O
HelixCore

Using Helix Core Server for
Distributed Versioning

2019.1
April 2019

PERFORCE

WWW. perforce. com

Copyright © 2015-2019 Perforce Software, Inc..
Allrights reserved.

All software and documentation of Perforce Software, Inc. is available from www.perforce.com. You can download and use
Perforce programs, but you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the
documentation, but you can not sellit, or sellany documentation derived from it. You can not modify or attempt to reverse engineer
the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce.

Perforce assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By downloading and
using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce.
All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce is listed in "License Statements" on page 71.

https://www.perforce.com/

Howtouse thisquide 6
Syntax CONVENtIONS 6
Feedback 6
Other documentation el 7

What's newin this guide 8

1| Introduction . 9
Centralized and distributed architecture 9
How servers relatetoeachother 12
Putting it all together .. 13

Server-to-server relationshipS ... 14
Client-to-server relationships 14
Command liNe aliasing ... o oL 14

2 | Installation of the Helix Core server 15
MaC OO X . 15
Linux without OS-specific packages 15
Linux with OS-specific packages 15
W iNdOWS . 16

3| Initializing a Server ... 17
Initialize an emplty SeIVer . 17

Read this first . 18
RUN P4 NIt .. 18
A fileS il 19
Prepare to fetch and push content betweenservers 19
Initialize a server and populate it with files L 19
RUN P4 ClONE 20
P4PORT meaning before and afteraclone 21
Getthelatest changes 21

4 | Fetchingand Pushing 22
Configure security for fetching and pushing 22
SpeCify What 10 COPY 23

Fetch alimited subset of history 24
What do fetch and push CopY 7o e 24
Attribute interoperability with 15.1 .. 24

Fetching, pushing, and changelists 24

Fetch and push a shelved changelist 25
Track a changelist’s identity from servertoserver 26
Track who pushed, fetched, or unzipped a changelist 27
Fetching and pushing fiXes e 27
Fetching and pushing integration history 27
Configure server to limit storage of archive revisions 29
Archivelimits: eNtriesS . 29
Per-serveridentities 31
When things go WrONg 31
Access denial ... il 31
History does not fit 32
Support for exclusive locking in personal servers 32
Using triggers with fetchand push 33
5|Streams and Branching 34
List Streams il 34
Create Stream s .. 34
Switch between streams ... 36
6 | Understanding Remotes 39
Choose aremMOte il 40
Create aremote .. 41
EXample .. 41

A closerlook at aremote SPeC 44
SPeCITY MaPPINGS .. 46
Using wildcards in remote SPECS ... oo 46
Mapping part of the depot 47
Mapping files to different locations on the personal server 47
Excluding files and directories i 47
Forward login to shared server 48
7 |Rewriting History 49
The tangent depot il 49
Resolve conflicts by rewriting local history 49
Rewrite history to revise local Work . .. 50
Scenario 1: Youforgot tomap afile 50

Scenario 2: Combine two changes to remove "noise" from the history 51

8 | Git:Helix server Command Mappings ...

Glossary

License Statements

How to use this guide

This guide tells you how to use the distributed versioning features of Helix server. Distributed versioning
allows you to work disconnected from a shared central server.

If you're new to version management systems, you don’t know basic Helix server concepts, or you've
never used Helix server before, read Solutions Overview: Helix Version Control System before reading
this guide.

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-£] The enclosed elements are optional. Omit the brackets when you compose
the command.

Previous argument can be repeated.

m p4 [g-opts] streamlog [-1 -L -t -m max] streaml

means 1 or more stream arguments separated by a space

m Seealsotheuseon . .. in Command alias syntax in the Helix Core P4
Command Reference

Tip
. . . has a different meaning for directories. See Wildcards in the Helix Core P4
Command Reference.

element1 | Either element1 or element2 is required.
element2

Feedback

How can we improve this manual? Email us at manual@perforce.com.

o~

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/introduction.syntax.alias.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/manuals/cmdref/Content/CmdRef/filespecs.html#Wildcards
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
mailto:manual@perforce.com

Other documentation

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.
Earlier versions of this guide: 2018.2, 2018.1, 2017.2, 2017.1

https://www.perforce.com/support/self-service-resources/documentation
https://www.perforce.com/manuals/v18.2/dvcs/Content/DVCS/Home-dvcs.html
https://www.perforce.com/manuals/v18.1/dvcs/
https://www.perforce.com/manuals/v17.2/dvcs/
https://www.perforce.com/manuals/v17.1/dvcs/

What's new in this guide

What'’s new in this guide

For a complete list of what's new in this release, see the Release Notes.

http://www.perforce.com/perforce/r19.1/user/relnotes.txt

1 | Introduction

This sections covers the following topics:

Centralized and distributed architecture 9
How servers relate to each other 12
Putting it all together . L 13
Server-to-server relationships L 14
Client-to-server relationships L 14
Command line aliasing L 14

Centralized and distributed architecture

Solutions Overview: Helix Version Control System mentioned that version control systems can
implement either a centralized model or a distributed model. Helix server supports both of these models,
as well as configurations that are a hybrid of the two.

In a centralized model, users interact directly with a shared server, checking out files, working in those
files, and then checking them back in to the shared server:

Server

._‘

Clients

Note
The client is a program that users interact with, such as the Helix server command line client, P4V,

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html

Centralized and distributed architecture

I and P4Connect. Clients, in turn, interact with servers, which can also interact with each other.

Some clients might access a subset of the files stored on the shared server, while other clients might
access all the files stored on the server.

The distributed model gives users access to a repository of archived files — and changes to those files

— from a server running on their local machine. This means that the entire history of a file is contained on
each user’s machine. A user can manage versioned content without interacting with any other Helix Core
server, also called Helix server or p4d, or even connecting to a network. A user can also rewrite and
revise history to discard unwanted intermediate changes. The distributed model allows users to work
experimentally, to try out changes and branch new streams, without interfering with others' work, and
without the need for a network connection.

The distributed model:

Shared Server

== personal
= server

Clients

In the distributed model, a user can work on their individual server until they’re ready to copy content to a
shared server, making the content available to other users.

Unlike other version control systems, such as Git, users can copy a subset of the shared server's
content to the server on their own machine, rather than copying the entire shared server repository.

In this model, users first submit changes to their personal server and then push changes to a shared
server. A different user can then fetch those changes from the shared server to have a copy on their
personal server.

Each client can submit changes to its respective personal server and then push changes to and fetch
changes from the shared server. The distributed model with push and fetch of a subset of files:

10

Centralized and distributed architecture

Shared Server

-—- push
— fetch
---- submit

#== personal
== server

) .
A

Clients

The distributed model also supports a hybrid workflow that includes both centralized and distributed
client-server relationships. This allows users both to share their work by connecting their individual server
to a shared server, and to interact directly with a shared server. A hybrid configuration:

Shared Server

-—- push
— fetch
---- submit

== personal
== server

Clients

11

How servers relate to each other

In addition, Helix server distributed versioning allows synchronization of content across multiple offices
orteams. Youusethep4 fetchandp4 push commands if the servers are networked or the p4
zipandp4 unzip commands if they’re not. See "Managing Distributed Development” in Helix Core
Server Administrator Guide: Fundamentals.

How servers relate to each other

From the point of view of intended use, the servers are either personal servers or shared servers:

Personal Server ... Shared Server ...

Runs on an individual Where individual users store their changes so that other users
user’s machine have access to these changes
Used by a single user Used by multiple users concurrently

Shared Server

---- submit

personal
server

/
‘l
Clients

Client 1 interacts with the Server 1 personal server, which in turn interacts with the shared server.
Client 2 interacts with the Server 2 personal server, which in turn interacts with the shared server.

From the point of the view of Client 1, Server 1 is alocal server and Server 2 is a remote server:

12

https://www.perforce.com/manuals/p4sag/Content/P4SAG/managing.distributed.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Putting it all together

Remote Server

-—- push
— fetch
---- submit

== personal
== server

Local
Server

-l
Client

Putting it all together

Client 1 and Server 1 share the same machine. Similarly, Client 2 and Server 2 share a different machine.

Shared Servers

-—- push
— fetch
---- submit

e personal
== server

Clients

13

Server-to-server relationships

Server-to-server relationships

Server 1 and Server 2 are personal servers. Server 3 and Server 4 are shared servers.

