O
HelixCore

Helix Core Server Administrator
Guide: Fundamentals

2018.2
October 2018

PERFORCE

WWW. perforce. com

Copyright © 1999-2018 Perforce Software.
Allrights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sellany documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or supportis provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
Allother brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 348.

https://www.perforce.com/

Howtousethisgquide 13
Syntax CONVENLIONS 13
Feedback ... il 13
Otherdocumentation 13

What's newinthis guide 14
207182 L 14
20181 patCh .. 14
2018, releaS e il 14
2017, 2 releaS e il 15

"Triggers for external file transfer" onpage 1 15
Server background tasks ... 15
Parallel threads 15

OV eIV W 16
Basic architecture ... 16
Basic WOIKI OW 17
AdMINIStrative aCCESS 18
Naming Helix Server 0bjects ... L 19

Installing and upgrading the server 21
Planning the installation 22

N WOIK 22
CPU 22
BTy 23
Disk space allocation il 23
eSSy S O 23
Protections and passWords 24
Linux package-based installation 25
PrereqUISIteS il 26
Installation .. 26
Post-installation configuration 28
UpPdating ...l 31
Linux non-package installation 33
Linux non-package installation: quick example 33
General considerations for Linux non-package installation 35

Creating a Helix Serverroot directory 36

Telling Helix Server applications which port toconnectto 36
Communicating port information 37
IPv6 support and mixed networks ... 38
Running the Helix Server (p4d) as an unprivilegeduser .. 38
Running from inetd 39
Starting the Perforce service 40
Stopping the Perforce service ... il 40
Restarting a running Perforce service 40
Windows installation 40
Windows installation: quick example 41
Windows services and Servers . L 42
Installing the Perforce service onanetwork drive 42
Starting and stopping the Perforce service 43
Multiple Perforce services under Windows 43
Windows configuration parameter precedence 45
Starting and stopping the Helix Server 45
Support forlong file names .. 46
Installed files . 46
Upgrading the Perforce service 47
Using old Helix Server applications afteran upgrade 48
Upgrading Helix Server ... 48
Upgrading Helix Server - between 2013.2and 2013.3 49
Verifying files by signature i 51
Release and license information 51
Adding or updating the license file 52
License file in the PAROOT direCtory 53
P4 liCeNSe COMMaANG ... L 54
Helix Visual Client (P4V) Administrationtool 54
Configuring the server 56
Enabling distributed versioning 57
Defining filetypes With p4 typemap 57
Implementing site-wide exclusive locking with pd typemap 60
DefiNiNg AEPOtS 60
Managing client requests ... 60

Using P4PORT to control access tothe server 61

Requiring minimum client revisions ___ 61
Rejecting client connection requests 61
Disabling user metrics collection prompt 63
Case sensitivity and multi-platform development 63
Helix Server On LiNUX .o 64
Helix Server on Windows 65
Setting up and managing Unicode installations 65
OVEIVIBW ... 65
Setting up aserverforUnicode 66
Configuring clients forUnicode il 69
Troubleshooting user workstations in Unicode installations 72
CoNfigUNG l0gGING . .. L 72
LOggiNg ©ITOTS 73
Logging file aCCesso L 73
Configuring P4V settings ... 73
Viewing effective PAV properties oo . 73
Precedence of P4V settings 74
Performance-related P4V properties 75
Feature-related P4V properties . .. 77
Miscellaneous P4V properties ... il 81
Swarm integration propertiesl 82
Staging P4V helpfiles locally 84
Troubleshooting P4V properties iiiiiiiiiiiiii.. 85
Windows configuration parameter precedence 86
Working with depots 88
OV IV W L 89
NamMINg AePOtS . 89
Listing depOtS ... 89
Deleting depots . il 89
Moving depots in a production environment 90
Standard depots ... 90
Stream dePOtS . 91
SPEC POt il 91
Creating the spec depot il 91
Populating the spec depot with currentforms 92
Controlling which specs are versioned i 92

Large sites and old filesystems 93

ArChive depPOtS ..o 93
Unload depot . il 93
Remote depots and distributed development 94
How remote depots WorK 94
Using remote depots forcode dropso i 95
Securing the server 101
Securing the server: Workflow L 102
Using SSL to encrypt connections toa Helix Server 103
Serverand client SetUD ... 103
Key and certificate management 103
Key and certificate generation 104
Secondary cipher suite 107
Using SSLinamixed environment 107
USIiNg fireWalls . . . 107
Authentication options 107
OV IV W L 108
Serversecurity levels ... 108
Defining authentication forusers 110
Authenticating using passwords and tickets 111
Password-based authentication 112
Password strength requirements .. il 112
Managing and resetting User passwords 113
Ticket-based authentication 114
Login process for the USer 114
Login process forthe SerVer . L 115
Logging out of Helix Server 115
Determining ticket status L 116
Invalidating auser's ticket 116
LDAP authentication L 116
Authenticating against Active Directory and LDAP servers 116
Creating an LDAP configuration L 117
Defining LDAP-related configurables 120
Authorization using LDAP groups 121
Testing and enabling LDAP configurations L 121

Getting information about LDAP servers 122

Using LDAP with single sign-on triggers 123

Multi-factor authentication L 123
HeliX SAML 124
PrereqUISIIES 125
System ReqUIrEMENtS ... L 125
AUtNONZING ACCESS ... 126
When should protections be set? .. 126
Setting protections with p4 protect 126
Granting access to groups Of USEIS 134
Comments in protectiontables 138
How protections are implemented 138
Access levels required by Helix Servercommands 139
Backup and recovery ...l 148
Backup and recovery CoNCepts iiiiiiiiill.. 148
ChecKpoint filles ..l 149
JoUmal fileS ... 151
Versioned files 154
Backup ProCeaUIES 154
Recovery proCedUreS ... il 158
Database corruption, versioned files unaffected 158
Both database and versioned files lost ordamaged 160
Ensuring system integrity after any restoration 162
FaillOVer .l 163
High Availability and Disaster Recovery 164
Potential data l0ss ... 166
FailoVer PrOCESS ... 166
PrereqUISI eSS ... 167
Configurables affected 168
Monitoring the server . . 169
Monitoring disk space Usage 169
Specifying values for filesys configurables 170
Determining available disk Space L 170
MONItOrNg PrOCES S S ..l 170
Enabling process monitoriNg 171
Enabling idle processes MONnitoriNg 172

Listing running ProCeSSeS il 172

Diagnostic flags for monitoringthe server L 173

Performance Tracking o 173
Command TraCing 174
Setting the diagnostic flags o L 174
Showing information about locked files L 175
Auditing user file aCCeSS 175
Logging and structured log files 176
Examples of possible log entries 176
Logging ComMmMaNdsS ... il 177
Enabling structured l0Qging 178
Structured logfile rotation 179
Managing the serveranditsresources 180
Forcing operations with the -f flag L 181
Managing the sharing Of COde 182
Managing distributed development .. 182
Distributed development using Fetchand Push 183
Code drops without connecCtiVity L 185
Managing USerS 186
US eI Y DS L 186
Preventing automatic creation of USers 189
REeNaMING USEIS . L 189
Deleting 0bsolete USers 190
Reverting files left open by obsolete users 190
Deleting changelists and editing changelist descriptions 190
Managing Shelves ... L 191
Backingup aWoOrkSpace 192
Managing disk Spacel 192
Diskspace Requirements 192
SavIiNg disK SPACE L 193
Reclaiming disk space by archiving files 194
Reclaiming disk space by obliteratingfiles 195
Managing PrOCESSES L 196
Pausing, resuming, and terminating processes 196
Clearing entries inthe process table L 196

Terminating blocked proCeSSes 197

Managing the database tables 197

Scripted client deployment on Windows 197
Troubleshooting Windows installations 198
Resolving Windows-related instabilities 198
Resolvingissues with PAEDITOR or PADIFF . . 198
Tuning Helix Server for performance 200
Tuning for performance 201
Operating SY S eMS .. L 201
Disk SUDSY S eM L 201
File SY S emMS 202
CPU 202

M EMONY il 203

N WOIK L 204
Journal and archive location 205
USe Patlerns 205
Using read-only clients in automated builds 205
Using parallel processing for submits and syncs 206
Improving concurrency with locklessreads 207
Commands implementing lockless reads 208
Overriding the default locking behavior 210
Observing the effect of locklessreads 210
Side-track servers must have the same db.peekinglevel 211
Diagnosing slow response times ... 211
Hostname vs. |P address .. . 211
Windows wildcards ... 212
DNS lookups and the hosts file e 212
Location of the p4 executable 212
Working over unreliable networks 213
Preventing Server SWamp 214
USIiNg tight VIEWS L 214
Assigning proteCtions 215
Limiting database QUeries 215
Limiting simultaneous conNNections L 218
Unloading infrequently-used metadata 218
Scripting efficiently ... L 219

Using compression efficiently . 222

Other serverconfigurables 222

Checkpoints for database tree rebalancing 223
Customizing Helix Server: job specifications 224
The default Helix Serverjobtemplate 224
The job template’s fields 226
The Fields: field ... 226
The Values: filelds 228
The Presets: fleld .. L 228
The Comments: field 229
Caveats, warnings, and recommendations 230
Example: a custom template ... L 230
Working with third-party defect tracking systems 232
P4DTG, the Helix Defect Tracking Gateway i . 233
Building your own integration 233
TGOS 234
Creating triggerS . .. 236
SaAMPIE QO . 237
Trigger definition .. L 238
Execution environment il 240
THQQEr DS CS L 241
Triggering on sUbMItS . .. 249
Change-submit triggers L 251
Change-Content trigQerS ... L 252
Change-Commit tHgQErS ... L 254
Triggering on pushes and fetches 255
Similarity between p4 submit and p4 push 256
Differences between p4 submitand p4 push 258
Fields ona pd push trigger L 258
Push-sUbMIt tHQQers .. 260
PuUsSh-CoNteNnt trigQers ... L 261
Push-commit triggers 262
Triggering before or after commands 264
Additional triggers for push and fetchcommands 265
Triggering on journal rotation 266
Triggering on shelving eVents . L 267

Shelve-sUubmit trgQerS .. L 267

Shelve-Commit tHgQerS ... 268

Shelve-delete triggers . . 269
Triggening ON fIXeS .. 269
Fix-add and fix-delete triggers 270
THQGQEriNg ON fOMMIS L 271
FOrmM-SaVve trigQerS L 273
Form-oUt trigQerS .. . 274
FOrm-iN i ggerS . 275
Form-delete triggersl 276
Form-commit trigQers ... il 277
Triggering to use external authentication 278
Auth-check and service-check triggers 280
Single sign-on and auth-check-ssotriggers 282
Triggering for external authentication 287
Triggering for multi-factor authentication (MFA) 288
The list-methods phase (auth-pre-2fa) 289
The init-auth phase (auth-init-2fa) 290
The check-auth phase (auth-check-2fa) 290

N AN AD S . 291
Triggering to affect archiving 291
Triggering with depots of type graphl 293
graph-push-start .. 294
graph-push-referenCe 294
graph-push-reference-complete .. . 294
graph-push-complete 294
Triggers for external file transfer 295
Replica archive pull threads L 295
Edge server submits 296
Trigger script variables 297
Helix Core Server (p4d) Reference 309
S N X 309
DS It ON . . 309
EXit S atUS .. 309
OPtIONS L 309
USAQE NOLES 316
Related Commands .. 316

11

12

Moving a Helix Core Serverto anewmachine ... 318

Moving between machines of the same byte order 318
Moving between different byte orders that use the sametextformat 319
Moving between Windows and UN X . 320
Changing the IP address of your server 320
Changing the hostname of your server 320
Helix Core Server Control (pddctl) 321
Installation ... L 322
Configuration file format 322
Environment block . il 323
Server bloCK |l 323
Service types and required settings 325
Configuration file examples 326
Using multiple configuration files 327
PAdCt COMMaANAS .. 328
Gl oS S aANY . 330
License Statements 348

How to use this guide

Installation, configuration, and management of Helix Server (p4d) by a:

m System administrator - install and configure, ensure uptime and data integrity

m Helix Server administrator - users, depot access, and authentication

This section provides information on typographical conventions, feedback options, and additional
documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-£] The enclosed elements are optional. Omit the brackets when you compose
the command.

m Repeats as much as needed:

e alias-name[[$ (argl) ...
[$ (axgn)]]=transformation

m Recursive for all directory levels:

o« clone perforce:1666 //depot/main/p4...
~/local-repos/main

e p4 repos -e //gra.../rep...

element1 | Either element1 or element2 s required.
element2

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

What's new in this guide

What'’s new in this guide

This section provides a summary with links to topics in this Guide. For a complete list of what's new in
this release, see the Release Notes.

2018.2

m "Failover" on page 163 to a new master server is now an easier process

m Installation support for SUSE Linux Enterprise Server - see "Linux package-based installation" on
page 25

m Clarification on when trigger-based authentication can fall back to a password request: "Single
sign-on and auth-check-sso triggers" on page 282

m |f you want to write a trigger that requires users to log in with additional security, see "Triggering
for multi-factor authentication (MFA)" on page 288

m "Multi-factor authentication" on page 123 (MFA) is the current name for a feature that was
originally introduced as second-factor authentication (2fa)

m "Helix SAML " on page 124 is a new feature for authentication

2018.1 patch

If you want to write a trigger that requires users to log in with additional security, see "Triggering for multi-
factor authentication (MFA)" on page 288

Installation support for SUSE Linux Enterprise Server 11 and 12 - see "Linux package-based installation"
on page 25

2018.1 release

You no longer need to use the —z option to restore a compressed checkpoint or journal. This allows the
chaining of files for the restore. For example:

p4d -r . -jr checkpoint.42.gz journal.42 journal.43 journal

See the topic named ""Database corruption, versioned files unaffected" on page 158", which has a Note
about Version 2018.1

See graph-push-reference triggers at "Triggering with depots of type graph" on page 293

A new structured log, 1dapsync . csv, has been added to record the activity of p4 Idapsync. See
"Enabling structured logging" on page 178.

14

http://www.perforce.com/perforce/r18.2/user/relnotes.txt
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_labelsync.html

2017.2 release

2017.2 release

"Triggers for external file transfer" on page 295

See "Triggers for external file transfer" on page 295

Server background tasks

See p4 bgtask in the Command Reference

Parallel threads

p4 shelve now accepts the ——parallel flag to specify that multiple files should be transferred in
parallel, using independent network connections from automatically-invoked child processes. In addition,
new configurables net .parallel. shelve. * allow p4 shelve to automatically use parallel threads
to transfer files. Please seep4 help shelveandp4 help configurables forcomplete
information.

The net.parallel.sync.svrthreads configurable reduces the number of parallel transmit threads used by
sync commands when the total number of "user-transmit" threads (from all commands) running
concurrently in the server would exceed the value of this configurable. Server monitoring must be enabled
for this new configurable to take effect.

15

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_bgtask.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_shelve.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.parallel.sync.svrthreads

Overview

Read Solutions Overview: Helix Version Control System before you read this guide.

Basic architecture ... 16

Basic WOrkfloW 17

Administrative access 18

Naming Helix Server objects 19
Basic architecture

The simplest Helix Server configuration consists of a client application and server application
communicating over a TCP/IP connection. The server application manages a single repository that
consists of one or more depots. A client application communicates with the server to allow the user to
view:

m trees of versioned files
m repository metadata (file history, users, groups, labels, permissions)

Clients also manage local workspaces (local directories) that contain a subset of the files in the
repository. Users can view, check out, and modify these local files and submit changes back to the
repository. Versioned files are stored on the server in depots of various types, such as:

= |ocal
m stream (Helix Core Server User Guide covers Streams in depth)

m graph, which supports Git repos (see the Helix4Git Administrator Guide)

Figure 4-1 Single server

16

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
https://www.perforce.com/perforce/doc.current/manuals/p4guide/#P4Guide/chapter.streams.html
https://www.perforce.com/perforce/doc.current/manuals/helix-for-git/

Basic workflow

o W .._-_
Metadata Archives

Perforce Server

Administrators support this architecture by installing and configuring the server, setting up users and
security, monitoring performance, managing the resources used by the server, and customizing the
behavior of the server.

Tip
Various options for federated services, such as proxy, broker, and replica, are explained in the Multi-
Site Deployment guide.

See also "Centralized and distributed architecture" in Using Helix Core for Distributed Versioning
(DVCS).

Basic workflow

This book is roughly organized according to the administrator workflow. This section summarizes the
basic workflow for setting up, configuring, and managing Helix Server.

1. Set up the environment in which you will install Helix Server.

Review installation pre-requisites in "Planning the installation" on page 22.
2. Download and install Helix Server.

See "Installing and upgrading the server" on page 21.
3. Start the server.

See the appropriate section on starting the server in "Installing and upgrading the server" on
page 21.

17

https://www.perforce.com/perforce/doc.current/manuals/p4dist/#P4Dist/chapter.concepts.html
https://www.perforce.com/perforce/doc.current/manuals/p4dist/
https://www.perforce.com/perforce/doc.current/manuals/p4dist/
https://www.perforce.com/perforce/doc.current/manuals/dvcs/#DVCS/intro.central-and-distributed.html
https://www.perforce.com/perforce/doc.current/manuals/dvcs/

Administrative access

10.

11.

12.

13.

14.

Executethe p4 protect command to restrict access to the server.
See "When should protections be set?" on page 126.
Configure the server.

Basic configuration includes enabling distributed versioning if needed, defining depots, defining
case sensitivity and unicode, managing client requests, configuring logging,and configuring P4V
settings. See "Configuring the server" on page 56.

Define additional depots if needed.

See "Working with depots" on page 88.

Add users if they are not automatically added on login.
See "Creating standard users" on page 186.

Secure the server: set up secure client-server connection. Set up authorization and
authentication.

See "Securing the server" on page 101.

Back up the server.

See "Securing the server" on page 101.
Monitor server performance and resource use.
See "Monitoring the server" on page 169.

Manage the server and its resources: changelists, users, code sharing, disk space, and
processes.

See "Managing the server and its resources" on page 180.

Tune the server to improve performance.

See "Tuning Helix Server for performance" on page 200.
Customize Helix Server by extending job definitions.

See "Customizing Helix Server: job specifications" on page 224.
Customize Helix Server using trigger scripts.

See "Triggers" on page 234.

Administrative access

Helix Server security depends on the security level that is set and on how authentication and access
privileges are configured; these are described in "Securing the server" on page 101. Access levels
relevant for the administrator are admin and super:

m admin grants permission to run Helix Server commands that affect metadata, but not server

operation. A user with admin access can edit, delete, or add files, and can use the p4
obliterate command.

18

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html

Naming Helix Server objects

m super grants permission to run all Helix Server commands, allows the creation of depots and
triggers, permits the definition of protections, and enables user management.

Users of type operator are allowed to run commands that affect server operation, but not metadata.

All server commands documented in the P4 Command Reference indicate the access level needed to
execute that command.

