opened file

A file that you are changing in your client workspace that is checked out. If the file is not checked out,
opening it in the file system does not mean anything to the versioning engineer.

owner

The Helix server user who created a particular client, branch, or label.

P

p4

1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d

The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP

The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

62

Glossary

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depot located on another Helix server accessed by the current Helix server.

replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

63

Glossary

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before it is submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

64

Glossary

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

S

server data

The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root

The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4ROOT environment variable or use the p4d -r
flag.

service

In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelist is new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job

65

Glossary

statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

66

Glossary

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide: Fundamentals" on "Triggers".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation.

V

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

67

Glossary

W

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; %%0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

68

License Statements
Perforce programs include software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce Software, Inc. includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce programs include software developed by the OpenLDAP Foundation
(http://www.openldap.org/).

Perforce programs include software developed Computing Services at Carnegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

69

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation

	P4Ruby
	System Requirements and Release Notes
	Installing P4Ruby
	Programming with P4Ruby
	Connecting to SSL-enabled servers

	P4Ruby classes
	P4
	P4Exception
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::Map
	P4::MergeData
	P4::Message
	P4::OutputHandler
	P4::Progress
	P4::Spec
	Class P4
	Class P4Exception
	Class P4::DepotFile
	Class P4::Revision
	Class P4::Integration
	Class P4::Map
	Class P4::MergeData
	Class P4::Message
	Class P4::OutputHandler
	Class P4::Progress
	Class P4::Spec

	Glossary
	License Statements