Server 1 pushes changes to and fetches changes from Server 4. So does Server 2. Server 2 can fetch
the changes Server 1 pushed, enabling the two personal servers to share content.

Shared servers 3 and 4 fetch and push changes from and to each other.

Client-to-server relationships

From the point of view of Client 1, Server 1 is a local server and Servers 3 and 4 are remote servers.
From the point of view of Client 2, Server 2 is alocal server and Server 4 is a remote server.
Client 3 interacts with Server 4 without an intervening personal server.

Server3 and Server4 are relating within a centralized architecture, rather than a distributed architecture.

Command line aliasing

Note
As with classic Helix server commands, you have the option of applying aliases to personal server
commands, to do such things as:

m abbreviation
m creating more complex commands
m automating simple multi-command sequences

m providing alternate syntax for difficult-to-remember commands

For more information, see P4 Command Reference.

14

https://www.perforce.com/perforce/doc.current/manuals/cmdref/

2 | Installation of the Helix Core server

Mac OS X

Open a web browser.

Navigate to http://www.perforce.com/downloads.
Download the helix-versioning-engine-{x86,64}.{tgz, zip} file.
Extract the Helix Core server (p4d) and Helix server Command Line (p4) from the tgz/zip file.

Open a Terminal window.

© o M 0 N -

Make the downloaded files executable:
$ chmod +x Downloads/p4*

7. Move the files into a common execution path:

$ sudo mv Downloads/p4* /usr/local/bin/

Linux without OS-specific packages

Open a web browser.

Navigate to http://www.perforce.com/downloads.

Download the helix-versioning-engine-{x86,64}.{tgz, zip} file.

Extract the Helix Core server (p4d) and Helix server Command Line (p4) from the tgz/zip file.

Open a Terminal window.

o a0 M w0 N -

Make the downloaded files executable:
$ chmod +x Downloads/p4*

7. Move the files into a common execution path:

$ sudo mv Downloads/p4* /usr/local/bin/

Linux with OS-specific packages

1. Open aweb browser.

2. Navigate to http://package.perforce.com

15

http://www.perforce.com/downloads
http://www.perforce.com/downloads
http://package.perforce.com/

Windows

3. Follow the instructions to configure a package repository and install OS-specific packages.

Windows

Note
You need administrator privileges to install the server.

Open a web browser.
Navigate to http://www.perforce.com/downloads.
Download the Helix server Command Line installer.

Run the installer you downloaded.

a H» . Dd =

Accept all of the defaults.

This gives you the p4d executable (Helix Core server) and the p4 executable (Helix server Command
Line).

16

http://www.perforce.com/downloads

3 | Initializing a Server

This section describes how to start up a personal server, presenting two different approaches.

1. Thefirst approach initializes an empty server. Choose this if you want to work in isolation on a
personal server, developing and possibly branching code, and versioning locally. See "Run p4 init"
on the next page.

2. The second approach copies content from another (shared) server to populate the newly initialized
server with files and history; this is known as cloning. This approach is best when working
collectively on an existing project; users work on a set of project files that are managed on a
shared server. The users make changes to the files on their personal server and then push the
changes to a shared server, which then makes these changes available to other project users. At
any given time, users can fetch the latest content from the shared server. See "Run p4 clone" on

page 20.

Initialize an empty server 17
Read this firSt 18
RUN P4 NIt 18
A IS 19
Prepare to fetch and push content between servers 19

Initialize a server and populate it with files 19
RUN DA ClONE . 20
P4PORT meaning before and after a clone 21
Get the latest changes 21

Initialize an empty server

Use this approach if you want to work in isolation on a personal server, developing and possibly
branching code.

In this workflow, you invoke the p4 init command in your working directory to initialize a personal
server and set it up with everything needed to start versioning files.

Also in this section:

Read this first ... L 18
RuUN P4 init . 18
Add fIles L 19
Prepare to fetch and push content between servers 19

17

Read this first

Read this first

In order to fetch from or push to a shared server, the case sensitivity of your personal server must match
that of your shared server. Whenyourunp4 init, Helix server attempts to set the case sensitivity of
your personal server to match that of the shared server specified in your current PAPORT setting.

If you know which shared server your personal server will be fetching from and pushing to, runp4 init
-p. passing in the address of the shared server. This tells the Helix Core server to discover the shared
server’'s case sensitivity and Unicode support settings and apply them to your personal server; this
makes the two servers compatible.

If Helix server can’t discover a shared server, the p4 init command will fail. You must then run this
command:
$ p4 init -Cx

where CO sets the server to case-sensitive and C1 sets it to case-insensitive; set the option to match the
case sensitivity of the shared server with which you’re communicating.

Similarly, in order to fetch from or push to a shared server, the Unicode support of your personal server
must match that of the shared server. When yourunp4 init, Helix server attempts to set the
Unicode support of your personal server to match that of the shared server specified in your current
P4PORT setting. If Helix server can’t discover a shared server, Unicode support defaults to off. If you
later want to turn Unicode support on, you can run this command:

$ p4d -xi -r /users/username/dvcsdir/.pdroot

Run p4 init
Hereis thep4 init command syntax:

pd4 [-u user] [-d dir] [-c client] init [-h -gq] [-c stream] [-Cx] [-xi -
n] [-p]
P4 initincludes a number of command-line arguments:

= To configure your personal server without Unicode support, pass the —n option.

m To have Helix server create the personal server’s files in a directory other than the current
directory, specify the directory with the —d option.

m Use the —gq option to suppress informational messages.

m Usethe -c [stream] option to create the specified stream as the mainline stream rather than
the default / /stream/main.

Directories and files

Thep4 init command creates the following directories and files in the directory in which the
command is invoked:

18

Add files

m . pdroot - Adirectory containing the database files that will contain the metadata about files
checked into Helix server.

m .pdignore -Alist of files Helix server shouldn’t add or reconcile.

m . p4config -A file containing configuration parameters for the client-server connection.
In addition, the p4 init command does the following:

m Creates a PACLIENT workspace. Note that the client option allwrite is set by default,
making files writable without the need to check them out withp4 edit first. You must,
however, issue ap4 reconcile command before shelving or submitting files.

m Creates a stream depot.

m Creates aninitial stream, called main.

Add files

At this point, you are ready to add files to your server. You can create them, copy them and then run p4
reconcile —orp4 rec forshort —to mark all of your source files to be added to Helix server and
thenp4 submi t to submit them. If you are new to Helix server, see the "Managing Files and
Changelists" chapter of the Helix Core Server User Guide.

Prepare to fetch and push content between servers

If you subsequently want to push your work to a shared server or fetch files from a shared server, you
must create a remote spec withthe p4 remote command. See "Fetching and Pushing" on page 22
and "Understanding Remotes" on page 39 for more information.

Initialize a server and populate it with files

This approach is best when working collectively on an existing project; users work on a set of project files
that are managed on a shared server.

To start this process, users invoke the p4 clone command to obtain from the shared server a copy of
the files associated with the project. This is a convenient way to ensure that users receive the set of files
they need to participate in the project.

The user can then work on these files and periodically push changes back to the shared server from
which the files were cloned. They can also periodically fetch to get the latest changes made by others to
the shared serverfiles.

Also in this section:

RUN P4 CloNe 20
P4PORT meaning before and after a clone

19

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Run p4 clone

Get the latest changes 21

Run p4 clone

Hereisthep4 clone command syntax:

P4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -r
remote
p4 [-u user] [-d dir] [-c client] clone [-m depth] [-v] -p port -f
filespec
P4 clone includes a number of command-line arguments:
m The -d option specifies the directory where you want to create the server’s files. If you don’'t
specify this option, the files are created in the current directory.

m The —p option specifies the address of the shared server you wish to clone from. The -p
preceding P4PORT is optional. If not specified, p4 clone uses the shared server specified by
the PAPORT environment variable. See "P4PORT meaning before and after a clone" on the facing
page for a discussion of how PAPORT has a different meaning before and after a clone.

m The —m option performs a shallow fetch; only the last number of specified revisions of each file are
fetched.

m The —r option specifies the remote spec installed on the shared server to use as a template for
the clone and stream setup. You can obtain the name of the desired remote from the shared server
administrator or runthe p4 remotes command against the shared server to obtain a list of
candidates to choose from. At the time of cloning, Helix server will copy the remote from the
shared server to the personal server and name it origin. For more information on remotes, see
"Understanding Remotes" on page 39.

m The - £ option specifies afilespec in the shared server to use as the path to clone; this path will
also be used to determine the stream setup in the personal server. You can specify the — £ option
or the —x option but not both.