Until you define a Helix Server superuser, every user is a superuser and can run any Helix Server
command on any file. After you start a new Perforce service, use the following command:
$ p4 protect

as soon as possible to define a Helix Server superuser.

Naming Helix Server objects

As you work with Helix Server, you will be creating a variety of objects: clients, depots, branches, jobs,
labels, and so on. This section provides some guidelines you can use when naming these objects.

Object Name

Branches A good idea to name them, perhaps using a convention to indicate the relationship of the
branch to other branches or to your workflow.

Client Depends on usage, but some common naming conventions include:

m user.machineTag.product

m user.machineTag.product.branch

Whether you use product or product. branch depends on whether your
workspace gets re-purposed from stream to stream (in which case you use just
product), or whether you have multiple workspaces, one for each branch (in which case
you use product. branch, effectively tying the workspace name to the branch).

A client may not have the same name as a depot.

Depot Depot names are part of an organizations hierarchy for all your digital assets. Take care
in choosing names and in planning the directory structure.

Itis best to keep the names short.

A client may not have the same name as a depot.

Jobs Use names that match whatever your external defect tracker issues look like. For
example PRJ-1234 for JIRA issues.

Labels Site-dependent, varies with your code management and versioning needs. For
example:R-3.2.0.

19

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Naming Helix Server objects

Object Name

Machine The host name, or something simple and descriptive. For example Win7VM,
Tags P4AMBPro (for Helix Server MacBook Pro).

User The OS user.

20

Installing and upgrading the server

This chapter describes how to install the Perforce service or upgrade an existing installation for
connected clients. For information on how to install a server that supports clients who want to work
disconnected, see the "Install" chapter of Using Helix Core Server for Distributed Versioning .

Many of the examples in this book are based on the UNIX version of the Perforce service. In most cases,

the examples apply equally to both Windows and UNIX installations. The material for UNIX also applies

to Mac OS X.

Warning

If you are upgrading an existing installation to Release 2013.3 or later, see the notes in "Upgrading the

Perforce service" on page 47 before proceeding.

Network

MOy -
Disk space allocation ... L
FileSy S emM
Protections and passwWords ... il
Linux package-based installation

Prerequisites
Installation
Post-installation configuration

Linux non-package installation: quick example
General considerations for Linux non-package installation
Creating a Helix Server root directory
Telling Helix Server applications which port to connect to
Communicating port information
IPv6 support and mixed networks
Running the Helix Server (p4d) as an unprivileged user
Running from inetd
Starting the Perforce service

Stopping the Perforce service
Restarting a running Perforce service

Windows installation: quick example
Windows services and servers
Installing the Perforce service on a network drive
Starting and stopping the Perforce service
Multiple Perforce services under Windows
Windows configuration parameter precedence

Updating
Linux non-package installation

Windows installation

21

Planning the installation

Starting and stopping the Helix Server 45
Support forlong file names .. 46
Installed files 46
Upgrading the Perforce service 47
Using old Helix Server applications afteranupgrade 48
Upgrading Helix Server il 48
Upgrading Helix Server - between 2013.2and 2013.3 49
Verifying files by signature ... 51
Release and license information 51
Adding or updating the license file 52
License file in the PAROOT directory 53
P4 license commMaNnd ... iiiiiiiiiio. 54
Helix Visual Client (P4V) Administrationtool 54

Planning the installation

The following sections describe some of the issues you need to think about before installing and
configuring the server.

NtWOIK 22

CPU 22

MmOy 23

Disk space allocation 23

Filesystem . 23

Protections and passwords 24
Network

Helix Server can run over any TCP/IP network. For remote users or distributed configurations, Helix
Server offers options like proxies and the commit/edge architecture that can enhance performance over a
WAN. Compression in the network layer can also help. For additional information about network and
performance tuning, see "Tuning Helix Server for performance" on page 200.

CPU

CPU resource consumption can be adversely affected by compression, lockless reads, or a badly
designed protections table. In general, there is a trade-off between speed and the number of cores. A
minimum of 2.4 GHZ and 8 cores is recommended. With greater speed, fewer cores will do: for example,
a 3.2 GHZ and 4-core processor will also work.

For additional details, see "CPU" on page 202.

22

Memory

Memory
There are a couple of guidelines you can follow to anticipate memory needs:

= Multiply the number of licensed users by 64MB.
m Allocate 1.5 kilobytes of RAM per file in the depot.

In general, Helix Server performs well on machines that have large memory footprints that can be used
for file system cache. 1/0 to even the fastest disk will be slower than reading from the file cache. These
guidelines only apply for a single server.

For additional information about memory and performance tuning, see "Tuning Helix Server for
performance" on page 200.

Disk space allocation
Perforce disk space usage is a function of three variables:

m Number and size of client workspaces
m Size of server database

m Size of server’s archive of all versioned files

All three variables depend on the nature of your data and how heavily you use Perforce.

The client file space required is the size of the files that your users will need in their client workspaces at
any one time.

The server’s database size can be calculated with a fair level of accuracy; as a rough estimate, it requires
0.5 kilobytes per user per file. (For instance, a system with 10,000 files and 50 users requires 250 MB of
disk space for the database). The database can be expected to grow over time as histories of the
individual files grow.

The size of the server’s archive of versioned files depends on the sizes of the original files stored and
grows as revisions are added. A good guideline is to allocate sufficient space in your PAROOT directory
to hold three times the size of your users' present collection of versioned files, plus an additional 0.5KB
per user per file to hold the database files that store the list of depot files, file status, and file revision
histories.

The db . have file holds the list of files opened in client workspaces. This file tends to grow more rapidly
than other files in the database. If you are experiencing issues related to the size of your db . have file
and are unable to quickly switch to a server with adequate support for large files, deleting unused client
workspace specifications and reducing the scope of client workspace views can help alleviate the
problem.

Filesystem

File size and disk I/O are the key issues here. For more information, see "File systems" on page 202.

23

Protections and passwords

Filesystem performance

Helix Server is judicious with its use of disk 1/0. Helix Server metadata is well-keyed, and accesses are
mostly sequential scans of limited subsets of the data. The most disk-intensive activity is file check-in,
where the Helix Core Server must write and rename files in the archive. Server performance depends
heavily on the operating system’s filesystem implementation, and in particular, on whether directory
updates are synchronous. Server performance is also highly dependent upon the capabilities of the
underlying hardware’s 1/0 subsystem.

Helix Server does not recommend any specific hardware configuration or file system. Linux servers tend
to have the best performance because of Linux’s asynchronous directory updating. However, a Linux
server might have poor recovery if power is cut at the wrong time.

Performance in systems where database and versioned files are stored on NFS-mounted volumes is
typically dependent on the implementation of NFS and the underlying storage hardware. Helix Server has
been tested and is supported using implementations that support the £1ock protocol.

Under Linux and FreeBSD, database updates over NFS can be an issue because file locking is relatively
slow. If the journal is NFS-mounted on these platforms, all operations will be slower. In general
(particularly on Linux and FreeBSD), we recommend that the Helix Server database, depot, and journal
files be stored on disks that are local to the machine running the Helix Core Server process or that they
be stored on a low-latency SAN device.

These issues affect only the Helix Core Server process (p4d). Helix Server applications, (such as p4,
the Helix Server Command-Line Client) have always been able to work with client workspaces on NFS-
mounted drives (for instance, workspaces in the users' home directories).

Separate physical drives for server root and journal

We recommend that the P4ROOT directory (that is, the directory containing your database and
versioned files) be on a different physical drive than your journal file:

m By storing the journal on a separate drive, you can be reasonably certain that, if a disk failure
corrupts the drive containing P4ROOT, such a failure will not affect your journal file. You can then
use the journal file to restore any lost or damaged metadata.

m Separating the live journal from the db . * files can also improve performance.

See "Backup and recovery" on page 148 and in "Journal and archive location" on page 205.

Protections and passwords

Until you define a Helix Core Server superuser, every user is a superuser and can run any Helix Core
Server command on any file. After you start a new Perforce service, use:

$ p4 protect

as soon as possible to define a Helix Server superuser. To learn more about how p4 protect works,
see "Authorizing access" on page 126.

24

Linux package-based installation

Without passwords, any user is able to impersonate any other Helix Server user, either with the —u flag
or by setting PAUSER to an existing Helix Server user name. Use of Helix Server passwords prevents
such impersonation. See the Helix Core Server User Guide for details.

To set (or reset) a user's password, eitheruse p4 passwd username (as a Helix Server
superuser), and enter the new password for the user, orinvoke p4 user -f username (alsowhile
as a Perforce superuser) and enter the new password into the user specification form.

The security-conscious Helix Server superuser also uses p4 protect to ensure that no access
higherthan 1ist is granted to unprivileged users, p4 configure toset the security leveltoa
level that requires that all users have strong passwords, and p4 group to assign all users to groups
(and, optionally, to require regular changes of passwords for users on a per-group basis, to set a minimum
required password length for all users on the site, and to lock out users for predefined amounts of time
after repeated failed login attempts).

Note
An alternate way to reduce security risk during initial setup or during a maintenance interval is to start
the Helix Core Server using localhost: port syntax. For example:

$ p4d localhost:2019

This forces the server to ignore non-local connection requests.

For complete information about security, see "Securing the server" on page 101.

Linux package-based installation

Note
Helix Server requires two executables:

m the Helix Core Server, also referred to as the Perforce service (p4d)

m at least one Helix Server application, such as the Command-Line Client (p4)

The Perforce service and applications are available on the Perforce web page for Downloads.

Distribution packages simplify the installation, update, and removal of software because the tools that
manage these packages are aware of the dependencies for each package.

The Perforce service is available in two distribution package formats:

m Debian (. deb) for Ubuntu systems
= RPM (. rpm)for CentOS, RedHat Enterprise Linux (RHEL), and SUSE

You caninstall packages for the Perforce service on the following Linux (Intel x86_64) platforms:

25

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html
https://www.perforce.com/downloads

Prerequisites

m Ubuntu 12.04 LTS (precise)

m Ubuntu 14.04 LTS (trusty)

m Ubuntu 16.04 LTS (xenial)

m Ubuntu 18.04 LTS (bionic)

m CentOS or Red Hat 6.x

m CentOS or Red Hat 7.x

m SUSE Linux Enterprise Server 12

Prerequisites

m root level access to the server that will host your Perforce service

= knowing whether you will need to stop and restart your server or not - see "Adding or updating the
license file" on page 52

= reading:
« "Case sensitivity and multi-platform development" on page 63
« "Setting up and managing Unicode installations" on page 65

to prepare for the choices you must make during "Installation" below

Installation

This topic assumes you have met the "Prerequisites" above.

The Perforce service is divided into multiple packages, so you can install just the components you need.
The component package names are:

m helix-p4d
= helix-p4dctl
m helix-proxy
m helix-broker
m helix-cli
The helix-p4d package installs the main component of a Perforce service, p4d, as well as the

command line interface (p4, which is distributed as helix-c1i), the service controller (p4dctl),
and a configuration script to set them up.

At minimum, you need to install the helix-p4d package. To install a different package, substitute its
name forhelix-p4d in the commands below.

Package installation requires sudo or root level privileges.

26

Installation

Verify the Public Key

To ensure you have the correct public key for installing Perforce packages, verify the fingerprint of the
Perforce public key against the fingerprint shown below.

1. Download the public key at https://package.perforce.com/perforce.pubkey
2. To obtain the fingerprint of the public key, run:
gpg --with-fingerprint perforce.pubkey
3. Verify that it matches this fingerprint:
E581 31CO0 AEA7 B082 C6DC 4C93 7123 CB76 OFFl1 8869

Follow the instructions that apply to you:

m "For APT (Ubuntu) " below
m "For YUM (Red Hat Enterprise Linux or CentOS)" below

m "For SUSE Linux Enterprise Server" on the next page

For APT (Ubuntu)

1. Add the Perforce packaging key to your APT keyring

wget -qO - https://package.perforce.com/perforce.pubkey |
sudo apt-key add -

2. Add the Perforce repository to your APT configuration.

Create afile called /etc/apt/sources.list.d/perforce. list with the following
line:

deb http://package.perforce.com/apt/ubuntu {distro} release

Where {distro} is replaced by one of the following: precise, trusty, xenial or
bionic.

3. Runapt-get update
4. Install the package by running sudo apt-get install helix-p4d

You can also browse the repository and download a Deb file directly from
https://package.perforce.com/apt/

See "Post-installation configuration" on the next page.

For YUM (Red Hat Enterprise Linux or CentOS)

1. Add Perforce's packaging key to your RPM keyring:
sudo rpm --import
https://package.perforce.com/perforce.pubkey

27

https://package.perforce.com/perforce.pubkey
https://package.perforce.com/apt/

Post-installation configuration

2. Add Perforce's repository to your YUM configuration.
Create afile called /etc/yum. repos.d/perforce. repo with the following content:

[perforce]
name=Perforce

baseurl=http://package.perforce.com/yum/rhel/{version}/x86 64
enabled=1

gpgcheck=1
where { version} is either 6 for RHEL 6 or 7 for RHEL 7
3. Install the package by running sudo yum install helix-p4d

m You can also browse the repository and download an RPM file directly:
https://package.perforce.com/yum/

See "Post-installation configuration" below.

For SUSE Linux Enterprise Server
1. Add Perforce's packaging key to your RPM keyring:
sudo rpm --import http://package.perforce.com/perforce.pubkey

2. Add the Perforce repository.

sudo zypper addrepo
http://package.perforce.com/yum/rhel/7/x86_ 64/ helix

3. Install the package by running sudo zypper install helix-p4d

m You can also browse the repository and download an RPM file directly:
https://package.perforce.com/yum/

See "Post-installation configuration" below.

Post-installation configuration

After the helix-p4d package has been installed, additional configuration is required to create a
Perforce service.
Perform the following steps:

1. Usetheconfigure-helix-p4d. sh script to configure a Perforce service.

Note

The configure-helix-p4d. sh script can be used in a few different ways. The steps
below outline the most straightforward configuration using interactive mode, but you can
review the options by running:

28

https://package.perforce.com/yum/
https://package.perforce.com/yum/

Post-installation configuration

$ sudo /opt/perforce/sbin/configure-helix-p4d.sh -h

Run in interactive mode:

$ sudo /opt/perforce/sbin/configure-helix-p4d.sh

In interactive mode, the configuration script begins by displaying a summary of default settings
and those which have optionally been set with a command line argument.

29

Post-installation configuration

2. Provide information to the configuration script.

After the summary, the configuration script prompts for information it needs to set up your
Perforce service.

Note
If you already have a Perforce service configured, and you supply its service name, then

the configuration script only prompts for settings that you can change on an existing service.

At each prompt, you can accept the proposed default value by pressing Enter, or you can specify
your own value.

The list below contains details about the options for each prompt:
a. The Service Name:

The name used when managing this service with p4dctl, for instance when starting and
stopping the service.

This name is also used to set the Perforceserverid attribute on the underlying p4d
instance, to distinguish it from others that may be in your overall installation.

b. The Server Root (P4ROOT):
The directory where versioned files and metadata should be stored.
c. The Unicode Mode for the server:
This is off by default.
Warning
If you turn Unicode mode on, you will not be able to tumn it off. Be sure you are familiar

with Unicode functionality when selecting this mode. See "Setting up and managing
Unicode installations" on page 65 for information.

d. The Case Sensitivity for the server:

This is on by default.

See "Case sensitivity and multi-platform development" on page 63 for information.
e. The Server Address (P4PORT):

This specifies the host and port where the Perforce service should listen, and whether to
communicate in plaintext or over SSL. For more information, see "Communicating port
information" on page 37.

f. Superuser login:
The desired userid for a new user to be created with super level privileges.

For more information about superusers, see "Access levels" on page 128.

30

Updating

g. Superuser password:
The desired password to be set for the new superuser.
Due to the unlimited privileges granted to this user, a strong password is required.

After you answer all prompts, the script begins configuration according to your choices. As it runs,
the script displays information about the configuration taking place.

After the configuration has completed successfully, a summary is displayed with details about
what was done, and where settings are stored.

You can now connect to the service, or you can manage the service using the p4dctl utility. For
more information, see "Helix Core Server Control (p4dctl)" on page 321.

Updating

Important
The package update commands with apt—-get, yum, or zypper do not complete the process of
updating your Perforce service. Packages for Linux simplify only certain steps of that process.

Updating packages without completing the rest of the update process leaves your Perforce service in
a precarious state. Make sure to read and understand the entire process before updating any
packages.

1. Review the general update process.

a. See "Upgrading the Perforce service" on page 47 for details on the general process for how
to update a Perforce service, on any platform. You should read and thoroughly understand
this section before continuing.

31

Updating

b. Packages for Linux help you accomplish only specific steps from the general process. If
you are attempting to update your Perforce service using packages, you should still follow
the general process linked above, but with the package-specific modifications below:

i. You may be able to stop, checkpoint, and start your Perforce service usingp4dctl:

$ sudo -u perforce p4dctl [stop|checkpoint|start]

servicename

ii. You do not need to manually retrieve the new component binaries (such as p4d) from
the Perforce website. The package update commands with apt-get or yum
accomplish this step.

Platform-specific package update commands are below.

iii. You still need to upgrade the Perforce service database to use the new versions of
components delivered by the packages.

As a convenience, 2016.1 and newer packages attempt to present tailored instructions
and commands on-screen for upgrading those Perforce service databases that are
discovered automatically.

2. Determine if an updated package is available.

Note
To update a different package, substitute its name forhelix-p4d in the commands below.

Run one of the following:

n For Ubuntu:

$ sudo apt-get update

$ apt-cache madison helix-p4d
= For CentOS/RHEL:

$ yum --showduplicates list helix-p4d
m For SUSE Linux Enterprise Server:

$ sudo zypper search -s helix-p4d

32

Linux non-package installation

3.

Install an updated package.

Note
To update a different package, substitute its name forhelix-p4d in the commands below.

The command to update is the same used to install initially.

Run one of the following:

n For Ubuntu:

$ sudo apt-get update
$ sudo apt-get install helix-p4d

m For CentOS/RHEL:
$ sudo yum install helix-p4d
m For SUSE Linux Enterprise Server:

$ sudo zypper install helix-p4d

Important
Failure to complete all update steps in the general process referenced above could result in

continued downtime for your Perforce service.

Linux non-package installation

Linux non-package installation: quickexample 33
General considerations for Linux non-package installation_........_ . .. 35
Creating a Helix Server root directory 36
Telling Helix Server applications which port to connectto 36
Communicating port information 37
IPv6 support and mixed networks 38
Running the Helix Server (p4d) as an unprivileged user 38
Running frominetd 39
Starting the Perforce service 40
Stopping the Perforce service 40
Restarting a running Perforce service 40

Linux non-package installation: quick example

The quickest way to get started:

33

Linux non-package installation: quick example

10.
11.

12.