It is optional to specify the — £ string on the command line. Instead, you can simply follow * “p4
clone *with_filespec_.

m The —v option specifies verbose mode.

m The —c option lets you customize the name of the stream that p4 clone creates.

20

P4PORT meaning before and after a clone

P4PORT meaning before and after a clone

When you clone from a shared server to create a personal server, the PAPORT argument you pass to the
p4 clone command specifies the address of the shared server you wish to clone from. If you don’t
pass a PAPORT value via the —p option, Helix server uses the value of PAPORT set in the current
command environment to identify the address of the shared server you wish to clone from.

After a clone, PAPORT refers to the personal server's PAPORT setting in its PACONFIG file.

Directories and files

Thep4 clone command creates all the directories and files that the p4 init command creates. In
addition, p4 clone creates aremote called origin on the personal server. A remote is a mapping of
files on a personal server to files on a shared server and is required for fetching, pushing, and cloning; it
describes exactly which files should be copied from a personal server to a shared server or vice-versa. It
is described in detail in "Understanding Remotes" on page 39.

Get the latest changes

To update your personal server with the latest changes from the shared server, unp4 fetch. See
"Fetching and Pushing" on page 22 for more information.

21

4 | Fetching and Pushing

Fetching and pushing lie at the heart of a collaborative distributed workflow; they enable users to perform
a number of major tasks:

m To copy changelists from a personal server to a shared server
m To fetch changelists from a shared server that were pushed there by other personal servers
m To obtain and work with a subset of a shared server’s entire repository.

m To copy work between two personal servers

Administrators can also use fetching and pushing to copy changelists between shared servers.

Fetch and push are to the distributed versioning model what sync and submit are to classic Helix server's
central server model.

Clone and fetch are supported by all replica types (readonly, build farm, forwarding replica, edge server,
workspace server, standby, forwarding standby, etc.). All forwarding replica types (edge, forwarding,
forwarding-standby, workspace) support push by automatically forwarding the push to the commit server.
Replicas of type readonly, build farm, and standby refuse push.

Thep4 £fetch command copies the specified set of files and their history from a remote serverinto a
local server. The p4 push command copies the specified set of files, and their history from a local
server to a remote server. Both commands are atomic: either all the specified files are fetched or pushed
or none of them are.

Ifap4 push command fails after it has begun transferring files to the remote server, it will leave those
files locked on the remote server. The p4 opened command will display 1ocked, and the files
cannot be submitted by any other user. If the p4 push command cannot be quickly retried, you can use
thep4 unlock -r command tounlock the files onthe remote server.

Thep4 push command is not allowed if there are unsubmitted changes in the server from which you're
pushing; use p4 resubmi t to resubmit those changes first, or discard the shelves withp4 shelve
-d if they are not wanted. For more informationonp4 unsubmit andp4 resubmit, seethe
example at "Resolve conflicts by rewriting local history" on page 49.

To monitor the progress of the fetch or push, pass the —I option to the command:

$ p4 -I fetch
$ p4 -I push

Configure security for fetching and pushing

In order to fetch and push between servers, the respective servers must have authentication and access
permissions configured correctly:

22

Specify what to copy

m The user name on the remote server must be the same as the user name on the local server. This
will be the case by default unless you have specified the RemoteUser field in the remote
server's remote spec.

m The user must exist on the remote server.
m The user must have read (fetch) and write (push) permission on the remote server.

m The server.allowpush and server.allowfetch configuration settings must be set to on (they’re off by
default) on both the remote server and the local server. See the command p4 help
configurables for more information.

m The user must be logged into the remote serverviap4 login -r.

Specify what to copy

As described in "Understanding Remotes" on page 39, you typically specify which files will be pushed or
fetched by listing depot paths in the DepotMap field of the remote spec. You can further narrow the set
of files to be fetched or pushed with one of two command-line arguments: one specifying a filespec
pattern and the other specifying a stream (with the —S option).

If a filespec or stream name is provided, and the remote spec uses differing patterns for the local and
remote sides of the DepotMap, the filespec argument or stream name must specify the files using the
local server's depot syntax. Note that the filespec must always be provided using depot syntax, not client
syntax nor filesystem syntax. For more information, see "Understanding Remotes" on page 39.

m To specify a remote you pass the —r option and the name of the remote tothe p4 fetch orp4
push command. If —r is not specified, the defaultis -r origin:

$ p4 fetch -r markm-remote
m To specify afilespec you pass afilespec patterntothe p4 fetch orp4 push command.
$ p4 fetch //depot/projectx/...

m To specify a stream you pass the —S optiontothep4 fetchorp4 push command. Note
that the stream must be listed in a depot mapping in your remote spec.

$ p4 fetch -S //stream/dev

where dev is the name of the stream on your local server

Note that when you specify a filespec or a stream, Helix server cannot use the performance optimization
provided by the remote spec.

Unlike other versioning engines such as Git, you do not have to fetch or push the entire contents of the
remote server’s repository; rather, you can fetch or push whatever subset of the repository you like. You
specify this subset in the remote spec or at the command line of the fetch or push command.

Also in this section:

23

Fetch a limited subset of history

Fetch a limited subset of history 24

Fetch a limited subset of history

If you have a server with a lot of history you may only want to fetch the latest few revisions to save on
local storage. To do so, use the -m N option:

$ p4 fetch -m 5

This specifies that the server perform a shallow fetch, fetching only the last 5 revisions of each file. You
can also take a slice of your history as noted above.

What do fetch and push copy?

In addition to the specified set of files, the changelists that submitted those files, and integration records,
fetching and pushing to a server also copies the following:

m attributes

m any fixes associated with the changelists, but only if the job that is linked by the fix is already
present in the local server

Note
Zipping and unzipping files also copies attributes and fix records.

Also in this section:
Attribute interoperability with 15.1 24

Attribute interoperability with 15.1

2015.1 DVCS servers don’t support fetching and pushing of attributes. If you try to push files with
attributes from a 2015.1 server to a 2016.1 server, the 2016.1 server will detect that the attribute data was
not provided and not include any attributes on the pushed files.

If 2 2016.1 server tries to push files with attributes to a 2015.1 server, the 2015.1 server quietly ignores
the attributes data.

Fetching, pushing, and changelists

When changelists are added to the target server during a fetch or a push, they are given new change
numbers but they retain the same description, user, date, type, workspace and set of files.

24

Fetch and push a shelved changelist

When the files are added to the target server during a fetch or a push, they are kept in their same
changelists, as new revisions starting after the current head. The new revisions retain the same revision
number, file type, action, date, timestamp, digest, and file size.

Although the changelists are new submitted changelists in the target server for a fetch or a push, none of
the submit triggers are run in the target server. For more information about submit triggers, see "Using
triggers to customize performance” chapter in the Helix Core Server Administrator Guide: Fundamentals.

If a particular changelist includes some files that match the filespec or stream restriction, and other files
that do not, then only the matching files are included in the fetch or push. Note that if a remote spec is
also provided, only the files that match the restriction and are mapped by the remote spec are included in
the fetch or push. In other words, not all files in the changelist will necessarily be fetched or pushed. For
example, consider the following Depo tMap in a remote spec:

//stream/main/p4/... //depot/main/p4/. ..

Suppose you have a changelist with the following files:

//stream/main/p4/foo
//stream/jam/bar

Only //stream/main/p4/£foo will be pushed or fetched, as it matches the remote spec mapping.

Also in this section:

Fetch and push a shelved changelist 25
Track a changelist’s identity from servertoserver 26
Track who pushed, fetched, or unzipped a changelist 27

Fetch and push a shelved changelist

The Helix server allows you to fetch, push (and zip) a shelved changelist instead of one or more
submitted changelists. This gives you more flexibility if your workflow typically involves shelved
changelists.

Note
Both the local and the remote server must be version 2016.1 or higher to support copying a shelved
changelist.

Copying a shelf always results in the creation of a new shelf in the destination server; existing shelves,
even if similar, are not overwritten.

There are two key differences between copying a submitted changelist and copying a shelved changelist:

m To copy a submitted changelist, you must have write access to the changelist’s files; by contrast,
need to have open access to the shelf’s files in the target server. As a reminder, open access
means the user can open add, edit, delete, or integrate the files.