34

Make a directory for your installation:
mkdir newinstall

Navigate to the newly-created directory:
cd newinstall

Go to https://www.perforce.com/downloads/helix-core-p4d
a. Under Family, click Linux
b. Under Platform, click Linux
c. Click Download

Copy the p4d file in your newly-created directory.

Give the OS user execution permission for the p4d file:
chmod 755 p4d

Configure the OS environment to have a Perforce user:
export P4USER=perforce

Configure the OS environment to have a Helix server port:
export P4PORT=localhost:1666

Invoke the server executable, p4d, while specifying the current directory with “pwd ™ enclosed
in backticks andthe portas -p 1666:

./p4d -r 'pwd’ -p 1666 -J journal -L log -d
The output is:

Perforce db files in '/home/bruno/newinstall’' will be created
if missing...
Perforce Server starting...

Go to https://www.perforce.com/downloads/helix-command-line-client-p4
a. Under Family, click Linux
b. Under Platform, click Linux (x64)
c. Click Download

Copy the p4 file to the same directory where you copied the p4d file.

Give the OS user execution permission for the p4 file:
chmod 755 p4

Issue the p4 info command as follows, with . / beforep4 info:
./p4 info

https://www.perforce.com/downloads/helix-core-p4d
https://www.perforce.com/downloads/helix-command-line-client-p4
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_info.html

General considerations for Linux non-package installation

13. From the output, write down for future use the Server address value:

User name: perforce

Client name: linux-bruno

Client host: linux-bruno

Client unknown.

Current directory: /home/bruno/newinstall
Peer address: 127.0.0.1:12345

Client address: 127.0.0.1

Server address: localhost:1666

Server root: /home/bruno/newinstall

Server date: 2018/11/14 15:18:55 -0800 PST
Server uptime: 00:00:09

Server version: P4D/LINUX26X86 64/2018.2/1234567 (2018/11/02)
Server license: none

Case Handling: sensitive

14. Download the Helix Visual Client application that has a graphical user interface, P4V, from P4V
Download. Depending on your flavor of Linux, the steps might be similar to:

a. Extractpdv. tgz
b. Install the application.
c. Invoke the executable: . /p4v

15. As shown in the "Connecting with P4V" video, connect the client to the "remote" server by using
the Server address from Step 13:

16. Watch the videos on "Setting up Workspaces in P4V" and "Basic Operations in P4V".

General considerations for Linux non-package installation

Note
Helix Server requires two executables:

m the Helix Core Server, also referred to as the Perforce service (p4d)

m at least one Helix Server application, such as the Command-Line Client (p4)

The Perforce service and applications are available on the Perforce web page for Downloads.

Although you can install p4 and p4d in any directory, on Linux the Helix Server applications typically
residein /usr/local/bin, and the Perforce service is usually located either in
/usr/local/bin orinits own server root directory. You can install Helix Server applications on any
machine that has TCP/IP access to the p4d host.

To limit access to the Perforce service’s files, ensure that the p4d executable is owned and run by a
Helix Server user account that has been created for the purpose of running the Perforce service.

35

https://www.perforce.com/downloads/helix-visual-client-p4v
https://www.perforce.com/downloads/helix-visual-client-p4v
https://www.perforce.com/video-tutorials/connecting-p4v
https://www.perforce.com/video-tutorials/setting-workspaces-p4v
https://www.perforce.com/video-tutorials/basic-operations-p4v
https://www.perforce.com/downloads

Creating a Helix Server root directory

Note
To maximize performance, configure the server root (P4ROOT) to reside on a local disk and not an

NFS-mounted volume. It is best to place metadata and journal data on separate drives.

Helix Server applications (such as p4, the Helix Server Command-Line Client) work with client
workspaces on NFS-mounted drives, such as client workspaces located in users' home directories.

Creating a Helix Server root directory

The Perforce service stores all user-submitted files and system-generated metadata in files and
subdirectories beneath its own root directory. This directory is called the server root.

To specify a server root, either set the environment variable P4AROOT to point to the server root, or use
the -r server root flagwheninvoking p4d. Helix Server applications never use the PAROOT
directory or environment variable; p4d is the only process that uses the PAROOT variable.

Because all Helix Server files are stored by default beneath the server root, the contents of the server
root can grow over time. See "Disk space allocation" on page 23 for information about diskspace
requirements.

The Perforce service requires no privileged access; there is no need to run p4d as roo't or any other
privileged user. For more information, see "Running the Helix Server (p4d) as an unprivileged user" on
page 38.

The server root can be located anywhere, but the account that runs p4d must have read, write, and
execute permissions on the server root and all directories beneath it. For security purposes, set the
umask (1) file-creation-mode mask of the account that runs p4d to a value that denies other users
access to the server root directory.

Telling Helix Server applications which port to connect to

The p4d service and Helix Server applications communicate with each other using TCP/IP. When p4d
starts, it listens (by default) for plaintext connections on port 166 6. Helix Server applications like p4
assume (also by default) that the corresponding p4d is located on a host named perforce, listening
on port 1666, and that communications are performed in plaintext.

If p4d is to listen on a different host or port and/or use a different protocol, either specify the configuration
with the -p protocol:host:port flagwhen you start p4d (as in, p4d -p
ssl:perforce:1818), or by the contents of the PAPORT environment variable.

Plaintext communications are specified with tep : host: port and SSL encryption is specified with
ssl:port. (Touse SSL, you must also supply or generate an x509 certificate and private key, and
store them in a secure location on your server. See "Using SSL to encrypt connections to a Helix Server"
on page 103 for details.)

The preferred syntax for specifying the port is the following:

protocol: host:port

36

Communicating port information

There are situations, for example if you are using multiple network cards, where you might want to
specify the port on which to listen using syntax like the following:

P4PORT=ssl::1666
The use of the double colon directs the server to bind to all available network addresses and to listen on
port 1666. This can be useful if the host has multiple network addresses.

Note
To enable IPv6 support, specify the wildcard address with two colons when starting p4d. For

example:

$ p4d -p tcp64:[::]:1818

starts a Perforce service that listens for plaintext connections, on both IPv6 and IPv4 transports, on
port 1818. Similarly,

$ p4d -p ssl64:[::]:1818

starts a Perforce service that requires SSL and listens on IPv6 and IPv4, and

$ p4d -p ssl6:[::]:1818
starts a Perforce service that requires SSL connections, and listens for IPv6 connections exclusively.

See "IPv6 support and mixed networks" on the next page for more information about IPv6 and IPv4
transports.

Unlike P4ROOT, the environment variable PAPORT is used by both the Perforce service and the Helix
Server applications, so it must be set both on the machine that hosts the Perforce service and on
individual user workstations.

Communicating port information

Helix Server applications need to know on what machine the p4d service is listening, on which TCP/IP
port p4d is listening, and whether to communicate in plaintext or over SSL.

Set each Helix Server user's PAPORT environment variable to protocol : host: port, where
protocol is the communications protocol (beginning with ss1 : for SSL, or tcp : for plaintext), hostis
the name of the machine on which p4d is running, and port is the number of the port on which p4d is
listening. For example:

P4PORT Behavior

tcp:serverl: 3435 Helix Server applications connect in plaintext to the Perforce
service on host serverl listening on port 3435.

37

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html

IPv6 support and mixed networks

P4PORT Behavior

tcp64:serverl: 3435 Helix Server applications connect in plaintext to the Perforce
service on host serverl listening on port 3435. The
application first attempts to connect over an IPv6 connection; if
that fails, the application attempts to connect via IPv4.

ssl:example.org:1818 Helix Serverapplications connect via SSL to the Perforce service
on host example . org listening on port 1818.

<not set> Helix Server applications connect to the Perforce service on a
host named or aliased perforce listeningon port 1666.
Plaintext communications are assumed.

If you have enabled SSL, users are shown the server’s fingerprint the first time they attempt to connect to
the service. If the fingerprint is accurate, users can use the p4 trust command (eitherp4 trust
-y,orpd -p ssl:host:port trust -i fingerprint)toinstall the fingerprintinto afile
(pointed to by the PATRUST environment variable) that holds a list of known and trusted Helix Servers
and their respective fingerprints. If PATRUST is unset, this file is . p4trust in the user's home
directory.

IPv6 support and mixed networks

As of Release 2013.1, Helix Server supports connectivity over IPv6 networks as well as over IPv4
networks. For details, see P4PORT in Helix Core Server Administrator Guide: Fundamentals.

Note
In multi-server environments, the net.rfc3484 configurable, when set server-side, also controls the

behavior of host resolution when initiating communications for server-to-server, proxy, or broker.

Running the Helix Server (p4d) as an unprivileged user

Helix Server does not require privileged access. For security reasons, do not run p4d as root or
otherwise grant the owner of the p4d process root-level privileges.

Create an unprivileged UNIX user (for example, perforce)to manage p4d and (optionally) a UNIX
group for it (for example, p4dadmin). Use the umask (1) command to ensure that the server root
(P4ROOT) and all files and directories created beneath it are writable only by the UNIX user
perforce, and (optionally) readable by members of the UNIX group p4admin.

Under this configuration, the Perforce service (p4d), running as UNIX user perforce, can write to
files in the server root, but no users are able to read or overwrite its files. To grant access to the files
created by p4d (that is, the depot files, checkpoints, journals, and so on) to trusted users, you can add
the trusted users to the UNIX group p4admin.

38

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4TRUST.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.rfc3484

Running from inetd

Running from inetd

Under a normal installation, the Perforce service runs on Linux as a background process that waits for
connections from users. To have p4d start up only when connections are made to it, using inetd and
p4d -i, add the following lineto /etc/inetd. conf:

p4dservice stream tcp nowait username /usr/local/bin/p4d p4d -i -r

pddroot

and then add the following line to /etc/services:

p4dservice nnnn /tcp

where:

m p4dserviceis the service name you choose for this Helix Server
m /usr/local/bin s the directory holding your p4d binary

m p4drootis the root directory (P4DROOT) to use for this Helix Server (for example,
/usr/local/p4d)

= username is the UNIX user name to use for running this Helix Server

= nnnn is the port number for this Helix Server to use

The "extra" p4d onthe /etc/inetd. conf line must be present; inetd passes this to the OS as
argv[0]. Thefirst argument, then, is the —1i flag, which causes p4d not to run as a background
process, but rather to serve the single client connected to it on stdin/stdout. (This is the convention used
for services started by inetd.)

This method is an alternative to running p4d from a startup script. It can also be useful for providing
special services; for example, at Perforce, we have a number of test servers running on UNIX, each
defined as an inetd service with its own port number.

There are caveats with this method:

= inetd may disallow excessive connections, so a script that invokes several thousand p4
commands, each of which spawns an instance of p4d via inetd can cause inetd to
temporarily disable the service. Depending on your system, you might need to configure inetd
toignore or raise this limit.

m Thereis no easy way to disable the server, since the p4d executable is run each time; disabling
the server requires modifying /etc/inetd. conf andrestarting inetd.

m Touse Helix Server with this license, you will need to request a server license that does not
specify a port. Contact Perforce licensing for more information.

Note
For information about using sy s temd to launch services and daemons at boot time, see the Support

Knowledgebase article, Example systemd Perforce Service File.

39

https://community.perforce.com/s/article/10832

Starting the Perforce service

Starting the Perforce service

After you set p4d's P4PORT and P4ROOT environment variables, start the service by running p4d in
the background with the command:
$ p4d &

Although the example shown is sufficient to run p4d, you can specify other flags that control such things
as error logging, checkpointing, and journaling.

Example Starting the Perforce service

You can override PAPORT by starting p4d with the —p flag (in this example, listen to port 1818 on
IPv6 and IPv4 transports), and PAROOT by starting p4d with the —x flag. Similarly, you can specify a
journal file with the —J flag, and an error log file with the —L flag. A startup command that overrides the
environment variables might look like this:

$ p4d -r /usr/local/pdroot -J /var/log/journal -L /var/log/pderr
-p tcp64:[::]:1818 &

The -x, -J, and -L flags (and others) are discussed in "Backup and recovery" on page 148. To
enable SSL support, see "Using SSL to encrypt connections to a Helix Server" on page 103. A
complete list of flags is provided in the "Helix Core Server (p4d) Reference" on page 309.

For information about the files that have been installed, see "Installed files" on page 46.

Stopping the Perforce service
To shut down the Perforce service, use the command:

$ p4 admin stop

Only a Helix Server superuser canuse p4 admin stop.

Restarting a running Perforce service
To restart a running Perforce service (for example, to read a new license file), use the command:

$ p4 admin restart

Only a Helix Server superusercanuse p4 admin restart. On UNIX platforms, you can also use
kill -HUP torestart the service.

Windows installation

Windows installation: quickexample 41

40

Windows installation: quick example

Windows services and servers 42
Installing the Perforce service on a networkdrive 42
Starting and stopping the Perforce service 43
Multiple Perforce services under Windows 43
Windows configuration parameter precedence 45
Starting and stopping the Helix Server 45
Support for long filenames 46

Windows installation: quick example
The quickest way to get started:

1. Log on to Windows with Adminstrator privileges to install the Helix server.

2. Download the Helix core server software from https://www.perforce.com/downloads/helix-
versioning-engine-p4d

3. Install the Perforce server using the downloaded installer binary.

a. Choose the features toinstall - Server (P4D) and Command-Line Client
(P4).

b. Choose the default Port Number 1666 or specify another port number.
c. Choose the default server location or specify a new location.

d. When prompted for Client Configuration, type in Server field <machine
name>: 1666 where <machine name> is the name of your machine, and type in the
User Name field the Helix username you want to use.

e. The Windows services applet can be used to stop and start the Perforce service (the
Helix Versioning Engine).

4. Verify that the Helix Server is running by issuing in a command window p4 -p <machine
name>:1666 info

5. To connect to your new Helix server, download Helix P4V from
https://www.perforce.com/downloads/helix-visual-client-p4v

Install the Helix Visual Client.
7. As shown in the "Connecting with P4V" video, connect the client to the "remote" server.
8. Watch the videos on "Setting up Workspaces in P4V" and "Basic Operations in P4V".
Note
If you see the following error message:

"Helix Versioning Engine cannot be installed because setup has detected that this machine is already
configured for distributed version control."

Perform these steps:

41

https://www.perforce.com/downloads/helix-versioning-engine-p4d
https://www.perforce.com/downloads/helix-versioning-engine-p4d
https://www.perforce.com/downloads/helix-visual-client-p4v
https://www.perforce.com/video-tutorials/connecting-p4v
https://www.perforce.com/video-tutorials/setting-workspaces-p4v
https://www.perforce.com/video-tutorials/basic-operations-p4v

Windows services and servers

1. Locate the p4d. exe file in the DVCS folder.
2. Remove it or rename it.

3. Runtheinstaller.

See also the Support Knowledgebase article, Error Installing Helix Server on Windows.

Windows services and servers

In this manual, the terms Perforce Service and p4d are used interchangeably to refer to "the process
which provides versioning services to Perforce applications" unless the distinction between a Windows
Server process or a service process is relevant.

The Perforce versioning service (p4d) can be configured to run as a Windows service (p4s . exe)
process that starts at boot time, or as a server (p4d . exe) process that you invoke manually from a
command prompt. To run a task as a Windows server, the user must be logged in because shortcuts in a
user's startup folder cannot be run until that user logs in.

The Perforce service (p4s . exe) and the Perforce server (p4d . exe) executables are copies of each
other. They are identical except for the filenames. When run, the executables use the first three
characters of the name with which they were invoked (either p4 s or p4d) to determine their behavior.
For example:

m pdsversioncontrol.exe invokes aservice

m pddversioncontrol.exe invokes aserver

By default, the Perforce installer configures Perforce as a Windows service.

Note

On Windows, directory permissions are set securely by default; when Perforce runs as a Windows
server, the server root is accessible only to the user who invoked p4d . exe from the command
prompt. When Perforce is installed as a service, the files are owned by the LocalSystem account,
and are accessible only to those with Administrator access.

To allow the Perforce service to run under a regular user account, make sure that the user has
read/write access to the registry key and that the user has access to the directory structure under
P4ROOT.

See the Knowledge Base article, "Changing the user account the Windows service runs under" .

Installing the Perforce service on a network drive

By default, the Perforce service runs under the local Sy s tem account. Because the Sy s tem account
has no network access, areal userid and password are required in order to make the Perforce service
work if the metadata and depot files are stored on a network drive. The Perforce service is then
configured with the supplied data and run as the specified user instead of System.

42

https://community.perforce.com/s/article/15114
https://community.perforce.com/s/article/3925

Starting and stopping the Perforce service

If you are installing your server root on a network drive, the Helix Serverinstaller (helix-
versioning-engine-x64.exeorhelix-versioning-engine-x86.exe)requests a
valid combination of userid and password at the time of installation. This user must have administrator
privileges.

Although the Perforce service runs reliably using a network drive as the server root, there is still a marked
performance penalty due to increased network traffic and slower file access. Consequently, Perforce
recommends that the depot files and Helix Server database reside on a drive local to the machine on
which the Perforce service is running.

Starting and stopping the Perforce service

If you install Helix Server as a service under Windows, the service starts whenever the machine boots.
Use Control Panel > Administrative Tools > Services to control the Perforce service behavior.

To stop the Perforce service, Helix Server superuser issues the command:

$ p4 admin stop

For older revisions of Helix Server, shut down services manually (Control Panel > Administrative
Tools > Services).

For information about the files that have been installed, see "Installed files" on page 46.

Multiple Perforce services under Windows

By default, the Helix Server installer for Windows installs a single Helix Core Server as a single service.
If you want to host more than one Helix Server installation on the same machine (for instance, one for
production and one for testing), you can either manually start Helix Servers from the command line, or
use the Perforce-supplied utility sveinst . exe, to configure additional Perforce services.

Warning
Setting up multiple services to increase the number of users you support without purchasing more
user licenses is a violation of the terms of your Perforce End User License Agreement.

Understanding the precedence of environment variables in determining Perforce configuration is useful
when configuring multiple Perforce services on the same machine. Before you begin, read and
understand "Windows configuration parameter precedence" on page 45.

To set up a second Perforce service:

1. Create a new directory for the Perforce service.
Copy the server executable, service executable, and your license file into this directory.

Create the new Perforce service using the sveinst . exe utility, as described in the example
below. (The sveinst. exe utility comes with the Helix Server installer, and can be found in

43

Multiple Perforce services under Windows

your Helix Server root.)
4. Set up the environment variables and start the new service.
We recommend that you install your first Perforce service using the Helix Server installer. This first

service is called Perforce and its server root directory contains files that are required by any other
Perforce services you create on the machine.

Example Adding a second Perforce service

You want to create a second Perforce service with a root in C: \p4root2 and a service name of
Perforce2. The svcinst executable is in the server root of the first Helix Server installation you
installedinC: \perforce.

Verify that your p4d . exe executable is at Release 99.1/10994 or greater:

C:\> p4d -V

(If you are running an older release, you must first download a more recent release from
www.perforce.com and upgrade your server before continuing.)

Create a PAROOT directory for the new service:

C:\> mkdir c:\p4root2

Copy the server executables, both p4d . exe (the server) and p4s . exe (the service), and your
license file into the new directory:

C:\> copy c:\perforce\p4d.exe c:\p4droot2

C:\> copy c:\perforce\p4d.exe c:\pdroot2\pds.exe

C:\> copy c:\perforce\license c:\p4root2\license

Use svcinst. exe (the service installer) to create the Perforce2 service:

C:\> svcinst create -n Perforce2 -e c:\p4root2\pds.exe -a

After you create the Perforce2 service, set the service parameters for the Perforce2 service:

C:\> p4 set -S Perforce2 P4ROOT=c:\p4root2
C:\> p4 set -S Perforce2 P4PORT=1667
C:\> p4 set -S Perforce2 P4LOG=log2
C:\> p4 set -S Perforce2 P4JOURNAL=journal2

Finally, use the Perforce service installer to start the Perforce2 service:

S svecinst start -n Perforce2.

The second service is now running, and both services will start automatically the next time you reboot.

44

https://www.perforce.com/

Windows configuration parameter precedence

Windows configuration parameter precedence

Under Windows, Helix Server configuration parameters can be set in many different ways. When a Helix
Server application (such as p4 or P4V), or a Helix Core Server program (p4d) starts up, it reads its
configuration parameters according to the following precedence:

1. For Helix Server applications or a Helix Server (p4d), command-line flags have the highest
precedence.

For a Helix Server server (p4d), persistent configurables set withp4 configure.
The PACONFIG file, if PACONFIG is set.

User environment variables.

System environment variables.

The Windows user registry (or OS X user preferences) (set by p4 set).

N o g~ w0 D

The Windows system registry (or OS X system preferences) (setby p4 set -s).

When a Perforce service (p4s) starts up, it reads its configuration parameters from the environment
according to the following precedence:

1. Persistent configurables set withp4 configure have the highest precedence.

2. Windows service parameters (setby p4 set -S servicename).

3. System environment variables.

4. The Windows system registry (or OS X user preferences) (set by p4 set -s).
User environment variables can be set with any of the following:

s The MS-DOS set command

= The AUTOEXEC . BAT file

m The User Variables tab under the System Properties dialog box in the Control Panel
System environment variables can be set with:

m The System Variables tab under the System Properties dialog box in the Control Panel.

Starting and stopping the Helix Server

The server executable, p4d . exe, is normally found in your P4ROOT directory. To start the server, first
make sure your current PAROOT, P4PORT, P4LOG, and P4JOURNAL settings are correct; then run:
$P4AROOTS% \p4d.

To start a server with settings different from those set by PAROOT, PAPORT, P4LOG, or PAJOURNAL,
use p4d command-line flags. For example:

C:\> C:\test\p4d -r c:\test -p 1999 -L c:\test\log -J

c:\test\journal

45

Support for long file names

starts a Helix Server process with a root directory of ¢ : \ test, listening to port 1999, logging errors to
c:\test\1log, and with ajournal file of ¢ : \test\ journal. The p4d command-line flags are
case-sensitive.

To stop the Helix Server, use the command:

C:\> p4 admin stop

For information about the files that have been installed, see "Installed files" below.

Support for long file names

Support for long file names is enabled by default in Helix Server versions 2015.2 or later. For older
versions of Helix Server, you can enable long filename support on the server with the
filesys.windows . 1l£n configurable.

Note
The server root or client root cannot be a long path.

Set filesys.windows.1l£n to 1 to support filenames longer than 260 characters on Windows
platforms. A file name length of up to 32,767 characters is allowed. Each component of the path is limited
to 255 characters.

To set on the server, use a command like the following:

C:\> p4 configure set filesys.windows.lfn=1

Depending on the depth of your workspace path, you might also need to set this configurable on the client
and/or proxy (which acts as a client). To set the configurable for a proxy, use a command like the
following:

C:\> p4 set -S "Perforce Proxy" PADEBUG=filesys.windows.lfn=1

Installed files
Installation adds three types of files to the Helix Server host:

m Database files
m The Journal file

m The Helix Server binary

By default, the database files and the Journal file are placed in the server root directory (P4ROOT) of the
Helix Core Server.

Eventually, as users and administrators work with Helix Server, other files are added to the Helix Server
root directory: archived files (also called depot files), checkpoint and rotated journal files, and log files
(P4LOG).

46

https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4LOG.html

Upgrading the Perforce service

Operating Location of Helix Server binary

system

Linux Where the administrator puts it. Usually /usr/local/bin/p4d or, if installed
via packages, /opt/perforce/bin/p4d.

Mac OS X Where the administrator puts it. Usually /usr/bin/p4d or
/user/local/bin/p4d.

Windows Where the administrator puts it. By default C: \Program
Files\Perforce\Server\p4d.

Upgrading the Perforce service

You must back up your Helix Server installation (see "Backup procedures" on page 154) as part of any
upgrade process.

Important

In replicated and distributed environments (see Helix Core Server Administrator Guide: Multi-Site
Deployment), all replicas must be at the same release level as the master. Any functionality that
requires an upgrade for the master requires an upgrade for the replica, and vice versa.

Warning
Before you upgrade the Perforce service, always read the release notes associated with your
upgraded installation.

Note
Helix Server requires two executables:

m the Helix Core Server, also referred to as the Perforce service (p4d)

m at least one Helix Server application, such as the Command-Line Client (p4)

The Perforce service and applications are available on the Perforce web page for Downloads.

To upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must restore the database from a checkpoint.
See "Checkpoints for database tree rebalancing” on page 223 for an overview of the process and
"Upgrading Helix Server - between 2013.2 and 2013.3" on page 49 for instructions specific to this
upgrade.

47

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
https://www.perforce.com/downloads

Using old Helix Server applications after an upgrade

Using old Helix Server applications after an upgrade

Although older Helix Server applications generally work with newer versions of Helix Server, some
features in new server releases require upgrades to Helix Server applications. In general, users with older
applications are able to use features available from Helix Server at the user application’s release level,
but are not able to use the new features offered by subsequent upgrades to the service.

Upgrading Helix Server

Important
To upgrade Helix Server to a newer version, your Helix Server license file must be current. Expired
licenses do not work with upgraded versions of Helix Server.

Follow the instructions in this section if both your old and new versions of Helix Server are 2013.3 or later.
For complete information on upgrade procedures, see the Release Notes for your version.
Warning
To upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must restore the database from a
checkpoint. See "Checkpoints for database tree rebalancing" on page 223 for an overview of the

process, and "Upgrading Helix Server - between 2013.2 and 2013.3" on the facing page instructions
specific to this upgrade.

Note
Helix Server requires two executables:

m the Helix Core Server, also referred to as the Perforce service (p4d)

m at least one Helix Server application, such as the Command-Line Client (p4)

The Perforce service and applications are available on the Perforce web page for Downloads.

In general, Helix Server upgrades require that you:

1. Runthep4d -xvandp4d -xxcommands toensure thatdb . * files are OK before the
upgrade.

2. Verify your files, see "Verifying files during server upgrades" on page 51 for more information.
Make a checkpoint and back up your old installation. (See "Backup procedures" on page 154.)

Stop the Perforce service (p4 admin stop).

48

https://www.perforce.com/support/release-notes
https://www.perforce.com/downloads

Upgrading Helix Server - between 2013.2 and 2013.3

5. Replace the p4d executable with the upgraded version.

= On UNIX, replace the old version of p4d executable with the new version downloaded
from the Perforce website.

= On Windows, use the Helix Serverinstaller (helix-versioning-engine-
x64.exe or helix-versioning-engine-x86.exe). Theinstaller replaces
the old version of p4d executable with the new version.

6. Upgrade the database by running:

p4d -r server root -J journal file -xu

Note
Upgrading the database might take a considerable amount of time and disk space.

7. Restart the Perforce service with your site’s usual parameters.

If you have any questions or difficulties during an upgrade, contact Perforce technical support.

Upgrading Helix Server - between 2013.2 and 2013.3

Important
To upgrade Helix Server to a newer version, your license file must be current. Expired licenses do not

work with upgraded versions.

Follow the instructions in this section if your old version is 2013.2 or earlier and your new version is
2013.3 or later.

Note
Helix Server requires two executables:

m the Helix Core Server, also referred to as the Perforce service (p4d)

m at least one Helix Server application, such as the Command-Line Client (p4)

The Perforce service and applications are available on the Perforce web page for Downloads.

Helix Server 2013.3 contains major changes to the database implementation. These changes allow for
increased concurrency and scalability, and increase the size limit for the db . * database files to 16TB.

Although the db . * database file format has changed, the checkpoint and journal file formats are
identical. To upgrade from 2013.2 (or earlier) to 2013.3 (or later), you must restore the database from a
checkpoint. To do this:

1. Stop the Perforce service (p4 admin stop).

2. Make a checkpoint and back up your old installation. (see "Backup procedures" on page 154)

49

https://www.perforce.com/support/request-support
https://www.perforce.com/downloads

Upgrading Helix Server - between 2013.2 and 2013.3

3. Ifafile called tiny . db exists in your old server root, you must back it up separately by running
the following command with the old p4d:

p4d -xf 857 > tiny.ckp

4. Removetheolddb. * files, or preferably, move them to a safe location in the event that the
upgrade fails by using mv (Linux) ormove (Windows). For example:

mv your root dir /db.* /tmp

There must be nodb . * files in the PAROOT directory when you rebuild a database from a
checkpoint. Although the old db . * files will not be used again, it's good practice not to delete
them until you're certain your upgrade was successful.

5. Remove the rdb. 1br file, if it exists.

The rdb . 1br file keeps track of files that need to be transferred to the (local) replica, and may
become out of date while the upgrade is underway. Note that this file only exists if your Perforce
service was configured as areplica.

6. Replace the old (2013.2 or earlier) p4d executable with the new (2013.3 or later) p4d executable.

Do not runp4d -xu after replacing p4d at this time. In this upgrade scenario, you are not
upgrading an existing database, you have removed it completely and will rebuild it from the
checkpoint that you just took.

7. Use the upgraded p4d to replay the checkpoint and rebuild the new database tables:
p4d -r your/P4ROOT/directory -jr checkpoint file

8. If your site uses localized server messages from a message file obtained through Perforce
technical support, retrieve the original message . txt file and re-create db . message in the
new database format by running the following command with the new p4d:

p4d -jr absolute/path/to/message.txt
See "Localizing server error messages" on page 68 for more information.

9. Ifyoucreateda tiny . ckp file as part of your backup process, restore tiny . db by running the
following command with the new p4d:

p4d -xf 857 tiny.ckp

10. Runp4d -xu against the Helix Server database to update the database schema:
p4d -r your/P4RO0OT/directory -J myJournal -xu

11. Restart the Perforce service and resume operations.

50

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4ROOT.html

Verifying files by signature

Verifying files by signature

Helix Server administrators can use thep4 verify filenames command to validate stored MD5
digests of each revision of the named files. The signatures created when users store files in the depot
can later be used to confirm proper recovery in case of a crash: if the signatures of the recovered files
match the previously saved signatures, the files were recovered accurately. If a new signature does not
match the signature in the Helix Server database for that file revision, Helix Server displays the
characters BAD! after the signature.

Itis good practice torunp4 werify before performing your nightly system backups, and to proceed
with the backup only if p4 werify reports no corruption.

Forlarge installations, p4 wverify cantake some time to run. The serveris also under heavy load
while files are being verified, which can impact the performance of other Helix Server commands.
Administrators of large sites might want to performp4 wverify on a weekly basis, rather than a nightly
basis.

If you ever see a BAD! signature duringap4 verify command, your database or versioned files
might be corrupt, and you should contact Perforce Technical Support.

Verifying files during server upgrades

It is good practice touse p4 verify as follows before and after server upgrades:

1. Before the upgrade, run:

$ p4 verify -q //...
to verify the integrity of your server before the upgrade.
2. Take a checkpoint and copy the checkpoint and your versioned files to a safe place.
Perform the server upgrade.

4. After the upgrade, run:

$ p4 verify -q //...

to verify the integrity of your new system.

Release and license information

The Perforce versioning service is licensed according to how many standard users it supports. There are
three types of Perforce users: standard users, operator users, and service users.

m A standard useris a traditional user of Perforce.
Standard users are the default, and each standard user consumes one Perforce license.
= Anoperator useris intended for human or automated system administrators.

An operator userdoes not require a Perforce license.

51

Adding or updating the license file

m A service useris used for server-to-server authentication, whether in the context of remote
depots (see "Remote depots and distributed development” on page 94) or in distributed
environments.

Service users do not require licenses, but are restricted to automated inter-server communication
processes in replicated and multi-server environments.

Licensing information is contained in a file called 1icense in the server root directory. The 1icense
file is a plain text file supplied by Perforce Software. Without the 1icense file, the service limits itself
to either 20 users and 20 client workspaces (and unlimited files), or to an unlimited number of users and
workspaces (but with a limit of 1000 files).

You can update an existing license file without stopping Perforce by using the p4 1license command.
See "Adding or updating the license file" below for details.

m [f the service is running, any user canuse p4 info toview basic licensing information.

Tip
We recommend that you hide sensitive information from unauthorized users of p4 1info by setting
the dm.info.hide configurable.

= Administrators canusep4 license -u toobtain more detailed information about how many
users and files are in use.

m [f the service is down, you can also obtain licensing information by running p4d -V from the
server root directory where the 1icense file resides, or by specifying the server root directory
either on the command line (p4d -V -r server root)orinthe PAROOT environment
variable.

The server version is also displayed when you invoke p4d -Vorp4 -V.

Adding or updating the license file

Note
When you receive your license file, its name might include the license host, an IP address, or other
identifying information.

Rename the new license fileto license. txt.

Important
If you have purchased Helix4Git in addition to Helix Core, you will receive:

m The email for Helix4Git, which contains the license file that enables both Helix Core and
Helix4Git. You will install this license file.

52

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#dm.info.hide

License file in the P4ROOT directory

m The email for Helix Core, contains a license file that does NOT enable Helix4Git. Do NOT
install this license file, but do keep it for your records.

If your PAROOT directory has afile named 1icense, removeiit.

To add or update the license file, use Valid for ...

one of the following:

Copy the license file to the PAROOT directory. m Server

see "License file in the P4AROOT directory" below = Any replica that you want to enable to
become a master through failover

Issue the p4 license command. Server

see "p4 license command" on the next page

Use P4Admin. Server

see "Helix Visual Client (P4V) Administration tool"
on the next page

License file in the P4ROOT directory

1. Copy the new license file over the existing license in the PAROOT directory.

2. Determine whether you need to restart the server or not.

Stop and restart the server if ... No server restart required if ...
Any of the following are true: All of the following are true:
m Server's |IP address changes m Server's IP address remains as-is
m Port number in the license file m Port number in the license file remains as-is
changes = Any unlicensed replica remains unlicensed,
m You are adding a server license to a and thus is not prepared to become the new
previously unlicensed replica to master in case of a failover
prepare for a possible failover
I o Note
Additional information is available in the An edge server is afiltered replica and
New License File. server.

If you need to stop and restart the server ...

53

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_license.html
https://community.perforce.com/s/article/2461
https://community.perforce.com/s/article/2461

p4 license command

Windows Linux/UNIX/Mac

;rhC)esst:rF\)ler P4 -u User -p Server:Port admin stop

Torestart Open an administrator command Run the Perforce Server startup script you

the server prompt and enter usually use.
net start perforce If you do not have a Perforce startup script,
orenter services.msc, gotothe the command to start the Perforce Server
Services Management Console, in Daemon Mode in the specified P4AROOT
find Perforce, andselect Start. location might resemble the following:

p4d -r

/specify/path/to/P4ROOT -d

p4 license command

If a valid license file is already in the server root directory, as a super user, you can update it.

1. Display your current license withp4 license -o.

2. Install your new license withcat license.txt | p4 license -iorp4 license
-i < license. txt.

Tip

If the server IP address or port number has changed in the license file, the p4 license command
will not work. For example, if the IP address changed in the new license file, you will receive
the following message: "Server license IPaddress changed, cannot
proceed." In this case, stop and restart the server as detailed above.

If p4 info does not indicate a license file update, stop and restart the server instance, then
check the log file.

Tip
We recommend that you hide sensitive information from unauthorized users of p4 info by
setting the dm.info.hide configurable.

Helix Visual Client (P4V) Administration tool

If the IP address or port number has not changed,

1. Launch P4V as a Helix Server superuser.

2. Choose Tools > Administration.

54

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#dm.info.hide

Helix Visual Client (P4V) Administration tool

3. Onthe Administration Home page, click Load new license file and browse to the license file on
your local disk.

4. After successful installation, verify that the Administration tool Home page is updated with the
new license information.

Tip
For more information, see the Support Knowledgebase article, "Moving the Perforce Server".

55

https://community.perforce.com/s/article/2558

Configuring the server

The Perforce service is highly configurable and this is accomplished through the setting of server, client,
and proxy configurables. Available configurables number in the hundreds, and it is probably best to set
them as you continue to work with the server. This chapter limits itself to describing the configurables
you might initially want to configure before you begin working with the server.

The following areas are covered:

m Enabling distributed versioning

m Using p4 typemap to determine afile’s type and to implement site-wide exclusive locking
m Defining additional depots

m Managing client requests

m Managing case sensitivity and Unicode installations

m Configuring logging

m Configuring P4V settings

For complete information about usingthe p4 configure command and all available server, client,
and proxy configurables, see P4 Command Reference andp4 help configurables.

Enabling distributed versioning 57
Defining filetypes with p4 typemap 57
Implementing site-wide exclusive locking with p4 typemap 60
Defining depots 60
Managing client requests . . 60
Using P4PORT to control access tothe server 61
Requiring minimum client revisions ... 61
Rejecting client connection requests 61
Disabling user metrics collection prompt 63
Case sensitivity and multi-platform development 63
Helix Server on LinUX 64
Helix Server on Windows 65
Setting up and managing Unicode installations 65
OVEIVIBW 65
Settingup aserverforUnicode 66
Configuring clients for Unicode 69
Troubleshooting user workstations in Unicode installations _.................................. 72
Configuring logging ... 72
[oToTe T aTe =T (o] £~ 73
Logging file aCCesso . 73
Configuring P4V settings 73
Viewing effective P4V properties 73
Precedence of P4V settings ... il 74
Performance-related P4V properties 75

56

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Enabling distributed versioning

Feature-related P4V properties 77
Miscellaneous P4V properties 81
Swarm integration properties ...l 82
Staging P4V helpfiles locally L 84
Troubleshooting P4V properties 85
Windows configuration parameter precedence 86

Enabling distributed versioning

If you need to enable the transfer of files between a user’s local repository and the shared repository, you
must set the following configurables: server.allowfetch and server.allowpush.