25

https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/chapter.scripting.html%3FTocPath%3DUsing%2520triggers%2520to%2520customize%2520behavior|_____0
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/chapter.scripting.html%3FTocPath%3DUsing%2520triggers%2520to%2520customize%2520behavior|_____0
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Track a changelist’s identity from server to server

m The resulting new shelf is owned by the user who issued the push, fetch, or zip command, even if
the shelf copied was owned by a different user.

Track a changelist’s identity from server to server

As described earlier, a changelist gets renumbered each time it gets fetched, pushed, or unzipped; as a
result, it quickly becomes difficult to determine which changelist is which across a series of servers.
Changelist 12 on one server may not be the same as changelist 12 on another server.

Helix server includes a global changelist ID feature which allows you to assign to a changelist a
permanent ID that remains the same from server to server. This is an opt-in feature. There are two
workflows for enabling global changelist IDs. They are summarized in the following subsections:

Workflow 1: Let Helix server generate global changelist IDs
The majority of Helix server users will likely choose to have global changelist IDs system-generated.
To have Helix server generate the IDs for you, follow these steps:
On a personal server:
1. Runthep4 configure commandtoset submit.identity towhichever of the three
possible formats you prefer:
m uuid: auniversally-unique identifier
s checksum: a checksum
m serverid: acombination of the serverid + changelist number

This causes Helix server to generate a global changelist ID and write it to the Identi ty field of
the change spec for the changelist in question, each time a change is submitted. For more
information, see the description of the submit . identi ty configurable in the "Configurables’
chapter of the Helix Core P4 Command Reference.

2. Runp4 submi t to submit the changelist. Once you've done this, the changelist ID appears in
the Identi ty field of the change spec.

3. Runp4 describe changelistnumber tofind out what changelist ID was generated.

Workflow 2: Enter global changelist ID manually

Choose this workflow if you want to customize your global changelist ID names. For example, you may
want to name a changelist according to the bug it corresponds to in your bug database.

On a personal server:

1. Runp4 submi t to submit your changelist.
2. Edit the change spec to set the value of the Identi ty field to the desired value.
3. Runthep4 push,p4 fetch,orp4 unzip command.

On the shared server:

26

http://www.perforce.com/perforce/doc.current/manuals/cmdref/appendix.configurables.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Track who pushed, fetched, or unzipped a changelist

m Runp4 describe -I changelistIDto retrieve the changelist number of the changelist
that was pushed, fetched, or unzipped.

Track who pushed, fetched, or unzipped a changelist

Helix server includes a feature — relevant only for users of Helix server’s distributed versioning features
(DVCS) — that lets you distinguish between who created a particular changelist and who pushed,
fetched, or unzipped it later. This gives you more visibility into scenarios in which one user pushes,
fetches, or unzips another user's work.

You use the change spec’s ImportedBy field —viathep4 change command — to specify the
name of the userwhoranthep4 fetch,p4 push, orp4 unzip command thatimported this
changelist into the shared server.

The ImportedBy field is filled in at the point when Helix server stores the changelist in the target
shared server.

Fetching and pushing fixes

If you plan to share fixes — that is, jobs associated with changelists — between servers when fetching
and pushing (as well as zipping and unzipping) you must ensure that:

m The two servers have identical job specs

= You have manually copied the jobs you plan to push, fetch, zip, or unzip from one server to the
other. You do this with the p4 job command.

Inthe example below, p_server is pushingajobto s server: You generate the job output
by runningp4 Jjob -o and specifyingthe s_serwvexr name and port number and then pass
the job forminto s_server by runningp4 job -i.

$ P4 -p s_server:1667 job -o JobName | p4 job -i

Fetching and pushing integration history

When you merge from one stream to another, you must have both streams mapped in the remote spec in
order to push or fetch integration history.

Consider the following example:

1. You clone from a shared server to create a personal server and the following remote spec, called
origin:

A Helix Remote Specification.

RemotelID: origin

27

Fetching and pushing integration history

Address: pd4demo:1666

Owner: Jschaffer

Options: unlocked nocompress

Update: 2015/06/29 13:14:26

Access: 2015/06/29 13:14:57

Description:

Created by Joe Coder.

LastFetch: default
LastPush: 12305
DepotMap:
//talkhouse/main/... //depot/Talkhouse/main-dev/...

//talkhouse/releasel.0/... //depot/Talkhouse/rell.0/...

2. Inthe personal server, branch a development stream (dewv), make changes to some files in that
stream and submit them.

3. Merge changes from the dev stream to the main stream.
4. Runp4 push.

You will observe that although the files were pushed to the shared server, the integration history was not.

To ensure that integration files are pushed or fetched, both the merge source and the merge target must
be included in the remote spec.

1. Modify the remote spec to add a line under Depo tMap for development stream
//talkhouse/dev/. . .:

DepotMap:
//talkhouse/main/... //depot/Talkhouse/main-dev/...

28

Configure server to limit storage of archive revisions

//talkhouse/dev/... //depot/Talkhouse/jschaffer-dev/...
//talkhouse/releasel.0/... //depot/Talkhouse/rell.0/...

2. Runp4 push.

3. Observe that both files and integration history were pushed to the shared server.

Configure server to limit storage of archive revisions

Recall that server files have two portions: the file data itself — known as the archive or archive file — and
the file’s metadata — information describing the file, such as its size and its owner.

Because digital asset archives take up substantial storage space, it would be convenient to control how
many revisions of the archive you store locally when you fetch the digital asset files to your personal
server. Moreover, because source code doesn’t impose this same storage burden, it would be equally
helpful to control the source code archive files separately from the digital assets when fetching quantities
of archives.

The ArchiveLimits: fieldinthe personal server's remote spec allows you to do just this. Using
ArchivelLimits:, you specify how many revisions of afile or files archive(s) you want to store
locally with a fetch. This is regulated at the level of one or more files, so if you store your digital asset files
in separate subdirectories from source code files, you can impose the archive limits on just the digital
asset files, leaving source code files unaffected.

ArchiveLimits: does not affect the fetched files' metadata; the fetch stores metadata for the entire
history of the files.

If youdon't set ArchiveLimits : the server defaults to storing all archive revisions.

Note
ArchiveLimits: are applied during the p4 fetch operation only. However, since they apply

top4 fetch, they also affect p4 clone, if they are set in the remote spec invoked by p4
clone.

Also in this section:
ArchiveLimits: entries .. 29

ArchivelLimits: entries

AnArchiveLimits: entry consists of a sequence of one or more lines of the form £ilespec
depth, where:

29

Archivelimits: entries

m ArchiveLimits: is specified as a path in the local (receiving) server, such as

DepotMap:

//stream/main/... //depot/main/...
ArchivelLimits:

//stream/main/... 1

s filespecis afile or subdirectory of files
m depth dictates how many relative revisions of the archive files to store
The depth field can be a non-negative integer, or the special word all, which tells the server to store

all revisions of the file or files specified in that line’s £ilespec. Setting depth to 0 tells the server not
to store any archives for files specified in this line’'s £ilespec.

The integer value 0 means that a fetch will not store any archive files, just metadata, for the files
specified in the £ilespec entry on this line.

A positive integer N means that no more than N archives should be stored for each file in this section of
your repo. For example, suppose you have a file whose latest revision is 17 and the depth setting for
the ArchiveLimits: entry governing this file is 2. This means that when the file is fetched, the
server will store the archive for revisions 17 and 16 only.

ArchivelLimits: behavior operates at the level of afilespec, so you can separate what the server
does with digital assets files from what it does with source code:
1. Store the digital assets files in a distinct folder from the source code files

2. DescribingArchiveLimits: behavior for each of these folders on separate lines
Consider the following sample ArchiveLimits: entry:

ArchivelLimits:
/). /*.zip 1
Il oooll™ois® O
//.../*.rpm O
//depot/main/.../*.zip 3
//depot/rel*/.../*.zip all
//depot/.../*.mpd 2

This would result in the server behavior summarized in the following table:

File or files Server behavior

//depot/main/my/proj/component/MyClass.java All revisions of the archive
file are stored on the server

30

Per-server identities

File or files Server behavior

//artifacts/Windows/Windowsl1l0.iso No archive is ever stored for
this file
//depot/main/my/proj/builds/myProj.zip The three most recent

revisions of the archives are
stored on the server

//depot/dev/my/proj/builds/myProj.zip Only the most recent
revision of the archive is
stored on the server

//depot/rell.0/my/proj/builds/myProj.zip Al revisions of archives are
stored on the server

Per-server identities

There are distributed versioning scenarios in which you want to fetch and push from/to multiple shared
servers and you need to use a different Helix server identity for each server. You can specify the identity
Helix server should use for a particular shared server in the RemoteUser field of that shared server's
spec. Thep4 fetchandp4 push command then use that identity for authentication against that
shared server.