Defining filetypes with p4 typemap

Helix Serveruses the filesys .binaryscan configurable to determine how many bytes to
examine when determining if a file is of type text orbinary. By default, filesys .binaryscan
is 65536; if the high bit is clear in the first 65536 bytes, Helix Server assumes it to be text; otherwise, it
is assumed to be binary. Files compressed in the . zip format (including . jar files) are also
automatically detected and assigned the type ubinary.

Although this default behavior can be overridden by the use of the -t filetypeflag, it's easy for
users to overlook this consideration, particularly in cases where files' types are usually (but not always)
detected correctly. Certain file formats, such as RTF (Rich Text Format) and Adobe PDF (Portable
Document Format), can start with a series of comment fields or other textual data. If these comments are
sufficiently long, such files can be erroneously detected by Helix Server as being of type text.

Thep4 typemap command solves this problem by enabling system administrators to set up a table
that links Helix Server file types with filename specifications. If an entry in the typemap table matches a
file being added, it overrides the file type that would otherwise be assigned by the Helix Server
application. For example, to treat all PDF and RTF files as binary, use p4 typemap to modify the
typemap table as follows:

Typemap:
binary //....pdf
binary //....rtf
The first three periods (". . .")in the specification are a Helix Server wildcard specifying that all files

beneath the root directory are to be included in the mapping. The fourth period and the file extension
specify that the specification applies to files endingin . pd£ (or . rt£).

The following table lists recommended Helix Server file types and modifiers for common file extensions.

File type Helix Server file type Description

.asp text Active server page file

57

Defining filetypes with p4 typemap

File type

Helix Server file type

Description

.avi binary+F Video for Windows file

.bmp binary Windows bitmap file

.btr binary Btrieve database file

.cnf text Conference link file

.css text Cascading style sheet file

.doc binary Microsoft Word document

.dot binary Microsoft Word template

.exp binary+w Export file (Microsoft Visual C++)
.gif binary+F GIF graphic file

.gz binary+F Gzip compressed file

.htm text HTML file

.html text HTML file

.ico binary Icon file

.inc text Active Serverinclude file

.ini text+w Initial application settings file
.Jjpg binary JPEG graphic file

.Js text JavaScript language source code file
.1ib binary+w Library file (several programming languages)
.log text+w Log file

.mpg binary+F MPEG video file

.pdf binary Adobe PDF file

.pdm text+w Sybase Power Designer file
.ppt binary Microsoft PowerPoint file
.prefab binary Unity3D file

.x1ls binary Microsoft Excel file

Use the followingp4 typemap table to map all of the file extensions to the Helix Server file types

recommended in the preceding table.

58

Defining filetypes with p4 typemap

Perforce File Type Mapping Specifications.

filetype mappings; one per line.

Each line has two elements:

#

#

TypeMap: a list of
#

Filetype:
Path:

See

TypeMap:

59

text //....asp
binary+F //....avi
binary //....bmp
binary //....btr
text //....cnf
text //....css
binary //....doc
binary //....dot
binary+w //....exp
binary+F //....gif
binary+F //....gz
text //....htm
text //....html

binary //....1ico
text //....inc
text+w //....ini

binary //....Jjpg
text //....Js
binary+w //....lib
text+w //....log
binary+F //....mpg
binary //....pdf
text+w //....pdm
binary //....ppt
binary //....x1s

The filetype to use on 'p4 add'.
File pattern which will use this filetype.

'p4 help typemap' for more information.

Implementing site-wide exclusive locking with p4 typemap

If a file type requires the use of more than one file type modifier, specify the modifiers consecutively. For
example, binary+1FS10 refers to abinary file with exclusive-open (1), stored in full (F') rather
than compressed, and for which only the most recent ten revisions are stored (S10).

For more information, seethe p4 typemap page in the P4 Command Reference.

Implementing site-wide exclusive locking with p4 typemap

By default, Helix Server supports concurrent development, but environments in which only one person is
expected to have a file open for edit at a time can implement site-wide exclusive locking by using the +1
(exclusive open) modifier as a partial filetype. If you use the following typemap, the +1 modifier is
automatically applied to all newly added files in the depot:

Typemap:
+1 //depot/...

If you use this typemap, any files your users add to the depot after you update your typemap
automatically have the +1 modifier applied, and may only be opened for edit by one user at a time. The
typemap table applies only to new additions to the depot; after you update the typemap table for site-wide
exclusive open, files previously submitted without +1 must be opened for edit withp4 edit -t+1
filename and resubmitted. Similarly, users with files already open for edit must update their filetypes
withp4 reopen -t+l1 filename.

Defining depots

By default, the standard depot Depo't is created in the server when the server starts up. Depending on
your user’s needs, you can change its name and you can create additional depots to serve your needs:

m Additional standard depots allow you to organize user's work in relevant categories.
m Stream depots are dedicated to the organization and management of streams.
m Remote depots are used to facilitate the sharing of code.

m A spec depot is used to track changes to user-edited forms such as workspace specifications,
jobs, branch mappings, and so on.

= Archive depots are used to offline storage of infrequently needed content.

m Unload depots are used to offline storage of infrequently needed metadata.

Please see "Working with depots" on page 88 for more information.

Managing client requests
The following sections describe configuration options that relate to handling client requests.

Using P4PORT to control access totheserver 61

60

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using P4PORT to control access to the server

Requiring minimum client revisions 61
Rejecting client connectionrequests 61
Disabling user metrics collection prompt 63

Using P4PORT to control access to the server

Under most circumstances, your Helix Server's PAPORT setting consists of a port number. Users must
know the IP address (or be able to resolve it from a hostname) of the Helix Server in order to connect to it.

The value of PAPORT however, can also include an IP address or hostname that resolves to an IP
address. You can set PAPORT to configure the following possibilities:

= P4PORT=portnumber
In this case, the server listens on the specified port for every IP address associated with this host.
m P4PORT=ipaddress|hostname: portnumber

In this case, the server listens on the specified port for the specified IP address or host name, and
it ignores requests to any other IP address.

m P4PORT=localhost:portnumber

In this case, the server listens on the specified port for requests that originate from users on this
host. This forces the Helix Server to ignore all non-local connection requests.

P4PORT might also specify a protocol (protocol : address: port), which further restricts
possible connections to those using the specified protocol. For complete information, see the description
of the PAPORT variable in the P4 Command Reference.

Requiring minimum client revisions

Helix Server offers a mechanism to control which revisions of client applications are able to connect to it.

To require a minimum revision, set the configurables minClient to the appropriate revision, and
(optionally) setminClientMessage to the error message displayed when users of older applications
connect to the server.

For example:

$ p4 configure set minClient=2010.2
$ p4 configure set minClientMessage="Please upgrade to 2010.2 or

higher"

Rejecting client connection requests

By default, all clients can access the server, but you can block one or more client programs from
accessing the Helix Server by setting the rejectList configurable.

61

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rejectList

Rejecting client connection requests

Note
The log does not include information about the rejected connection attempt.

The syntax for setting rejectList:

rejectlList = programName |[[,programName]...]

The syntax of programName:
programName|[, version=versionName]

Tip

No wildcard character is allowed in the programName.

To block requests from all command line clients, regardless of the version:

$ p4 configure set "rejectlList = p4"

block specific versions

To block requests from versions you specify, use the default separator, which is the comma (,):

$ p4 configure set "rejectlList = p4, version=13.1, p4,

version=13.2"

block build number and platform

You can specify a version using a build number;

$ p4 configure set "rejectlList = p4, version=1221235"

Or you can use platform information:

$ p4 configure set "rejectList = p4, version=DARWIN90X86 64"
Or you can block for build number AND platform:

$ p4 configure set "rejectlist

version=DARWIN90X86 64"

p4, version=1221235, p4,

Tip
Use quotation marks for strings that include spaces.

62

Disabling user metrics collection prompt

Important
If you accidentally lock out key clients needed to access the server, use the following command to
unset the configurable:

$ p4d -r P4ROOT '-cunset rejectList'

Blocking P4V clients from accessing Helix Server

To block specific P4V versions, specify strings. For example, to block P4V clients version 2015.2 on
Windows and Linux platforms, as well as version 2012.1 on Windows:

$ p4 configure set "rejectList=P4V/NTX64/2015.2, P4V/NTX86/2012.1,
P4V/LINUX26X8 6_64/2015 .2"

Note

You can only use the version=field in the rejectList configurable for clients that specify their
version in the version field. P4V passes its version information on the program string, not a
version string. When you connect to Helix Server with the command line client, the client

specifies its program name as p4 andits version as, forexample,
2015.1/NTX64/1227227. However, when you connect with P4V, P4V tells Helix Server that
its program name is P4V/MACOSX106X86/2012.3/578478 andits version is NULL.

Disabling user metrics collection prompt

P4V users have the option of enabling user metrics collection. By default, no data is collected. The first
time a user connects to the server, a prompt is displayed asking if the user wants to send Perforce
anonymous user data. Such data includes information about system hardware, non-default user
preferences, and so on. The user can subsequently change collection preference using the Preferences
menu.

If you do not want users to see the prompt, you can set a property on the server as follows:

$ p4 property -a -n P4.DataAnalyticsPrompt -v off

This prevents users from seeing the prompt. However, this is an incomplete solution because if users
connect to a server that does not have the property set, they will see the prompt and might choose to
send the data. To fully disable this feature, you will need to have IT shut down any outgoing POST
requests to udc.perforce.com.

Case sensitivity and multi-platform development

Very early (pre-97.2) releases of Helix Server treated all filenames, pathnames, and database entity
names with case significance, whether the server was running on UNIX or Windows.

63

Helix Server on Linux

Forexample, //depot/main/file.cand //depot/MAIN/FILE. C were treated as two
completely different files. This caused problems where users on UNIX were connecting to a Helix Core
Server running on Windows because the filesystem underlying the server could not store files with the
case-variant names submitted by UNIX users.

Inrelease 97.3, the behavior was changed, and only the UNIX server supports case-sensitive names.
However, there are still some case-sensitivity problems that users can encounter when sharing
development projects across UNIX and Windows.

If you are running a pre-97.2 server on Windows, please contact support@ perforce.com to discuss
upgrading your server and database.

For current releases of the server:

m The Helix Core Server on UNIX supports case-sensitive names.
m The Helix Core Server on Windows ignores case differences.

m Case is always ignored in keyword-based job searches, regardless of platform.

The following table summarizes these rules.

Case-sensitive UNIX server Windows server
Pathnames and filenames Yes No
Database entities (workspaces, labels, and so on.) Yes No
Job search keywords No No

To find out what platform your Helix Core Server runs on, usep4 info.

Helix Server on Linux

If your Helix Core Server is on Linux, and you have users on both Linux and Windows, your Linux users
must be careful not to submit files whose names differ only by case. Although the Linux server can
support these files, when Windows users sync their workspaces, some files might overwrite each other.

Conversely, Windows users will have to be careful to use case consistently in filenames and pathnames
when adding new files. They might not realize that files added as / /depot/main/one. c and
//depot/MAIN/two . c will appearin two different directories when synced to a Linux user’s
workspace.

The Linux Helix Server always respects case in client names, label names, branch view names, and so
on. Windows users connecting to a Linux server should be aware that the lowercased workstation names
are used as the default names for new client workspaces. For example, if a new user creates a client
workspace on a Windows machine named ROCKET, this client workspace is named rocket by
default. If the user later sets PACLIENT to ROCKET (or Rocket), the Helix Server will display a
message that the workspace is undefined. The user must set PACLIENT to rocket (orunset it) to
use the client workspace defined.

64

mailto:support@perforce.com

Helix Server on Windows

Helix Server on Windows

If your Helix Core Server is running on Windows, your UNIX users must be aware that it will store case-
variant files in the same namespace.

For example, users who try something like this:

C:\> p4 add dir/filel
C:\> p4 add dir/file2
C:\> p4 add DIR/file3

should be aware that all three files will be stored in the same depot directory. The depot pathnames and
filenames assigned to the Windows server will be those first referenced. (In this case, the depot
pathname would be dirx, and not DIR.)

Setting up and managing Unicode installations

The following sections describe the benefits of running the Helix Server in Unicode mode and explain
how you enable this mode.

Warning
Converting a server to Unicode mode is a one-way operation! You cannot restore a Unicode server to
its previous state.

OV OV W 65

Setting up a server for Unicode 66

Configuring clients for Unicode 69

Troubleshooting user workstations in Unicode installations 72
Overview

The Helix Core Server can be run in Unicode mode to convert certain elements from their unicode
representation on the server, to the particular character set used on clients and triggers that communicate
with the server. The following elements are converted:

m File names or directory names that contain Unicode characters

m Helix Serveridentifiers (for example, user names) and specifications (for example, changelist
descriptions or jobs) that contain Unicode characters

If you need to manage textual files that contain Unicode characters, but do not need the features
listed above, you do not need to run your server in Unicode mode. For such installations, assign
the Helix Server ut £16 file type to textual files that contain Unicode characters.

65

Setting up a server for Unicode

m unicode files and metadata. These are converted to the character set configured on the user’s
machine.

The Helix Server also verifies that the unicode files and metadata contain valid UTF-8 characters.

Normally, setting the server in Unicode mode should automatically configure the appropriate rendering for
each client, independently of the platform where it runs. However, there are some cases in which you
might also have to configure the client. The following subsections describe how you set up the server and
the client if needed, and offer some troubleshooting tips.

In addition to affecting the client, Unicode settings also affect trigger scripts that communicate with the
server. You should check your trigger's use of the elements noted above (file names, Helix Server
identifiers, etc.) and make sure that these are consistent with the character set used by the server.

Note
All p4d error and info logs are in UTF8 for a server in unicode mode. You need an UTF8 console or
editor to properly render this log information.

Setting up a server for Unicode

How you configure a Unicode-mode server and the workstations that access it, depends on whether you
are starting a server for the first time or whether you are converting an existing non-unicode server to
unicode mode. The following sections explain each use case.

Note

The Perforce service limits the lengths of strings used to index job descriptions, to specify filenames
and view mappings, and to identify client workspaces, labels, and other objects. The most common
limit is 2,048 bytes. Because no basic Unicode character expands to more than three bytes, you can
ensure that no name exceeds this limit by limiting the length of object names and view specifications
to 682 characters for Unicode-mode servers.

Configuring a new server for Unicode

To configure a new server for Unicode, start the server using the following command:

$ p4d -xi -r server root [other options]

This command verifies that all existing metadata is valid UTF8, and then sets the protected counter
unicode toindicate that the server now runs in Unicode mode. If you stop and restart the server, it
remains in Unicode mode. Once you have placed the server in this mode, you cannot change it to non-
unicode mode.

66

Setting up a server for Unicode

When a client connects to the server, it attempts to discover what the server’s setting is, and it sets the
P4 _port CHARSET variable to reflect that setting. If the serveris not in unicode mode, the variable is
settonone. If the serveris set to Unicode, the variable is set to auto. Likewise, the client sets the
P4CHARSET variable to auto. The client then examines its environment to figure out what character
set it needs to select.

The P4_port CHARSET variable is stored in afile called . p4enviro. By default, this file is stored
in the user's home directory. To change the file location, the user must set the PAENVIRO variable to
the desired path.

Configuring an existing server for Unicode

To convert an existing server to Unicode mode, perform the following steps:

1. Stopthe serverby issuingthe p4 admin stop command.
2. Create a server checkpoint, as described in "Backup and recovery" on page 148.

3. Convert the server to Unicode mode by invoking the server (p4d) and specifying the —x1 flag, for
example:

p4d -xi -r server root

The server verifies that its existing metadata contains only valid UTF-8 characters, then creates
and sets a protected configurable called unicode that is used as a flag to ensure that the next
time you start the server, it runs in Unicode mode. After validating metadata and setting the
configurable, p4d exits and displays the following message:

Server switched to Unicode mode.

If the server detects invalid characters in its metadata, it displays error messages like the
following:

Table db.job has 7 rows with invalid UTFS.

In case of such errors, contact Perforce Technical Support for instructions on locating and
correcting the invalid characters.

4. Restart p4d, specifying server root and port as you normally do. The server now runs in Unicode
mode.

When a client connects to the server, it attempts to discover what the server’s setting is, and it sets the
P4 port CHARSET variable to reflect that setting. If the server is not in Unicode mode, the variable is
set tonone. If the server is set to Unicode, the variable is set to auto. Likewise, the client sets the
PACHARSET variable to auto. The client then examines its environment to figure out what character
set it needs to select.

The default location of the P4_port CHARSET variable depends on your operating system:

= OnUNIXoronthe Mac, the P4_port CHARSET variable is stored in afile called
.pdenviro. By default, this file is stored in the user's home directory. To change the file
location, the user must set the PAENVIRO variable to the desired path.

67

Setting up a server for Unicode

= OnWindows, the P4_port CHARSET variable is stored in the registry. To store it in afile, use

thep4 set P4ENVIRO command and specify the path of the file where you want to store the
value.

Localizing server error messages

By default, informational and error messages are in English. You can localize Helix Server messages. To
ensure best results, contact Perforce Technical Support. The following overview explains the localization
process.

To localize Helix Server messages:

1.

Obtain the message file from Perforce Technical Support.

2. Edit the message file, translating messages to the target language. Each message includes a

two-character language code. Change the language code from en (English) to the code for the
target language. Do not translate any of the key parameters or named parameters (which are
specified between percent signs and single quotes, for example, $depot%). You can change the
order in which the parameters appear in the message.

Original English:
@en@ 0 @db.message@ @en@ 822220833 @Depot 'Sdepot$' unknown - use
'"depot' to create it.(@

Correct translation to Portuguese (note reordered parameters):

@pt@ 0 @db.message@ @pt@ 822220833 @Depot '%depot' inexistente - use
o comando 'depot' para criar-lo.d

Although you are free to use any two-letter language code to designate the target language (so
long as it’s not "en," you might want to use a standard convention, such as the one described
here:

http://www.w3schools.com/tags/ref language codes.asp

Many messages use Helix Server command names. It is important to distinguish the word as a
command name from the word as a description. For example:

@Depot 'Sdepot%' unknown - use 'depot' to create it.@
In this case, depot and $depot% should not be translated.

Load the translated messages into the server by issuing the following command:

$ p4d -jr /fullpath/message.txt

This command creates a db . message file in the server root. The Perforce service uses this
database file when it displays error messages. The proxy can also use this db . message file;
see the section on localizing P4 P in Helix Core Server Administrator Guide: Multi-Site
Deployment

68

http://www.w3schools.com/tags/ref_language_codes.asp
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Configuring clients for Unicode

4.

The character set of the resulting translation needs to be UTF-8 for unicode mode servers. That
file should not have a leading Byte-order-mark (BOM).

If the target server is not in Unicode mode, the translation file does not need to be in UTF-8. In this
case you might want multiple instances of the translated messages in multiple character sets.
You can effect this by combining the language code field with a character set name. For example,
@ru_koi8-r@ toindicate Russian with akoi8-r encoding versus @ru_iso8859-5@ to
indicate Russian with an ISQ encoding.

You can load translated message files into a p4d server by recovering them with the server's
journal recovery command:

$ p4d -r server root -jr translated message file

To view localized messages, set the PALANGUAGE environment variable on user workstations to the
language code you assigned to the messages in the translated message file. For example, to have your
messages returned in Portuguese, set PALANGUAGE topt.

To view localized messages using P4V, you must set the LANG environment variable to the language
code that you use in the messages file.

Configuring clients for Unicode

When you set up a server to work in unicode mode, the client determines what character set to use by
examining the current environment and, generally, you should have nothing more to do to get a correct
translation. For example a UNIX client examines the LANG or LOCALE variables to determine the
appropriate character set. However, there might be situations when you need to override the selection
made by the client:

The automatically selected setting is producing bad translations.
See "Troubleshooting user workstations in Unicode installations" on page 72 for more information.

You want to use separate workspaces (clients) and each of these needs to use a different
character set. In this case, you must set a different PACHARSET value for each client.

The files you check out need to be accessed by applications for which byte order is important.

See "Unicode character sets and Byte Order Markers (BOMs)" on the facing page or more
information.

You need to set PACHARSET toanut£16 orut£32 setting.
See "Controlling translation of server output" on page 71 for more information.

The file is checked out using Helix Server client applications that handle Unicode environments in
different ways.

See "Using other Helix Server client applications" on page 71 for more information.

In each of these cases, you will need to explicitly set PACHARSET to an appropriate value or take some
other action. To get a list of the possible values for PACHARSET, use the command:

$ p4 help P4CHARSET

69

Configuring clients for Unicode

Warning
Do not submit a file using a PACHARSET that is different than the one you used to sync it; the file is

translated in a way that is likely to be incorrect. That is to say, do not change the value of
P4ACHARSET while files are checked out.

Unicode character sets and Byte Order Markers (BOM:s)

Byte order markers (BOMs) are used in Unicode files to specify the order in which multi-byte characters
are stored and to identify the file content as Unicode. Not all extended-character file formats use BOMs.

To ensure that such files are translated correctly by the Helix Server when the files are synced or
submitted, you must set PACHARSET to the character set that corresponds to the format used on your
workstation by the applications that access them, such as text editors or IDEs. Typically the formats are
listed when you save the file using the Save As... menu option.

The following table lists valid settings for PACHARSET for specifying byte order properties of Unicode
files.

Client Big or Set PACHARSET Remarks
Unicode Little-
format Endian
UTF-8 No (N/A) utfs8 Suppresses Helix Server
UTF-8 validation
Yes utf8-bom
No utf8unchecked
Yes utf8unchecked-
bom
UTF-16 Yes Per client utflé Synced with a BOM
according to the client
platform byte order
Yes Little utfléle Best choice for Windows
Unicode files
Yes Big utflébe
No Per client utfl6-nobom
No Little utfl6éle-nobom
No Big utfl6ébe-nobom

70

Configuring clients for Unicode

Client BOM? Bigor Set PACHARSET Remarks

Unicode Little- to
format Endian

UTF-32 Yes Per client utf32 Synced with a BOM
according to the client
platform byte order

Yes Little utf321e

Yes Big utf32be

No Per client utf32-nobom
No Little utf32le-nobom
No Big utf32be-nobom

If you set PACHARSET to a UTF-8 setting, the Helix Server does not translate text files when you sync
or submit them. Helix Server does verify that such files contain valid UTF-8 data.

Controlling translation of server output

If you set PACHARSET to any ut£16 orut£32 setting, you must set the PACOMMANDCHARSET to
anon-ut£16 ornon-ut£32 character set in which you want server output displayed. "Server output"
includes informational and error messages, diff output, and information returned by reporting commands.

To specify PACOMMANDCHARSET on a per-command basis, use the —Q flag. For example, to display
all filenames in the depot, as translated using the winansi code page, issue the following command:

C:\> p4 -Q winansi files //...

Using other Helix Server client applications

If you are using other Helix Server client applications, note how they handle Unicode environments:

m P4V (Helix Visual Client): the first time you connect to a Unicode-mode server, you are
prompted to choose the character encoding. Thereafter, P4V retains your selection in association
with the connection. P4V also has a global default setting for Charset. If you set this, it will be
used instead of asking you to provide a charset.

m P4Eclipse will ask for a charset when connecting to a Unicode-mode server.

m P4Web: when you invoke P4Web, you can specify the character encoding on the command line
using the —C flag. P4Web uses this flag when it sends commands to a Unicode-mode server. This
approach means that each instance of P4Web can handle a single character encoding and that
browser machines must have compatible fonts installed.

71

Troubleshooting user workstations in Unicode installations

= P4Merge: To configure the character encoding used by P4Merge, choose P4Merge’s File >
Character Encoding... menu option. When launched from P4V, P4Merge uses P4V’s
PA4CHARSET instead of the one defined in it's preferences.

m IDE SCC plug-in: the first time you connect to a Unicode-mode server, you are prompted to
choose the character encoding. Thereafter, the plug-in retains your selection in association with
the connection.

m P4GT and P4EXP, the Helix Plugin for File Explorer, use environmental settings and will fail with
a Unicode-mode server.

Troubleshooting user workstations in Unicode installations

To prevent file corruption, it is essential that you configure your workstation correctly. The following
section describes common problems and provides solutions.

m "Cannot Translate" error message

This message is displayed if your workstation is configured with a character set that does not
include characters that are being sent to it by the Helix Server. Your workstation cannot display
unmapped characters. For example, if PACHARSET is set to shiftjis and your depot
contains files named using characters from the Japanese EUC character set that do not have
mappings in shift-JIS, you see the "Cannot translate" error message when you list the files by
issuingthep4 files command.

To ensure correct translation, do not use unmappable characters in Helix Server user
specifications, client specifications, jobs, or file names.

m Strange display of file content

If you attempt to display an extended-character text file and see odd-looking text, your workstation
might lack the font required to display the characters in the file. Typical symptoms of this problem
include the display of question marks or boxes in place of characters. To solve this problem,

install the required font.

Configuring logging

You might want to address the following issues in setting up logging. For information on setting up
structured logging, see "Logging and structured log files" on page 176.

Logging errOrS il 73
Logging file access 73

72

Logging errors

Logging errors

Use the -L flag to p4d or the environment variable P4LOG to specify the Helix Server error output file. If
no error output file is defined, errors are dumped to the p4d process' standard error. Although p4d tries
to ensure that all error messages reach the user, if an error occurs and the user application disconnects
before the error is received, p4d also logs these errors to its error output.

Helix Server also supports trace flags used for debugging. See "Diagnostic flags for monitoring the
server" on page 173 for details.

Logging file access

If your site requires that user access to files be tracked, use the —-A flag to p4d or the environment
variable P4AUDIT to activate auditing and specify the Helix Server audit log file. When auditing is
active, every time a user accesses a file, arecord is stored in the audit log file. This option can consume
considerable disk space on an active installation.

See "Auditing user file access" on page 175 for details.

Configuring P4V settings

Not every site (nor every user at every site) requires the full suite of functionality in P4V, the Helix Visual
Client . By usingthe p4 property command, it is possible for a user with at least admin privileges to
control which P4V features are available for a given site, group, or user. Properties relate to performance,
features, and Helix Swarm integration. Performance- and feature-related properties set at the server level
override local P4V settings. Some properties can only be set on the server side.

If you add or update a property while P4V is running, P4V requires a restart before the new value takes
effect. P4V reads properties that control features once, at startup, from the Helix Server to which the user
connects. For performance-related properties, if a user connects to a new Helix Server after P4V startup,
P4V reloads the properties from the server most recently connected to.

For information about configuring settings locally in P4V, see the P4V User Guide.
This section provides information about:

For more information onthe p4 property command, seep4 property inthe P4 Command
Reference.

Viewing effective P4V properties
To list P4V properties from the command line, runthe p4 property command, as follows:

p4 property -1 -n P4V.Features // List enabled/disabled features
p4 property -1 -n P4V.Performance // List performance-related settings

If no properties are listed, the user's local P4V preferences take effect.

73

http://www.perforce.com/perforce/doc.current/manuals/p4v/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_property.html%23p4_property%3FTocPath%3DCommands%2520-%2520alphabetical%2520list|p4%2520property|_____0
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Precedence of P4V settings

Precedence of P4V settings

P4V settings take precedence based on how they were set and, if set on multiple levels, the sequence
number.

Settings added using the p4 property command have the highest precedence. They override:
= Any central settings that may have been set using a P4JSAPI centralsettings. jsfile

(for more information, see Administering P4V Settings Centrally in the Javascript API for Visual
Tools User Guide)

= Any settings configured locally in the P4V user interface

If a system-wide value is set and other values exist for the same property, such as for individual users
and one or more groups, the precedence depends on the sequence number for the property.

For example, the following output shows that the P4V . Features.Integration property is set
system-wide, but also on a user and group level. Userbill is a member of the pdusers and dev
groups. Which settings apply?

S p4 property -1 -A -n P4V.Features.Integration
Off
On (user bill)

P4V.Features.Integration

P4V.Features.Integration

P4V.Features.Integration Off (group p4users)
P4V.Features.Integration = On (group dev)
If all versions of P4V . Features . Integration were created using the same sequence number,
the answer would be:
1. System-wide, which takes precedence over
2. User, which takes precedence over

3. Group

However, if the sequence number is set to anything above 1, the highest sequence number wins. This
means that if P4V . Features.Integration foruserbill was created with a sequence number
of 500 and the other versions have the default sequence number (1), the setting forbil1l takes

precedence.
To view the sequence number for a property, an administrator can use the -z tag flag. For example:

S pd -ztag property -1 -A -n P4V.Features.Integration
. name P4V.Features.Integration
sequence 500
. value On
. time 1363106274
. modified 2013/03/12 16:37:54

. modifiedBy swood

74

https://www.perforce.com/perforce/doc.current/manuals/p4jsapi/01_p4jsapi.html#1106891
https://www.perforce.com/perforce/doc.current/manuals/p4jsapi/
https://www.perforce.com/perforce/doc.current/manuals/p4jsapi/

Performance-related P4V properties

appliesToType user
appliesTo bill
name P4V.Features.Integration
sequence 1
value Off
time 1363105851
. modified 2013/03/12 16:30:51
. modifiedBy swood
name P4V.Features.Integration
sequence 1
value On
time 1363102022
. modified 2013/03/12 15:27:02
. modifiedBy swood
appliesToType group
appliesTo dev
name P4V.Features.Integration
sequence 1
value Off
time 1363102040
. modified 2013/03/12 15:27:20
. modifiedBy swood
appliesToType group

appliesTo pé4users

Performance-related P4V properties

If a user connects to a new Perforce service, performance-related properties are reloaded for the Perforce
service to which the user has most recently connected.

75

Performance-related P4V properties

P4V > Edit
> Preference
S

Defaul

t

Meaning

P4V .Performance.FetchCount

Number of
changelists,
jobs... tofetch
atatime

1000

Number of
changelists,
jobs, branch
mappings, or
labels to fetch at
any one time.

P4V .Performance.OpenedLimit

N/A

1000

Limits the
number of files to
check in the
'opened' call
during a rollback
operation. If the
number of files to
roll back

exceeds the
configured value,
a popup informs
the user that no
opened check
will be
performed, and
asks if the user
wants to
complete the
operation.

P4V .Performance.MaxFiles

Maximum
number of files
displayed per
changelist

500

Maximum
number of files
displayed per
changelist.

P4V .Performance .MaxPreviewSize

Maximum size
of files to
preview

100

Maximum size of
files to preview,
in kilobytes.

P4V .Performance.ServerRefresh

Check server for
updates every X
minutes

Number of time
between display
refreshes, in
minutes.

76

Feature-related P4V properties

P4V > Edit
> Preference
S

Meaning

Defaul
t

P4V.Performance.AllowFulllIsta Show pending On Enables/Disable

ts

stream-to-
stream merge
and copy hints

sglobalistat
commands in
P4V Stream

graph. Users can
still single-select
astreamin the
graph and
refresh the
stream to run the
istat
command for
that stream and
get the
copy/merge flow
information.

Feature-related P4V properties

You can use the following properties to enable or disable features. These properties are read once, upon
P4V startup, from the first service to which the user connects. Features that are deactivated by setting a
property to Of £ are unavailable in P4V. They may still display in the P4V Preferences dialog, but you
cannot override the configuration on the server side.

P4V
> Edit

nces

Defa
> Prefere ult

Meaning

P4V .Features.Administra
tion

Administrati On
on Tool

If Of £, the Administration menu
option is not displayed.

P4V .Features.CheckForUp

Automatical On

If Of £, disables the Check for

dates ly check for Updates menu option on the Help
Helix P4V menu. See also
updates. P4V .Features.MaxAllow
edVersion.
P4V .Features.Connection Set Up On If Of £, P4V does not attempt to
Wizard Connection use the New Connection
Wizard Wizard.

77

Feature-related P4V properties

P4V

> Edit

> Prefere
nces

Meaning

P4V .Features.CustomTool Custom On If Of £, the Manage Custom

s Tools Tools dialog is disabled.

P4V.Features.DashBoard N/A On If Of £, the Dashboard is not
displayed.

P4V .Features.Dvcs N/A On On by default, but governed by the
server.allowpush and
server.allowfetch
configurables on the shared
server. Admins can disable the
DVCS fature with this property.
See also "Enabling distributed
versioning" on page 57.

P4V .Features.Integratio Merge, On If Of £, users cannot integrate.

n Copy and

Branch
Dialogs

P4V .Features.Jobs Jobs On If Of £, jobs support is disabled.
Jobs do not appear in changelists,
etc.

P4V .Features.Labeling Labels On If Of £, the labels tab does not

appear.

78

Feature-related P4V properties

P4V Meaning

> Edit

> Prefere

nces
P4V .Features.MaxAllowed N/A <int walue> that determines
Version the maximum version hint when

checking for updates. Setting the
version does not restrict the user
from using a newer version of P4V
against the server, but the
checking for an update will not
report a newer version than the
one set in the hint.

The value should be a changelist
number equal to the maximum
allowed version. If that value is set
to 60000 and the latest current
version is 65000, the user will get
the message that there is no
available update if the useris
already at version 60000. If the
user is at 60000 and the current
live version is 70000, but the
admin has set the max value to
65000, then the user will get a
message that there is a newer
version available, but an
administrator has set a different
maximum, and they should
contact their administrator for the
proper version.

P4V .Features.P4Applets Allow On If Of £, Perforce applets are
Perforce disabled in P4V, and the menu
applets to option to re-enable them is no
runin P4V longer accessible.

79

Feature-related P4V properties

P4V

> Edit

> Prefere
nces

Defa
ult

Meaning

P4V.Features.PromptWork Prompt for Off If On, P4V prompts the user for

spaceName name when the workspace name when

creating creating a new workspace. P4V

new runs thep4 client -o

workspace command, allowing a form-out
trigger to modify the default form.
P4V supports overwrite of the
following attributes: Client:,
Root:,View:, Owner:,
Description:, Host:,
AltRoots:, ChangeView:,
Options:,
SubmitOptions:,
LineEnd:, and Type:.

P4V .Features.RevisionGr Revision On If Of £, the Revision Graph is

aph Graph disabled.

P4V .Features.Streams Streams On If OE £, streams-related icons,
menus, and the Stream Graph do
not appear.

P4V .Features.Timelapse Time-lapse On If Of £, Time-Lapse View is
disabled.

P4V .Features.Workspaces N/A On If Of £, users cannot edit or

display their own (or other users')
workspaces.

For example, the administrator of a site that does not use Perforce’s built-in defect tracking can disable

access to jobs from within P4V by running:

S p4 property -a -n P4V.Features.Jobs -v Off

A new property is added/updated (-a), itis named (-n) P4V . Features . Jobs, and it is assigned the

value (-v)of Of £.

If one group of users within the organization has a need to use the jobs functionality of P4V, the feature
can be selectively (and centrally) re-enabled for those users with:

$ p4 property -a -n P4V.Features.Jobs -v On -g jobusers

The jobs feature of P4V is re-enabled by setting its value to On, but only for users in the jobusers

group.

80

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_client.html

Miscellaneous P4V properties

Miscellaneous P4V properties

You can use the following properties to set P4V properties not related to performance or features.

P‘:E\a . Meaning

> [

> Prefer Default
ences

P4 .DataAnalyt Contribut On P4V 2015.1

icsPrompt eyour inaugurated an opt-in
anonymo program for collecting
us usage user data about
data to interaction with our
help us software. During the
improve installation of P4V, a
our dialog prompts the
products. end-user to decide

whether or not to join
the program. If the
user chooses not to
join, Perforce gathers
no information about
how that end-user
uses P4V. The admin
can disable the
prompt by setting a
property on the
server:

p4 property -
a -n

P4 .DataAnalyt
icsPrompt -v
Off

81

Swarm integration properties

P4V Meaning
> Edit
> Prefer Default
ences
P4V.Help.URL N/A perforce/<version>/man As of P4V 2014.2,
uals/pdv/#pdv/ P4V launches a web

browser to display
general or context-
sensitive help
information. Admins
can download those
web pages
(p4vsuite_en-
help.zip)from
the FTP site and
stage them locally.
Set this property to
the root path of the
staged help. For
detailed steps, see
Staging P4V help
files locally.

Swarm integration properties

Property Meaning

P4 .Swarm.URL Set to the URL for the Helix Swarm server to enable the P4V integration
with.

P4 .Swarm.URL. If multiple Swarm servers exist, specify multiple Swarm URLs. xxxx

XXXX is the server ID for the desired server.

P4.Swarm.Timeout Set the timeout value for the P4V integration with Swarm. By default,
this is 10 seconds.

Configuring Swarm connections

In order for P4V to connect to a Swarm server, it must know where the server is installed. Because
Swarm is a web application, a URL can specify its location.

The Swarm or P4V administrator uses the P4 . Swarm.URL[. serverid] property to specify the
location of a Swarm server.

82

Swarm integration properties

= Toidentify the location of a single Swarm server, use either the P4 . Swarm. URL or the

P4 .Swarm.URL] .serverid] syntax, depending on whether the server has a serverid. For
example, the following command specifies that the location of the server given by
10.5.40.145:1666ishttps://my swarm server.com.

$ p4d -p "10.5.40.145:1666" property -a -n P4.Swarm.URL -v

"https://my_swarm server.com"

To identify the location of several Swarm server instances, use the P4 . Swarm. URL

[. serverid] syntax, and specify the serverid for each Swarm server each time you invoke
thep4 property command. Forexample:

$ p4d -p "10.5.40.145:1666" property -a -n P4.Swarm.URL.svrl -
v "https://my_ swarm serverl.com"

S pd4 -p "10.5.40.145:1667" property -a -n P4.Swarm.URL.svr2 -
v "https://my swarm server2.com"

Using the serverid format is only necessary if you are using an authentication server (and multiple
p4d instances are funneling through it) or if you are deploying multiple instances of Swarm
against replicas or edge servers.