When things go wrong

Fetch and push have a couple of failure scenarios that require action on the part of the user or shared
server administrator.

Also in this section:

Access denial . 31
History does not fit 32
Access denial

If there are permissions or authentication problems for any of the reasons outlined in the section
"Configure security for fetching and pushing” on page 22, the fetch or push will fail with a message from
the shared server. The user or shared server administrator must then address the problem before the user
can attempt the fetch or push again.

31

History does not fit

History does not fit

Afetchis only allowed if the files being fetched fit cleanly into the personal server, building precisely on a
shared common history. If there are any conflicts or gaps, the fetch is rejected. Otherwise, the
changelists from the shared server become new submitted changelists in the personal server.

If the fetch fails, this is probably because you have attempted to fetch revisions from the shared server to
your personal server that are in conflict with revisions you’'ve submitted to your personal server.

"Rewriting History" on page 49 explains what to do to resolve this situation.

Note
As a best practice, you should generate a report of conflicts before attempting a fetch, with the -n

command-line option.

Support for exclusive locking in personal servers

There are certain types of files that cannot be merged and therefore must only be changed by one user at
a time. Examples include binary files, Microsoft Word files, and digital assets such as 3D models. In
Helix server, to ensure that only one user at a time writes changes to a file, you assign the file the filetype
+1. This gives the user a global exclusive lock on the file when they open it for edit.

You can enable the support of exclusive locking in personal servers forthep4 edit,p4 delete,
andp4 revert commands. Todo this, pass the --remote=remo te option, where remote
specifies the shared server from which you cloned the locked file. The lock is held in the shared server.
All personal servers which cloned the file from the shared server must observe this lock restriction.

Note

For exclusive locking to work, the shared server must be configured as a commit server. For
instructions on how to do this, see "Create commit and edge server configurations" in the Helix Core
Server Administrator Guide: Multi-Site Deployment.

Once you have the locked file in the shared server:

m you can safely change the file, submit your changes, and push to the shared server; your lock
releases automatically at the end of the push

m no other useris allowed to either edit that file or push it from their personal server
Exclusive locking works as follows for each of the three commands:

m Forp4 edit, the --remote=remote option opens the file for edit in your personal server,
and additionally — if the file is of type +1 — takes a global exclusive lock on the file in the shared
server from which you cloned the file. That global exclusive lock is retained until you push the
updated file to the shared server, or until you use p4 revert --remote=remote torevert
the file.

32

http://www.perforce.com/perforce/doc.current/manuals/p4dist/chapter.distributed.html#distributed.setup.config
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Using triggers with fetch and push

m Forp4 delete, the --remote=remote option opens the file for delete in your personal
server, and additionally — if the file is of type +| — takes a global exclusive lock on the file in the
shared server from which which you cloned the file. That global exclusive lock is retained until you
push the deleted file to the shared server, or until youuse p4 revert --remote=remote
filename torevert thefile.

m Forp4 revert, the --remote=remote option reverts the named file in your personal
server, and additionally — if the file is of type +1 — releases the global exclusive lock on the file in
the shared server from which you cloned the file.

Using triggers with fetch and push

Helix server triggers are user-written programs called by a Helix Core server when certain operations are
performed. You use triggers to extend or customize Helix server functionality. Triggers are of different
types, depending on the event that causes the trigger to execute.

The trigger types in the list below have been defined to help you customize the processing done in
committing changes in a distributed versioning environment. These three types may be invoked during
the execution of thep4 push,p4 fetch, orp4 unzip commands.

m Use push-submit triggers to customize processing during that phase of the
push/fetch/unzip command when metadata has been transferred but files have not yet been

transferred.

m Use push-content triggers to customize processing during that phase of the
push/fetch/unzip command when files have been transferred but their contents have not yet
been committed.

m Usepush-commi t triggers to do any clean up work or other post processing work after
changes have been committed.

Note
Push triggers are disabled by default forthe p4 unzip command. See the p4 unzip command

in the Helix Core P4 Command Reference for instructions on how to enable push triggers.

For more information, see "Triggering on pushes and fetches" in the Helix Core Server Administrator
Guide: Fundamentals.

33

http://www.perforce.com/perforce/doc.current/manuals/cmdref/p4_unzip.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.scripting.html#scripting.triggers.push
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

5 | Streams and Branching

A stream is a special branch that has hierarchy and policy. To learn about the types of streams, see
"Stream depots” in the Helix Core Server User Guide.

When using a personal server createdby p4 initorp4 clone, Helix serveruses streams as
containers for your code. Helix server will create a stream named main to contain the content created or
cloned. If, in working with your personal server, you need to create new streams, use the p4 switch
command. You can then use merge and copy to move individual changes between streams.

Important

If you clone using a remote that maps stream paths, you don't get the stream structure of the shared
server. Instead, the parent and children structure is flattened to mainline streams. Any creation of the
stream structure on the local DVCS server is a manual process.

Note
Although you can switch between streams on a shared server, you cannot use p4 switch to

create new streams on shared servers.

Note
DVCS does not support task streams.

List streams

To display the current stream, issue p4 swi tch with no options.

S p4 switch
main
main is the default stream created by the p4 clone command.

Pass the -1 optiontop4 switch tolist all known streams.

$ p4 switch -1
main *

The asterisk indicates the current stream. As we haven’t yet created any other streams, main is the
only one listed and is the current stream.

Create streams

p4 switch -c streamcreates a new stream and populates it with a copy of all the files in the
current stream.

34

https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/depots.stream.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Create streams

$ p4 switch -c dev
dev

A quick comparison reveals that the two streams contain identical files:

$ p4d diff2 //stream/main/... //stream/dev/...

==== //stream/main/a/testl.txt#l (text) - //stream/dev/a/testl.txt#l
(text) ==== identical

==== //stream/main/a/test2.txt#l (text) - //stream/dev/a/test2.txt#l
(text) ==== identical

The -P parent option specifies that p4 switch -c should create a new stream with the
specified stream as its parent, rather than the default of the current stream; thus the new stream will be
populated with the files from the specified parent stream, rather than the files from the current stream.

$ p4 switch -P main -c child of main

child of main
As the following output demonstrates, //stream/main is the parent of //stream/child of
main:

$ p4 stream -o //stream/child of main

A Helix Stream Specification.

#

Stream: The stream field is unique and specifies the depot path.
Update: The date the specification was last changed.

Access: The date the specification was originally created.

Owner: The user who created this stream.

Name: A short title which may be updated.

Parent: The parent of this stream, or 'none' if Type is mainline.
Type: Type of stream provides clues for commands run

between stream and parent. Five types include
'mainline’,

'release', 'development' (default), 'virtual' and 'task'.
Description: A short description of the stream (optional).

Options: Stream Options:

allsubmit/ownersubmit [un]locked

[no] toparent [no]fromparent mergedown/mergeany

Paths: Identify paths in the stream and how they are to be

generated in resulting clients of this stream.

Path types are share/isolate/import/import+/exclude.

35

Switch between streams

Remapped: Remap a stream path in the resulting client view.
Ignored: Ignore a stream path in the resulting client view.
#

Use *'p4d help stream'* to see more about stream specifications and

command.

Stream: //stream/child of main

Update: 2015/02/06 10:57:04

Access: 2015/02/06 10:57:04

Owner: Jschaffer

Name : //stream/child of main (created by switch command)

Parent: //stream/main

Type: development
Options: allsubmit unlocked toparent fromparent mergeany
Paths:

share

Switch between streams
To switch between streams issue this command:

$ p4 switch other stream

When switching to a different stream, the p4 switch command firstruns p4 reconcile to
determine which files have been modified in the current stream. It then shelves any changed files for
safekeeping.

After switching to a new stream, p4 switch syncs your client workspace to the head of the new
stream, and unshelves any files that were open in the default changelist the last time you used that
stream.

36

Switch between streams

Note

You cannot switch to a new stream if files are open in a numbered changelist. If files are open in the
default changelist, they will be shelved and reverted prior to switching to the new stream, and will be
automatically unshelved when switching back to this stream.

The shelving process stores files in the depot from a pending changelist without submitting them. If you
decide that the change you were making in a particular stream, actually belongs in a different stream, you
canrunp4 switch -r stream name to apply the changes on the current stream to the stream
specified in the switch command.

$ p4 switch -r stream name

Here’s the list of all of our streams:

$ p4 switch -1
child of main
dev *

gui

main

Here's the stream we're currently in:

$ p4 switch
dev

Here are the files currently in / /stream/dev:

$ p4 files //stream/dev/...

//stream/dev/dvcs commands/remote.xml#l - branch change 43 (text)
//stream/dev/dvcs commands/remotes.xml#l - branch change 43 (text)
//stream/dev/dvcs commands/resubmit.xml#1l - branch change 43 (text)
//stream/dev/dvcs commands/switch.xml#1 - branch change 43 (text)
//stream/dev/dvcs commands/unsubmit.xml#l - branch change 43 (text)
//stream/dev/dvcs commands/unzip.xml#l - add change 44 (text)
//stream/dev/dvcs commands/zip.xml#l - edit change 45 (text)
//stream/dev/dvcs user guide/00 preface.xml#l - edit change 46 (text)

Now we open new files in dev:

$ p4 add a b c

If we then issue the following command, we switch to the gui stream but bring over the content that was
changed in dev:

37

Switch between streams

$ p4 switch -r gui
S 1s

a b ¢ remote.xml remotes.xml switch.xml zip.xml

38

6 | Understanding Remotes

A remote describes how depot files are mapped between a personal server and a shared server. A remote
spec — which describes a remote — is created by the user and has a unique name. A remote is used
withthe p4 push,p4 fetch,andp4 clone commands to describe source and target directories.
The following picture illustrates mapping depot files between a personal and a shared server:

Personal Server

//stream

//stream/devy/..." —] //depot/main/dev/... |

j //depot/main/test/...

j //depot/main/doc/...

As depicted in the figure above, a remote holds file mappings between depot paths on the shared server
and depot paths on the personal server.

m Forfetch and clone operations, it defines the files from the remote server that you want in your
personal server and specifies where you want them to reside.

m Fora push operation, it defines the files from the personal server that you want in the shared
server and specifies where you want them to reside.

Remotes provide a convenient way to give you the exact files you need to work on a particular project.
You can simply clone from a shared server, specifying the remote id of the remote that maps the desired
files. These files are then copied to your personal server. Once they’ve cloned, you canuse p4 fetch
to refresh the files initially obtained with the p4 clone command. Overtime, you can edit remote
specs to account for the addition of new streams or the removal or old streams.

Using remotes allows you to fetch a subset of all the files on the shared server. This is in contrast to other
distributed versioning systems, such as Git, which require that you fetch all files.

Note that when you clone a set of files from a shared server by specifying a remote, Helix server creates
a new remote named origin and copies the remote into your local system. Future invocations of p4
fetch do not need to pass in —r remote, as origin is now assumed to be the remote.

There are two different scenarios in which remotes are created:

39

Choose aremote

m You create a remote on a shared server so that other users can clone from this server and obtain
the files they need to work on a project. Note that to create a remote on a shared server, you must
have an access privilege of open or greater. While this task typically falls in the domain of an
administrator, it does not require administrator privileges.

m You— anindividual user — create one or more remotes on your personal server so that you can
eventually push your work to and fetch files from one or more shared servers.

You would create a remote on a shared server to dictate which subset of the shared server’s repository a
personal server retrieves when it clones from the shared server. After cloning, you use the origin
remote on your personal server. You can then either edit the origin remote or create a different remote
to control which streams the personal server fetches and pushes when using that remote.

Also in this section:

Choosearemote 40
Createaremote 41
EXample 41
Acloserlook at aremote SpeC 44
Specify MappiNgs ..l 46
Using wildcards in remote SPECS ... 46
Mapping part of the depotl 47
Mapping files to different locations on the personal server 47
Excluding files and directories 47
Forward login to shared server ..l 48

Choose a remote

How you choose a remote depends on whether you're doing your initial clone or your daily fetching and
pushing.

If you're cloning, runthe p4 remotes command on the shared server from which you’re cloning and
choose the remote you want to work with. To look at the details of each remote, runp4 remote -o.
Alternatively, you can obtain the id of the remote from a shared server administrator or project leader.

If you want the content of just one depot path, pass the filespec of the path by runningp4 clone -f.

Inatypical use case, you've cloned from a shared server and the remote has been copied to your
personal server and named origin. Because origin is the default remote, you don’t have to pass a
remote id during subsequent fetches and pushes.

In the more complicated case, you're pushing to or fetching from multiple shared servers, in which case
youwouldrunp4 remotes on your personal server and choose from among the remotes based on
which shared server you're fetching from or pushing to. Again, youcanusep4 remote -o togetthe
details of each remote.

40

Create a remote

Create a remote

Remotes are described by remote specifications or remote specs for short. To create a remote, run the
p4 remote command. This puts the remote specification or spec into a temporary file and invokes the
editor configured by the environment variable PAEDITOR. You then edit the file to specify depot
mappings and other information. Saving the file creates the remote spec.

To modify the remote, invoke p4 remote with the remoteID of the remote you want to modify;
make changes in the editor to the remote spec and then save the file.

Also in this section:

EXample il 41
A closer look at aremote spec 44
Example

In the following example, we get a list of remotes from a shared server, clone from the shared server
using one of those remotes, show the resulting remote in the personal server —withthe p4 remotes
command — and then demonstrate that the path listed in the remote spec corresponds to the path
passed to the clone command:

1. First, we query a shared server for a list of remotes:

$ p4 -p perforce:1666 remotes

bpendleton-dev 'To clone bpendleton's dev branch, use this remote

spec. '

h dev localhost:1666 'Created by hmackiernan.

markm-remote?2 'Created by markm. '

mw—dvcs localhost:1666 '[dvcs] Map main server components. Created
|l

by mwittenberg.
p4-client localhost:1666 'Created by cmclouth.

2. Then we choose a remote and pass it to the clone command:

$ p4 clone -p perforce:1666 -r markm-remote2
Helix db files in '/Users/jschaffer/.pd4root' will be created if
missing...
Helix Versioning Engine info:
Server initialized and ready to use.

Remote origin saved.

41

Example

main

Changes were successfully fetched.
Remote origin saved.
Server jschaffer-dvcs-1422657971 saved.
3. Nextwerunp4 remotes against the personal server to show that we now have a remote
called "origin," which is the renamed remote we cloned from the shared server:
$ p4 remotes

origin perforce:1666 'Description '

4. Next, we write the contents of the remote we passedtop4 clone to standard output to show
the depot paths it specified in the Depo tMap field:

S p4 -p perforce:1666 remote -o markm-remote2

A Helix Remote Specification.

#

RemotelD: The remote identifier.

Address: The P4PORT used by the shared server.

Owner: The user who created this remote.

RemoteUser: The user to use when connecting to the shared
server.

Options: Remote options: [un]locked, [no]compress.
Update: The date this specification was last
modified.

Access: The date of the last 'push/fetch' on this
remote.

Description: A short description of the shared server
(optional) .

LastFetch: The last changelist that was fetched.

LastPush: The last changelist that was pushed.

DepotMap: Lines to map local files to remote files.
ArchivelLimits: Limits on the number of files fetched
(optional) .

RemotelID: markm-remote?

42

Example

Owner: markm

Options: unlocked compress

Update: 2014/12/11 11:15:15

Description:

Created by markm.

LastFetch: default
LastPush: default
DepotMap:

//depot/main/p4/msgs/... //depot/main/p4/msgs/...

Finally, we write the contents of the origin remote spec to standard out to demonstrate that the
depot paths it specifies in the DepotMap field are identical to those of markm-remote2:

$ p4 remote -o origin

A Helix Remote Specification.

#

RemotelD: The remote identifier.

Address: The P4PORT used by the shared server.

Owner: The user who created this remote.

Options: Remote options: [un]locked, [no]compress.

Update: The date this specification was last modified.

Access: The date of the last 'push/fetch' on this remote.
Description: A short description of the shared server (optional).
LastFetch: The last changelist that was fetched.

LastPush: The last changelist that was pushed.

DepotMap: Lines to map local files to remote files.
RemotelID: origin

Address: perforce:1666

43

A closer look at a remote spec

Owner: Jjschaffer

Options: unlocked nocompress

Update: 2015/01/30 14:46:51

Description:

Description
LastFetch: 996270
LastPush: 4024
DepotMap:

//depot/main/p4/msgs/... //depot/main/p4/msgs/. ..