When P4V attempts to connect to a server that has no serverid, it checks to see if the property
P4 .Swarm.URLis set, and it uses that URL to access Swarm. If the property is not set, P4V does not
attempt to talk to Swarm.

When P4V attempts to connect to a server that has a serverid,

1.
2.
3.

4.

P4V asks the server for its server id and gets, for example, svrl.
P4V checks the setting of p4 . Swarm.URL. svrl, and it uses that URL to talk to Swarm.

Ifp4 . Swarm.URL. svrl is not set, P4V checks the value of p4 . Swarm. URL and uses that
value to access the Swarm server.

If p4 . Swarm. URL is not set, P4V does not attempt to talk to Swarm.

If there is a value both forp4 . Swarm. URL and forp4 . Swarm. URL . myserverid when P4V
attempts to connect to a Swarm server, the serverid match takes precedence over the generic match.

The userissuing the p4 property command must have an account on the specified Swarm server.

You canuse the p4 property command to list the current properties of the Swarm server; for
example:

$p4d -p "10.5.40.145:1666" property -1 -A

83

P4.Swarm.Timeout = 10 (any) #1

P4 .Swarm.URL.master-1666 = https: //my_swarm_serverl .com

https://my_swarm_server.com/

Staging P4V help files locally

Staging P4V help files locally

If the P4V host does not have internet access, P4V cannot access the help files by default. In this case,
you can make them available from a locally staged location.

Prerequesites

Forlocally staged help to work, both P4V and the Helix Server need to be running version 2014.2 or later.

Staging location types

The following types of staging locations are known to work; others may work if a standard URI is
available:

m A file system local to the P4V client host (or locally accessible). This could be a share mapped to
alocal drive letter on Windows, or a remote Unix filesystem mounted locally. This shared file
location is not cross platform because you can only specify one path (Unix/Mac/Windows).

m A UNC share accessible to the P4V client host. This is only applicable to Windows clients.

m A website accessible to the P4V client. This can be made cross platform provided every client
platform has access to the website.

Procedure

To stage help files locally:

1. Download the help files (p4vsuite_en-help. zip)fromthe FTP server. The exact location
of this file varies depending on the version of P4V. The generic path looks as follows:

m For2014.2,2014.3, and 2015.1:

http://ftp.perforce.com/perforce/<
version>/doc/help/p4vsuite/p4vsuite en-help.zip

m For2015.2 and later:

http://ftp.perforce.com/perforce/<
version>/doc/manuals/p4vsuite_en-help.zip

where <version> takes onaformat of rxx. x, suchasrl4.2orrl7.1.

84

Troubleshooting P4V properties

2. Unzipp4vsuite_en-help. zip tothe required staging location.

The staging location must be accessible to the P4V client, either as a file path or a URI.

Following are examples for each type of staging location:

Local P4V client file system on Windows: C: \p4vsuite_en-help

Local P4V client file system on Linux/Unix: /var/www/html/p4vsuite_en-
help

UNC share: \\myserver\myshare\p4vsuite_en-help

Web server (if you type this URL into a browser, it should list the "perforce” folder that is a
subfolder of p4vsuite_en-help): http: //mywebserver/p4vsuite en-help

3. Onthe Helix Server, set the P4V . Help . URL property.

Note
The property name is case sensitive.

Following are examples for setting P4V . Help . URL for each type of staging location:

When staging from a local file system on Windows (note the use of forward slashes (/) as
path separator, not backward slashes (\) as expected on Windows):

p4 property -a -n P4V.Help.URL -v C:/p4vsuite_en-help/

When staging from a local file system on Linux/Unix:

p4 property -a -n P4V.Help.URL -v /var/www/html/p4dvsuite_
en-help/

When staging from a UNC share (note the use of forward slashes (/) as path separator,
not backward slashes (\)):

P4 property -a -n P4V.Help.URL -v
file://myserver/myshare/p4vsuite_en-help/

m When staging from a Web server:

P4 property -a -n P4V.Help.URL -v
http://mywebserver/p4vsuite_en-help/

4. Start P4V and goto Help > P4V Help to test if accessing the files works.

Troubleshooting P4V properties

If P4V is not picking up the value or setting you expected, check the following:

85

Windows configuration parameter precedence

m Get the user to send full output from Help > System Info in P4V.

m Ask the admin to send the output from the following commands:

p4 -ztag property -1 -A -n P4V.Features
p4 -ztag property -1 -A -n P4V.Performance

p4 groups -u <user>

Important
Property names are case sensitive, so P4V . Features.Integration and
P4V.Features.integration are not the same thing.

Windows configuration parameter precedence

Under Windows, Helix Server configuration parameters can be set in many different ways. When a Helix
Server application (such as p4 or P4V), or a Helix Server program (p4d) starts up, it reads its
configuration parameters according to the following precedence:

1. For Helix Server applications or a Helix Server (p4d), command-line flags have the highest
precedence.

For a Helix Server (p4d), persistent configurables set withp4 configure.
The PACONFIG file, if PACONFIG is set.

User environment variables.

System environment variables.

The Windows user registry (or OS X user preferences) (set by p4 set).

N o g s~ WD

The Windows system registry (or OS X system preferences) (setby p4 set -s).

When a Perforce service (p4s) starts up, it reads its configuration parameters from the environment
according to the following precedence:

1. Persistent configurables set withp4 configure have the highest precedence.

2. Windows service parameters (setby p4 set -S servicename).

3. System environment variables.

4. The Windows system registry (or OS X user preferences) (set by p4 set -s).
User environment variables can be set with any of the following:

s The MS-DOS set command

m The AUTOEXEC.BAT file

m The User Variables tab under the System Properties dialog box in the Control Panel

System environment variables can be set with:

86

Windows configuration parameter precedence

m The System Variables tab under the System Properties dialog box in the Control Panel.

87

Working with depots

All versioned files that users work with are stored in a shared repository called a depot. Files are checked
out of the depot for modification and checked back into the depot to archive changes and to share
changes with other users.

By default, a depot named Depo't of type 1ocal is created in the server when the server starts up.
This kind of depot is also referred to as a classic depot. In addition, Helix Server creates a default depot
of type graph named repo. A graph depot servers as a container for Git repos. To be able to store Git
data in a graph depot, you need to license Helix4Git. For more information on graph depots, see the
Helix4Git Administrator Guide.

You can also create additional depots of various types:

m Additional Local depots allow you to organize users' work in relevant categories. You might, for
example, want to separate HR source docs from development source docs.

m Stream depots are dedicated to the organization and management of streams.

m A spec depot is used to track changes to user-edited forms such as workspace specifications,
jobs, branch mappings, and so on.

= Archive depots are used to offline storage of infrequently needed content.
m Unload depots are used to offline storage of infrequently needed metadata.
m Remote depots are used to facilitate the sharing of code.

m A tangent depot is generated by Helix Server and used internally to store conflicting changes
during fetch operations. The only action the administrator might want to take with respect to the
tangent depot is to rename it if its default name of tangent is unacceptable.

This chapter includes general information about working with depots of different types. The p4 depot
command, used to create any type of depot, is described in P4 Command Reference.

OV OV W 89
Naming depots ... 89
Listing depots ... e 89
Deleting depots 89
Moving depots in a production environment ________ ... 90

Standard depots ...l 920

Stream depots .. 91

Spec depot il 91
Creating the spec depot 9
Populating the spec depot with current forms 92
Controlling which specs are versioned 92
Large sites and old filesystems ... ll... 93

Archive depots . 93

Unload depot ... ool 93
Remote depots and distributed development

88

http://www.perforce.com/perforce/doc.current/manuals/helix-for-git/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Overview

How remote depots Work .. 94
Using remote depots forcode drops 95
Overview

New depots are defined with the command p4 depot depotname. Depots can be defined as
local, stream, remote, unload, archive, or spec depots.

Helix Servers can host multiple depots, and Helix Server client applications can access files from
multiple depots. These other depots can exist on the Helix Server normally accessed by the Helix Server
client, or they can reside within other, remote, servers.

Naming depots . . . 89

Listing depots . . . 89

Deleting depotsl 89

Moving depots in a production environment 920
Naming depots

The name of a depot may not be the same as the name of a branch, client workspace, or label.

Listing depots

To list all depots known to the current Helix Server, use the p4 depots command.

Deleting depots

To delete adepot, use p4 depot -d depotname.

To delete a depot, it must be empty; you must first obliterate all files in the depot with p4
obliterate.

Forlocal and spec depots, p4 obliterate deletes the versioned files as well as all their
associated metadata. For remote depots, p4 obliterate erases only the locally held client and
label records; the files and metadata still residing on the remote server remain intact.

Beforeyouusep4 obliterate, and especially if you're about to use it to obliterate all files in a
depot, read and understand the warnings in "Reclaiming disk space by obliterating files" on page 195.

In a distributed environment, the unload depot may have different contents on each edge server. Since
the commit server does not verify that the unload depot is empty on every edge server, you must specify
p4 depot -d -f£finorderto delete the unload depot from the commit server. For more information,
see Helix Core Server Administrator Guide: Multi-Site Deployment.

89

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Moving depots in a production environment

Moving depots in a production environment
Follow these steps to move a depot in a production environment:

1. Shut down the server where the depot resides.
2. Move the versioned file tree to its new location.

3. Restart the server so that it listens only on localhost (or on some port other than the one you
normally use). For example:

$ p4d -p 127.0.0.1:1666 flags you normally use

4. Change the map field usingthe p4 depot depotname command.

5. Shut down the server using a command like the following:
$ p4d -p 127.0.0.1:1666 admin stop

6. Restart the server normally.

Standard depots

Standard or Local-type depots reside on local, remote, or shared servers. Local-type depots reside on
the Helix Server normally accessed by the user’s Helix Server application. When using local depots, a
Helix Server application communicates with the Helix Server specified by the user's P4APORT
environment variable or equivalent setting.

To define a new local depot (that is, to create a new depot in the current Helix Server namespace), call
p4 depot with the new depot name, and edit only the Map : field in the resulting form.

For example, to create a new depot called book with the files stored in the local Helix Server
namespace in a root subdirectory called book (that is, $P4ROOT /book), enter the command p4
depot book, andfill in the resulting form as follows:

Depot: book
Type: local
Address: local
Suffix: .pés
Map: book/. ..

The Address: and Suffix: fields do not apply to local depots and are ignored.

By default, the Map : field on alocal depot points to a depot directory matching the depot name, relative
to the server root (P4ROOT) setting for your server. To store a depot’s versioned files on another volume
or drive, specify an absolute path in the Map : field. This path need not be under PAROOT. Absolute
paths in the Map : field on Windows must be specified with forward slashes (for instance,

d: /newdepot/)inthep4 depot form.

90

Stream depots

Stream depots

Stream depots contain streams, a type of branch that includes hierarchy and policy. Like local depots,
stream depots reside on the Helix Server. When creating a stream depot, you must provide the following
information: name, owner, date, type, and stream depth. For additional information, see "Working with
Stream Depots" in the description of the p4 depot command.

If you are using the distributed versioning architecture, the personal server uses a stream-type depot.

Spec depot

The spec depot is used to track changes to user-edited forms such as client workspace specifications,
jobs, branch mappings, and so on. There can be only one spec depot per server. (If you already have a
spec depot, attempting to create another one results in an error message.)

In order to retrieve change histories of user-edited forms, you must enable versioned specifications. After
you have enabled versioned specs by creating the spec depot, all user-generated forms (such as client
workspace specifications, jobs, branch mappings, and so on) are automatically archived as text files in
the spec depot. Filenames within the spec depot are automatically generated by the server, and are
represented in Helix Server syntax as follows:

//specdepotname/formtype/[objectname|[suffix]]

Some formtypes (for example, the protect, triggers, and typemap forms) are unique to the
server, and do not have corresponding objectnames.

Note
As of Release 2011.1, the first line of every saved form stored in the spec depot is a comment line
that identifies the user who most recently changed the form:

The form data below was edited by username

Creating the specdepot 91
Populating the spec depot with currentforms 92
Controlling which specs are versioned 92
Large sites and old filesystems 93

Creating the spec depot

To create a spec depot named / / spec, enterp4d depot spec, andfill in the resulting form as
follows:

Depot: spec
Type: spec
Address: local

91

Populating the spec depot with current forms

Map: spec/ ...
SpecMap: //spec/. ..
Suffix: .pés

The Address:: field does not apply to spec depots and is ignored.

UsingaSuffix: is optional, but specifying a file extension for objects in the spec depot simplifies
usability for users of applications such as P4V, because users can associate the suffix used for Helix
Server specifications with their preferred text editor. The default suffix for these files is . p4s.

For example, if you create a spec depot named spec, and use the default suffix of . p4s, your users
can see the history of changes to job00012 3 by using the command:
$ p4 filelog //spec/job/job000123.pds

or by using P4V to review changes to job000123 . p4s in whatever editor is associated with the
. p4s file extension on their workstation.

The default SpecMap : of //spec/ . . . indicates that all specs are to be versioned.

Populating the spec depot with current forms

After you create a spec depot, you can populate it usingthe p4 admin updatespecdepot
command. This command causes the Helix Server to archive stored forms (specifically, client,
depot, branch, label, typemap, group, user, and job forms) into the spec depot.

To archive all current forms, use the —a flag:

$ p4 admin updatespecdepot -a

To populate the spec depot with only one type of form (for instance, extremely large sites might elect to
update only one table at a time), use the - s flag and specify the form type on the command line. For
example:

$ p4 admin updatespecdepot -s job

In either case, only those forms that have not yet been archived are added to the spec depot; after the
spec depot is created, you only needtouse p4 admin updatespecdepot once.

Controlling which specs are versioned

By default, all specs (//spec/ . . .)are versioned. You can use the SpecMap : field to control which
specs are versioned by adding lines in depot syntax that include (or exclude) paths in the spec depot.
For example, you can exclude the protections table from versioning by configuring your spec depot’s
SpecMap : field as follows:
SpecMap:

//spec/. ..

-//spec/protect/...

92

Large sites and old filesystems

In an environment such as a build farm, in which large numbers of temporary client workspaces and/or
labels are created, you can configure the spec depot to exclude them, while keeping track of other
changes to client workspaces and labels. For example, a spec depot configured with the following spec

mapping:

SpecMap:
//spec/. ..
-//spec/client/build ws_*
-//spec/label/temp label *

will no longer track changes to client workspaces whose names begin withbuild ws_, nor will it track
changes to labels whose names begin with temp _label .

Note that adding or changing the SpecMap : field only affects future updates to the spec depot; files
already stored in the spec depot are unaffected.

Large sites and old filesystems

Use the spec . hashbuckets configurable to define the number of buckets (subdirectories) into
which files in the spec depot are hashed. By default, spec . hashbuckets is 99; for each type of
object, directories associated with objects in the spec depot are allocated between 99 subdirectories.

To disable hashing, set spec . hashbuckets to 0, as follows:

$ p4 configure set spec.hashbuckets=0

With hashing disabled, for each subdirectory for each spec type, one sub-subdirectory is created for each
object, and all of these sub-subdirectories are stored in one single subdirectory. Disabling hashing may
subject your installation to filesystem-imposed limitations on the maximum number of subdirectories in
any one directory (for example, the 32K limit imposed by older ext2, ext3, and ufs filesystems).

Archive depots

Archive depots are used for near-line or offline storage of infrequently-accessed content. For details, see
"Reclaiming disk space by archiving files" on page 194.

Unload depot

The unload depot is analogous to the archive depot, but provides a place to store infrequently-accessed
metadata (specifically, metadata concerning client workspaces and labels) rather than old versioned
files. There can be only one unload depot per server. For details, see "Unloading infrequently-used
metadata" on page 218.

93

Remote depots and distributed development

Remote depots and distributed development

Helix Server is designed to cope with the latencies of large networks and inherently supports users with
client workspaces at remote sites. A single Helix Server installation is ready, out of the box, to support a
shared development project, regardless of the geographic distribution of its contributors.

Partitioning joint development projects into separate Helix Server installations does not improve
throughput, and usually only complicates administration. If your site is engaged in distributed
development (that is, developers in multiple sites working on the same body of code), it is better to set up
a distributed Helix Server installation. For information on setting up and monitoring a distributed Helix
Server configuration, see the Helix Core Server Administrator Guide: Multi-Site Deployment manual.

If, however, your organization regularly imports or exports material from other organizations, you might
want to consider using Perforce’s remote depot functionality to streamline your code drop procedures.

When using remote depots, the user’s client application uses the Helix Server specified by the user’s
P4PORT environment variable or equivalent setting as a means to access a second, remote, Helix
Server. The local Helix Server communicates with the remote Helix Server server to access a subset of
its files.

Remote depots are designed to support shared code, not shared development. They enable independent
organizations with separate Perforce installations to integrate changes between Perforce installations.
Briefly:

m A '"remote depot" is a depot on your Helix Server of type remote. It acts as a pointer to a depot
of type "local" that resides on a second Helix Server.

m A user of a remote depot is typically a build engineer or handoff administrator responsible for
integrating software between separate organizations.

m Control over what files are available to a user of a remote depot resides with the administrator of
the remote server, not the users of the local server.

m See "Restricting access to remote depots" on page 97 for security requirements.

For additional information about the options you have to share code, see "Distributed development using
Fetch and Push" on page 183.

How remote depots work

The following diagram illustrates how Helix Server applications use a user’s default Helix Core Server to
access files in a depot hosted on another Helix Core Server.

In this example, an administrator of a Helix Server at oak : 1234 is retrieving a file from a remote server
atpine:1818.

94

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Using remote depots for code drops

PAPORT=0ak:1234
p4 integ //from-pine/file.c //depot/codedrops/file.c

Helix Core Server Helix Core Server

User (oak:1234) (pine:1818)

-— -— -—

from pine is not a local depot like configure the depot so itis //depot/outbound/file.c
the definition here retrieved from pine:1818...)

Depot name: depot
Depot name: depot Depot name: from-pine Type: local
Type: local Type: remote Address: local
Address: local Address: pine:1818 Map: depot/_.
Map: //depot/... Map: //depot/outboundy/...

Although it is possible to permit individual developers to sync files from remote depots into their client
workspaces, this is generally an inefficient use of resources.

The preferred technique for using remote depots is for your organization’s build or handoff administrator to
integrate files from a remote depot into an area of your local depot. After the integration, your developers
can access copies of the files from the local depot into which the files were integrated.

To accept a code drop from a remote depot, create a branch in a local depot from files in a remote depot,
and then integrate changes from the remote depot into the local branch. This integration is a one-way
operation; you cannot make changes in the local branch and integrate them back into the remote depot.
The copies of the files integrated into your Helix Server installation become the responsibility of your
site’s development team; the files on the depot remain under the control of the development team at the
other Helix Server installation.