Notice that the LastFetch and LastPush values have changed to non-zero numbers to
reflect the highest changelist numbers most recently fetched and pushed.

A closer look at a remote spec

The following is a sample remote spec, describing a remote named server-main-darwin:

A Helix Remote Specification.
RemotelID: server-main-darwin
Owner: bruno
Options: unlocked compress
Update: 2014/11/21 08:21:32
Description:
A fairly complete set of the mainline code for the widget, with

the

test harness limited to the darwin platform. Fetch or clone from

44

A closer look at a remote spec

this remote spec if you want to build and work with the mainline

widget code on a darwin machine.

LastFetch: default
LastPush: default
DepotMap:
//stream/main/widget/... //depot/main/widget/...
//stream/main/widget-test/server/... //depot/main/widget-
test/server/...
//stream/main/widget-test/bin/... //depot/main/widget-test/bin/...
-//stream/main/widget-test/bin/arch/... //depot/main/widget-—
test/bin/arch/...

//stream/main/widget-test/bin/arch/darwin90x86 64/...
//depot/main/widget-test/bin/arch/darwin90x86 64/...
//stream/main/widget-doc/code/... //depot/main/widget-doc/code/...

The following table describes the remote spec in more detail:

Entry Meaning

RemoteID The remote identifier.

Address The P4PORT used by the shared server.

Owner The user who created this remote.

Options The unlocked option setting means people other than the owner can update
([un] locked, the spec. The compress option setting means that when files are fetched or
[no] compress pushedthey're compressed, as a performance optimization. You would only
) set this option to uncompress if you were fetching or pushing binary files

that were already in a compressed format.

Update The date this specification was last modified.

Access The date of the last push or fetch on this remote.

Description A short description of the shared server (optional).

LastFetch The last changelist that was fetched. If set to default, means no fetches have

yet occurred.

45

Specify mappings

Entry Meaning

LastPush The last changelist that was pushed. If set to default, means no pushes have
yet occurred.

DepotMap The lines to map local files to remote files. The file paths on the left-hand side
are on the personal server. The file paths on the right-hand side are on the
shared server.

Remote specs give you the full power of Helix server client view syntax. For details, see the section
"Defining client workspaces" in the chapter Configuring P4 in the Helix Core Server User Guide. Below is
some basic information about creating a remote spec.

Specify mappings
Remote specs consist of one or more mappings. Each mapping has two parts:

1. The left-hand side specifies one or more files on the personal server.

2. The right-hand side specifies one or more files on the shared server.

Although the two sides don’t have to name identical paths, they can.

Enclose paths with spaces in quotation marks.

Also in this section:

Using wildcards in remote specs 46
Mapping part of the depot 47
Mapping files to different locations on the personal server 47
Excluding files and directories 47

Using wildcards in remote specs

To map groups of files in remote specs, you use Helix server wildcards (*, . . .). Any wildcard used on
the remote side of a mapping must be matched with an identical wildcard in the mapping’s local side. You
can use the following wildcards to specify mappings in your remote spec:

Wildcard Description

& Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

Now consider another remote spec’s simple depot path:

46

http://www.perforce.com/perforce/doc.current/manuals/p4guide/chapter.configuration.html
http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Mapping part of the depot

//stream/main/... //depot/main/...

All files in the shared server’s depot path are mapped to the corresponding locations on the personal
server. For example, the shared serverfile / /depot/main/widget-test/server. txtis
mapped to the personal server file / /stream/main/widget-test/servert. txt.

Mapping part of the depot

If you are interested only in a subset of the depot files on the shared server, map only that portion.
Reducing the scope of the personal server's files also ensures that your commands do not inadvertently
affect the entire depot. To restrict the personal server scope, map only part of the shared server depot to
the personal server.

Example Mapping part of the shared server depot to the personal server

Remote Spec:
//stream/main/... //depot/main/widget-doc/code/...

In this case, Helix server will map only the shared server files under the code subdirectory to the
personal server's / /stream/main directory.

Mapping files to different locations on the personal server

Remote specs can consist of multiple mappings; these map portions of the shared server file tree to
different parts of the personal server. If there is a conflict in the mappings, later mappings have
precedence over earlier ones.

Example Multiple mappings in a single personal server
The following remote spec ensures that release notes in the remote p4 -doc folder reside in the
personal server in a top-level folder called doc:

Remote Spec:
//stream/main/src/... //depot/main/p4/...
//stream/main/doc/... //depot/main/p4-doc/relnotes/...

Excluding files and directories

Exclusionary mappings enable you to exclude files and directories from being mapped to a personal
server. To exclude afile or directory, precede the mapping with a minus sign (=). Whitespace is not
allowed between the minus sign and the mapping.

Example Using a remote spec to exclude files from a personal server
Suppose you’re working on a game project and you don’t need the art files to be local:

47

Forward login to shared server

Remote Spec:
//stream/main/... //my game/...

-//stream/main/art/... //my game/art/...

Forward login to shared server

You can log into a shared server from a personal server without needing to know the shared server's
P4PORT setting.

To do this, issue the following command:

$ p4 login -r remotespec
where remotespec is the spec corresponding to the server you want to log into.

If RemoteUser is specified in the remote spec, the login is performed for that user.

48

7 | Rewriting History

Helix server allows you to rewrite the history of the changes in your server. There are two reasons why
you would want to rewrite history:

1. Toresolve conflicts between a personal server’s file history and a shared server’s file history that
arise when fetching or pushing.

2. Torevise local work: correcting mistakes, clarifying intent, and streamlining the local commit
history by consolidating intermediate changes.

The tangent depot

As part of rewriting history, Helix server makes use of the tangent depot; the tangent depot is a system-
generated, read-only location in whichthe p4 fetch -t command stores conflicting changes. The
p4 fetch -t command automatically creates the tangent depot named tangent if one does not
already exist. This is further explained in the next section, "Resolve conflicts by rewriting local history"
below.

For more information on the various kinds of depots, including the tangent depot, seethe p4 depot
chapter in the Helix Core P4 Command Reference.

Resolve conflicts by rewriting local history

If there are conflicts between a personal server’s file history and a shared server’s file history, a fetch will
fail and report the conflict. This happens when you’ve changed some files in your personal server at the
same time that someone else has changed those files in the shared server.

In this situation, yourunp4 fetch -t. This does the following:

1. Relocates conflicting changelists to the tangent depot.

2. Fetches the remote work from the shared server.

Youthenrunp4 resubmit -mtoresubmitand automatically merge the conflicting local changes.

If your conflict(s) involved the same line orlines thenp4 resubmit -m fails and you need to:

1. Runp4 resolve toresolve the conflict(s).

2. Runp4 resubmit -Rm toresume the resubmit.
Consider the following example:

1. User A clones from a shared server, bringing down revision 4 of / /stream/main/foo.c
(//stream/main/foo.ci#4).

2. UserA edits £00. ¢ and then submits it, creating //stream/main/foo.c#5.

49

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Rewrite history to revise local work

3. Inthe meantime, User B, has made two edits to //stream/main/£foo . c and pushed them
to the shared server. The shared serveris now at revision 6 (//stream/main/foo.c#6).

4. User A attempts to push their change to the shared server, but the push fails because the file
version history doesn't fit.

5. User A must now run fetch -t, which relocates User A’s revision 5 to the tangent depot, and
fetches revisions 5 and 6 from the shared server.

6. UserAnow runs resubmit -m. UserA’s change, originally numbered 5, is submitted as
revision 7.

7. User A pushes their change to the shared server. The push succeeds.

Rewrite history to revise local work

This section examines two scenarios in which you might want to revise local work by rewriting history.

Also in this section:

Scenario 1: You forgottomap afile 50
Scenario 2: Combine two changes to remove "noise" from the history 51

Scenario 1: You forgot to map a file

Suppose you wrote a new class in C++: src/module/UserUtils. cpp and it uses the header file
inc/UserUtils.h. Youthenissue this command:

$ p4 submit UserUtils.cpp

Your build script complains about the missing include file UsexrUtils. h. Tofix this, you would issue
the following commands:

$ p4 unsubmit UserUtils.cpp

S p4 resubmit -e

Now UserUtils. cpp is open. You would then run:

$ p4 add -c NNN UserUtils.h
S p4 resubmit -Re
Where NNN is a changelist number.

Now the permanent history shows that your change contains both UserUtils . cpp and
UserUtils.h.

50

Scenario 2: Combine two changes to remove "noise" from the history

Scenario 2: Combine two changes to remove "noise" from
the history

Suppose you add a feature in change NNN. A reviewer finds a problem with it, so you make another
change to fix the problem. Then you realize that the second change is just adding noise to the history.

To fix this, you would do the following:

(We assume your first change is NNN and your second change is MMM)

1. Unsubmit both changes:

$ p4 unsubmit //...QNNN, QMMM
Change MMM unsubmitted and shelved
Change NNN unsubmitted and shelved

2. Start the partially-interactive resubmit process:

$ p4 resubmit -e

Now change NNN is open for edit.

Make the change you originally made in changelist NNN.
4. Update the change description:

$ p4 change NNN
5. Resume the resubmit process:

S p4 resubmit -Re

Now the second change is open for edit but you don’t need it. You can demonstrate this to yourself
by runningp4 resolve,p4 diff,andp4 revert -atosee thatnothingis changed by
the second change.

6. Delete the second change:

$ p4 shelve -d -c MMM
$ p4 change -d -c MMM

Alternatively, to delete the second change you could runp4 resubmit -i andchoosed.

51

8 | Git:Helix server Command Mappings

The following table maps Git commands to their corresponding Helix server commands:

Git Command Helix server Command

git add P4 reconcile

git branch p4 switch -1

git checkout --orphan new branch p4 switch -cm new_stream

git checkout branch P4 switch stream

git clone repository P4 clone -p host:port -r
remote

git commit P4 submit

git init p4 init

git merge branch P4 merge --from stream

git pull p4 fetch -t -r remote -S
stream

git pull --all p4 fetch -t

git push P4 push -r remote -S stream

git push --all P4 push

git rebase P4 unsubmi t followed by p4
resubmit

git remote P4 remotes

git remote add new_ p4 remote new_remote

remoterepository

git status p4 status

git checkout -b new-branch P4 switch -c new-branch

For more details on Helix server commands, see the Helix Core P4 Command Reference.

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

For files: The file revision, in conjunction with the source revision, used to help determine what
integration changes should be applied to the target revision. For checked out streams: The public
have version from which the checked out version is derived.

53

Glossary

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

54

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix server. The changes specified in the
changelist are not stored in the depot until the changelistis submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix server depot.

check out

To designate one or more files, or a stream, for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix server files that is not streams-based. The default depot name is depot. See also
default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

55

Glossary

56

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

Glossary

copy up

A Helix server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core server. It contains all versions of all files ever submitted to the
depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

57

Glossary

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files, or stream versions, are compared. A conflictis

a pair of unequal diffs between each of two files and a base, or between two versions of a stream.
(verb) To compare the contents of files or file revisions, or of stream versions. See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

extension

Similar to a trigger, but more modern. See "Helix Core Server Administrator Guide: Fundamentals"
on "Extensions".

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

58

Glossary

file pattern

Helix server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix server users to collaborate on the same

59

Glossary

60

projects using their preferred tools.

graph depot

A depot of type graph thatis used to store Git repos in the Helix server. See also Helix4Git.

group

A feature in Helix server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix server

The Helix server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix server depots.

iconv

A PHP extension that performs character set conversion, and is an interface to the GNU libiconv
library.

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix server. The job template determines what information is
tracked. The template can be modified by the Helix server system administrator. A job describes work

to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job daemon

A program that checks the Helix server machine daily to determine if any jobs are open. If so, the
daemon sends an email message to interested users, informing them the number of jobs in each
category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

journal

A file containing a record of every change made to the Helix server’'s metadata since the time of the
last checkpoint. This file grows as each Helix server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server's metadata.

61

Glossary

62

L

label
A named list of user-specified file revisions.

label view
The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy
A method used by Helix server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file
Afile that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot
Any depot located on the currently specified Helix server.

local syntax
The syntax for specifying a filename that is specific to an operating system.

lock
1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the PALOG environment variable or use
the p4d -L flag when starting the service.

Glossary

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata is stored in the Perforce database
and is separate from the archive files that users submit.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are

63

Glossary

64

examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix server has assigned a number.

(0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix server user who created a particular client, branch, or label.

P

p4
1. The Helix Core server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d
The program that runs the Helix server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

Glossary

Perforce

Perforce Software, Inc., a leading provider of enterprise-scale software solutions to technology
developers and development operations (“DevOps”) teams requiring productivity, visibility, and scale
during all phases of the development lifecycle.

project

In Helix Swarm, a group of Helix server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depotlocated on another Helix server accessed by the current Helix server.
replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

65

Glossary

66

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file, or two versions of a
stream. You can choose to resolve file conflicts by selecting the source or target file to be submitted,
by merging the contents of conflicting files, or by making additional changes. To resolve stream
conflicts, you can choose to accept the public source, accept the checked out target, manually accept
changes, or combine path fields of the public and checked out version while accepting all other
changes made in the checked out version.

reverse delta storage

The method that Helix server uses to store revisions of text files. Helix server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A program that periodically checks the Helix server machine to determine if any changelists have
been submitted. If so, the daemon sends an email message to users who have subscribed to any of
the files included in those changelists, informing them of changes in files they are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

Glossary

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager. A tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

S

server data
The combination of server metadata (the Helix server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4AROOT environment variable or use the p4d -r
flag.

service
In the Helix Core server, the shared versioning service that responds to requests from Helix server
client applications. The Helix server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job

67

Glossary

statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

storage record

An entry within the db.storage table to track references to an archive file.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix server depot for processing.

super access

An access level that gives the user permission to run every Helix server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

68

Glossary

text file type

Helix server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script that is automatically invoked by Helix server when various conditions are met. (See "Helix
Core Server Administrator Guide: Fundamentals" on "Triggers".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation.

Vv

versioned file

Source files stored in the Helix server depot, including one or more revisions. Also known as an
archive file. Versioned files typically use the naming convention 'filenameV' or '1.changelist.gz'.

69

Glossary

view

A description of the relationship between two sets of files. See workspace view, label view, branch

view.

w

wildcard
A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; % %0
through % %39 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

70

License Statements

To get alisting of the third-party software licenses that Helix Core server uses, at the command line, type

thep4 help legal command.

To get alisting of the third-party software licenses that the local client (such as P4V) uses, at the
command line, typethep4 help -1 legal command.

71

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation

	What’s new in this guide
	1 | Introduction
	Centralized and distributed architecture
	How servers relate to each other
	Putting it all together
	Server-to-server relationships
	Client-to-server relationships

	Command line aliasing

	2 | Installation of the Helix Core server
	Mac OS X
	Linux without OS-specific packages
	Linux with OS-specific packages
	Windows

	3 | Initializing a Server
	Initialize an empty server
	Read this first
	Run p4 init
	Add files
	Prepare to fetch and push content between servers

	Initialize a server and populate it with files
	Run p4 clone
	P4PORT meaning before and after a clone
	Get the latest changes

	4 | Fetching and Pushing
	Configure security for fetching and pushing
	Specify what to copy
	Fetch a limited subset of history

	What do fetch and push copy?
	Attribute interoperability with 15.1

	Fetching, pushing, and changelists
	Fetch and push a shelved changelist
	Track a changelist’s identity from server to server
	Track who pushed, fetched, or unzipped a changelist

	Fetching and pushing fixes
	Fetching and pushing integration history
	Configure server to limit storage of archive revisions
	ArchiveLimits: entries

	Per-server identities
	When things go wrong
	Access denial
	History does not fit

	Support for exclusive locking in personal servers
	Using triggers with fetch and push

	5 | Streams and Branching
	List streams
	Create streams
	Switch between streams

	6 | Understanding Remotes
	Choose a remote
	Create a remote
	Example
	A closer look at a remote spec

	Specify mappings
	Using wildcards in remote specs
	Mapping part of the depot
	Mapping files to different locations on the personal server
	Excluding files and directories

	Forward login to shared server

	7 | Rewriting History
	The tangent depot
	Resolve conflicts by rewriting local history
	Rewrite history to revise local work
	Scenario 1: You forgot to map a file
	Scenario 2: Combine two changes to remove noise from the history

	8 | Git:Helix server Command Mappings
	Glossary
	License Statements