Restrictions on remote depots

Remote depots facilitate the sharing of code between organizations (as opposed to the sharing of
development within a single organization). Consequently, access to remote depots is restricted to read-
only operations, and server metadata (information about client workspaces, changelists, labels, and so
on) cannot be accessed using remote depots.

Using remote depots for code drops

Performing a code drop requires coordination between two organizations, namely the site receiving the
code drop and the site providing the code drop. In most cases, the following things must be configured:

95

Using remote depots for code drops

m The Helix Server administrator at the site receiving the code drop must create a remote depot on

his or her Helix Server that points to the site providing the code drop.
This is described in "Defining remote depots" below.

The Helix Server administrator at the site providing the code drop should configure his or her Helix
Server to allow the recipient site’s remote depot to access the providing site’s Helix Server.

This is described in "Restricting access to remote depots" on the next page.

The configuration manager or integration manager at the receiving site must integrate the desired
files from the remote depot into a local depot under his or her control.

This is described in "Receiving a code drop" on page 99.

Defining remote depots

To define a new remote depot:

1.
2.
3.

5.

Create the depot withp4 depot depotname.
Set the Type : to remote.

Direct your Helix Server to contact the remote Helix Server by providing the remote server's name
and listening port in the Address : field.

A remote server’'s host and port are specified in the Address : field just as though it were a
P4PORT setting.

Set the Map : field to map into the desired portion of the remote server's namespace.

For remote depots, the mapping contains a subdirectory relative to the remote depot namespace.
For example, //depot/outbound/ . . . maps to the outbound subdirectory of the depot
named depot hosted on the remote server.

The Map : field must contain a single line pointing to this subdirectory, specified in depot syntax,
and containing the " . . . " wildcard on its right side.

If you are unfamiliar with client views and mappings, see the Helix Core Server User Guide for
general information about how Perforce mappings work.

The Suffix: field does not apply to remote depots; ignore this field.

In order for anyone on your site to access files in the remote depot, the administrator of the remote server
must grant read access to user remote to the depots and subdirectories within the depots specified in
theMap : field.

Example Defining a remote depot

Lisais coordinating a project and wants to provide a set of libraries to her developers from a third-party
development shop. The third-party development shop uses a Helix Server on host pine that listens
on port 1818. Their policy is to place releases of their libraries on their server’s single depot depot
under the subdirectory outbound.

96

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

Using remote depots for code drops

Lisa creates a new depot from which she can access the code drop; she’ll call this depot £rom-
pine;she’dtypep4 depot from-pine andfillinthe form as follows:

Depot: from-pine

Type: remote

Address: pine:1818

Map: //depot/outbound/. ..

This creates a remote depot called £Erom-pine on Lisa’s Helix Server; this depot (/ / £rom-pine)
maps to the third party’s depot's namespace under its outbound subdirectory.

Restricting access to remote depots

Remote depots are accessed either by a virtual user named remote, or (if configured) by the service
user of the accessing server’'s p4d. Service users (including the virtual remote user) do not consume
Perforce licenses.

Note
A Helix Server at release 2010.2 authenticates as remo te to an older Helix Server and either as

remote (if no service user is configured) or as the service user (if configured) to a Helix Server at
release 2010.2 and above.

By default, all files on a Helix Server can be accessed remotely. To limit or eliminate remote access to a
particular server, use p4 protect to set permissions for user remote (or the remote site’s service
user) on that server. Perforce recommends that administrators deny access to user remote across all
files and all depots by adding the following permission line in the p4 protect table:

list user remote * —-//...

Because remote depots can only be used for read access, it is not necessary to remove write or
super access to user remote (or the service user). Keep in mind that the virtual user remote does not
have access to anything unless that access is granted explicitly in the protection table.

Note
As of Helix Server release 2010.2, it remains good practice to deny access to user remote. If the

servers at partner sites are configured to use service users, you can use their service users to further
restrict which portions of your server are available for code drops.

Example security configuration

Using the two organizations described in "Receiving a code drop™" on page 99, a basic set of security
considerations for each site would include:

On the local (oak) site:

97

Using remote depots for code drops

= Deny access to //£from-pine to all users. Developers at the oak site have no need to access
files on the pine server by means of the remote depot mechanism.

m Grant read access to // £rom-pine to your integration or build managers. The only user at
the oak site who requires access the / / £rom-pine remote depot is the user (in this example,
adm) who performs the integration from the remote depot to the local depot.

The oak administrator adds the following lines tothe p4 protect table:

list user * * -//from-pine/...

read user adm * //from-pine/...

On the remote (pine) site, access to code residing on pine is entirely the responsibility of the pine
server's administrator. At a minimum, this administrator should:

m Preemptively deny access to user remote across all depots from all IP addresses:

list user remote * —-//...

Adding these lines tothe p4 protect table is sound practice for any Helix Server installation,
whether its administrator intends to use remote depots or not.

98

Using remote depots for code drops

= |f both servers are at Release 2010.2 or higher: contact the oak site’s administrator and
obtain the name of the oak site’s service user.

In this example, the oak site’s service useris service-oak. When a user of the oak server
accesses a remote depot hosted on pine, the oak server will authenticate with the pine
server as a user named service-oak.

As administrator of the pine site, you must:

o Create a service user on your site named service-oak. (see "Service users" on
page 187). This user's name must match the name of the receiving site’s service user.

« Assign this user a strong password.
o Inform the oak administrator of this password.
The administrator of the oak site must:

« Use the password set by the pine administrator to obtain a ticket valid for pine for the user
service-oak (thatis,r unp4 login service-oak againstthe pine server).

o Place the ticket somewhere where the oak server's p4d process can access it. (For
example, the . p4tickets filein the server's root directory, with PATICKETS set to
point to the location of the ticket file.)

« Configure oak to work with the pine service user, either by starting oak's p4d process
withthe —u service-oak flag, or configure the serverwithp4 configure set
serviceUser=service-oak.)

o Grant read access to user remote (or the oak site’s service user) to only those areas of
the pine serverinto which code drops are to be placed. Further restrict access to requests
originating from the IP address of the Helix Server that is authorized to receive the code drop.

In this example, outgoing code drops reside in / /depot/outbound/ . . . onthe pine
server. If oak's IP address is 192.168.41. 2, the pine site’s protections table looks like:

list user remote * -//...

read user remote 192.168.41.2 //depot/outbound/...

m If both sites are at Release 2010.2 or higher, and the oak serveris configured to use
service-oak as its service user, the pine site’s protections table looks like:
list user remote * -//...
list user service-oak * -//...
read user service-oak 192.168.41.2 //depot/outbound/...

Only servers at IP address 192.168.41.2 that have valid tickets for the pine site’s service-
oak user, are permitted to access the pine server through remote depots, and only
//depot/outbound/ . . . is accessible.

Receiving a code drop

To perform a handoff or code drop between two Helix Server installations:

99

Using remote depots for code drops

Developers on pine : 1818 complete work on a body of code for delivery.

The build or release manager on pine : 1818 branches the deliverable code into an area of
pine: 1818 intended for outbound code drops. In this example, the released code is branched
to //depot/outbound/. . ..

. A Helix Server administrator at oak : 1234 configures a remote depot called / / £rom-pine on
the oak server. This remote depot contains aMap : field that directs the oak server to the
//depot/outbound areaof pine:1818.

Upon notification of the release’s availability, a build or release manager at oak : 1234 performs
the code drop by integrating files in the / / £rom-pine/ . . . remote depot into a suitable area
of the local depot, such as //depot/codedrops/pine.

Developers at oak : 1234 can now use the pine organization’s code, now hosted locally under
//depot/codedrops/pine. Should patches be required to pine's code, oak developers
can make such patches under / /depot/codedrops/pine. The pine group retains
control over its code.

P4PORT=0ak:1234
p4 integrate //from-pine/... //depot/codedrops/pine/...

Helix Core Server Helix Core Server
(oak:1234) (pine:1818)

Admin

PAPORT=0ak:1234
p4 sync //depot/codedrops/...

—— — >
E—
E—

Dev

//from-pine/__
remote depot on oak

-

//depot/codedrops/...
local depot on ocak

-

//depot/outbound/...
local depot on pine

100

Securing the server

You can set up secure communication between clients and servers as well as between servers.

m Communication between clients and servers can be secured using the SSL protocol, which you
specify when connecting to the server. See "Using SSL to encrypt connections to a Helix Server"

on page 103 for information on how you secure client-server communication.

Communication between clients and servers can also be secured using a firewall. For more
information, see "Using firewalls" on page 107.

m User authentication can be done using passwords or tickets, and the strength of the password can
be defined by an administrator. Users can be authenticated against an Active Directory or LDAP

server, or against an internal Helix Server user database. See "Authentication options" on
page 107 for information about how you can authenticate users.

m Access is defined using a protections that determine which Helix Server commands can be run,
on which files, by whom, and from which host. See "Authorizing access" on page 126 to find out

how you define protections.

m Communication between servers in a distributed environment can be secured using a trust file and
by setting permissions for the service users that own the different servers in the environment. For

more information, see Helix Core Server Administrator Guide: Multi-Site Deployment.

Before you can configure access and authentication, you must create users as described in "Managing

users" on page 186.

Tip

We recommend that you hide sensitive information from unauthorized users of p4 1info by setting

the dm.info.hide configurable.

Securing the server: workflow 102
Using SSL to encrypt connections to aHelixServer 103
Serverand client SetUD 103
Key and certificate management 103
Key and certificate generation 104
Secondary cipher suite 107
Using SSL inamixed environment 107
Using firewalls L 107
Authentication options 107
OV IV W 108
Server SeCUNtY leVelS L 108
Defining authentication forusers 110
Authenticating using passwords and tickets 111
Password-based authentication 112
Password strength requirements 112
Managing and resetting USer passwords 113

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#dm.info.hide

Securing the server: workflow

Ticket-based authentication 114
Login process for the USer ... o o e 114
Login process forthe SerVer ... L 115
Logging out of HEliX Server L 115
Determining ticket status L 116
Invalidating auser's ticket ... 116
LDAP authentication 116
Authenticating against Active Directory and LDAP servers _................................. 116
Creating an LDAP configuration 117
Defining LDAP-related configurables 120
Authorization using LDAP groups 121
Testing and enabling LDAP configurations L 121
Getting information about LDAP SEIVers L 122
Using LDAP with single sign-on triggers e 123
Multi-factor authentication 123
Helix SAML 124
PrereqUISItES .. 125
System Requirements .. 125
AUthorizing aCCess 126
When should protections be set? 126
Setting protections with p4 protect 126
Granting access to groups Of USers 134
Comments in protection tables L 138
How protections are implemented 138
Access levels required by Helix Servercommands 139

Securing the server: workflow

The following workflow summarizes the steps required to secure the server and authenticate users. The
suggested order might vary, depending on the authentication method used and on whether users are
automatically created.

Set up SSL if needed.

Set up a firewall if needed.

Set up protections for users and user groups.

Review available authentication options and server security levels.
Set the security level for the server.

Define the authentication to be used for existing users and new users.

Create authentication triggers if you are planning to use a non-standard LDAP server.

©® N o o bk~ 0 N =

Enable and configure LDAP authentication if you are planning to authenticate users against an
LDAP or Active Directory server.

For information about basic security considerations when setting up a Helix Server, see the Support
Knowledgebase article, "Connecting an ssh client to Perforce through a firewall".

102

https://community.perforce.com/s/article/2433

Using SSL to encrypt connections to a Helix Server

Using SSL to encrypt connections to a Helix Server

The following sections explain how you set up encrypted communications between a client and a Helix
Server.

For any given Helix Server, proxy, or broker, SSL encryption is an all-or-nothing option: If a Helix Server
is configured to use SSL (presumably for security reasons), all Helix Server applications must be
configured to use SSL. Conversely, if a Helix Server is configured to accept plaintext connections (either
for performance reasons or for backwards compatibility), all client applications must connect in plaintext.
It is possible however, if you have an intermediary (such as a proxy or a broker) between the client and
the Helix Server, that one leg of the communication is encrypted and the following is not. For more
information, see "Using SSL in a mixed environment" on page 107.

Note
TLSv1.1is currently supported and SSL 3.0 is not.

Server and client setupl 103

Key and certificate management 103

Key and certificate generation 104

Secondary cipher suite 107

Using SSL in a mixed environment 107
Server and client setup

By default, a PAPORT setting that does not specify a protocol is assumed to be in plaintext. It is good
practice to configure Helix Server applications to explicitly specify the protocol, either
tcp:host:port for plaintext, or ssl:host:portforencrypted connections.

The first time a user connects to an SSL-enabled server, their Helix Server applications will inform them
of the fingerprint of the server’s key.

If the user can independently verify that the fingerprint is accurate, they should add the server to their
P4ATRUST file (either by using the p4 trust command, by following the prompts in P4V or other Helix
Server applications, or by manually adding the fingerprint to the file).

Key and certificate management

When configured to accept SSL connections, all server processes (p4d, p4p, p4broker), require a
valid certificate and key pair on startup. These files are stored in the directory specified by the
P4SSLDIR environment variable. In order for an SSL-enabled server process to start, the following
additional conditions must be met:

103

Key and certificate generation

m P4SSLDIR must be set to a valid directory.

m The PASSLDIR directory must be owned by the same userid as the one running the Helix Server,

proxy, or broker process. The P4ASSLD IR directory must not be readable by any other user. On
UNIX, for example, the directory’s permissions must be set to 0700 (drwx——-—---—) or 0500
(dr-x------)-

Twofiles, named privatekey.txtand certificate. txt, mustexistin PASSLDIR.

These files correspond to the PEM-encoded private key and certificate used for the SSL
connection. They must be owned by the userid that runs the Helix Server, proxy, and broker
process, and must also have their permissions set such as to make them unreadable by other
users. On UNIX, for example, the files' permissions must be set to 0600 (-xw—-—--—-—-—) or 0400

(St)-

You can supply your own private key and certificate, or you can use p4d -Gc to generate a self-
signed key and certificate pair.

To generate afingerprint from your server’s private key and certificate, runp4d -Gf£.
(P4SSLDIR must be configured with the correct file names and permissions, and the current
date must be valid for the certificate.)

After you have communicated this fingerprint to your end users, your end users can then compare
the fingerprint the server offers with the fingerprint you have provided. If the two fingerprints
match, users canuse p4 trust toadd the fingerprint to their P4ATRUST files.

Key and certificate generation

To generate a certificate and private key for your server:

1.

104

Set PASSLDIR to avalid directory in a secure location. The directory specified by PASSLDIR
must be secure: owned by the same userid as the one generating the key pair, and it must not be
readable by any other user.

Key and certificate generation

2. Optionally, create afile named config. txt in your PASSLDIR directory before running p4d
-Gc, and format the file as follows:

C: Country Name - 2 letter code (default: US)
C =

ST: State or Province Name - full name (default: CA)
ST =

L: Locality or City Name (default: Alameda)

O: Organization or Company Name (default: Helix Autogen Cert)

OU = Organization Unit - division or unit

OoUu =

CN: Common Name (usually the DNS name of the server)
(default: the current server's DNS name)

CN =

EX: number of days from today for certificate expiration
(default: 730, e.g. 2 years)
EX =

UNITS: unit multiplier for expiration (defaults to "days")

Valid values: "secs", "mins", "hours"

UNITS =

105

Key and certificate generation

3. Generate the certificate and key pair with the following command:
p4d -Gc
If PASSLDIR (and optionally, config. txt) has been correctly configured, and if no existing

private key or certificate is found, two files, named privatekey . txt and
certificate. txt, are createdin PASSLDIR.

Ifaconfig. txtfileis not present, the following default values are assumed, and a certificate
is created that expires in 730 days (two years, excluding leap years).

C=US

ST=CA

L=Alameda

O=Helix Autogen Cert

OU=

CN=the-DNS-name-of-your-server

EX=730

UNITS=days

4. Generate a fingerprint for your server’'s key and certificate pair.
p4d -Gf

This command displays the fingerprint of the server's public key, and then exits.

Fingerprint:
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2

Record your server’s fingerprint for your own records and communicate it to your users via an out-
of-band communications channel.

If a Helix Server application reports a different fingerprint (and you have not recently installed a
new certificate and key pair), your users should consider such changes as evidence of a potential
man-in-the-middle threat.

Note

Because Helix Server can use self-signed certificates, you may also use third-party tools such as
OpenSSL or PUTTY to generate the key pairs, or supply your own key pair. The p4d -G£ command
accepts user-supplied credentials.

If you are supplying your own key, your privatekey . txt and certificate. txtfilesin
P4SSLDIR must be PEM-encoded, with the private key file stripped of passphrase protection.

Whether you supply your own key and certificate pair or generate one withp4d -Gc, it is imperative
that these files are stored in a secure location that is readable only by the p4d binary.

106

Secondary cipher suite

Secondary cipher suite

By default, Helix Server's SSL support is based on the AES256-SHA cipher suite. To use
CAMELLIA256-SHA, set the ssl . secondary.suite tunabletol.

Using SSL in a mixed environment

In a mixed environment, each link between Helix Server, proxies, or brokers may be configured to be in
either plaintext or SSL, independent of the encryption choice for any other link. Consider the following
examples:

m During a migration from cleartext to SSL, a Helix Broker may be configured to accept plaintext
connections from older Helix Server applications, and to forward those requests (encrypted by
SSL) to a Helix Server that requires SSL connections.

m A Helix Broker could be configuredto 1isten on tcp:old-server: 1666, and redirect all
requests toa target of ssl:new-server:1667. Users of new Helix Server applications
could use SSL to connect directly to the upgraded Helix Server (by setting P4APORT to
ssl:new-server:1667), while users of older Helix Server applications could continue to
use plaintext when connecting to a Helix Broker (by setting PAPORT to old-server:1666).
After migration is complete, the broker at o1d-server: 1666 could be deactivated (or
reconfigured to require SSL connections), and any remaining legacy processes or scripts still
attempting to connect via plaintext could be upgraded manually.

The Helix Proxy and the Helix Broker support the -Ge and -G£ flags, and use the PASSLDIR
environment variable. You generate certificate and key pairs for these processes (and confirm
fingerprints) as you would with a single Helix Server. In order for two servers to communicate over SSL,
the administrator of the downstream server (typically a replica server, Proxy, or Broker process) must
alsousethep4 trust command to generate a PATRUST file for the service user associated with the
downstream server.

When migrating from a non-SSL environment to an SSL-based environment, it is your responsibility to
securely communicate the new server's fingerprint to your users.

Using firewalls

If available, remote clients can use a Virtual Private Network (VPN) or a Secure Shell (SSH) tunnel to
access services on the inside trusted network. See the Support Knowledgebase article "Connecting an
ssh client to Perforce through a firewall".

Authentication options

This section introduces the options you have in authenticating users who log in to Helix Server. It
focuses on authenticating against Active Directory and LDAP servers without using authentication
triggers.

107

https://community.perforce.com/s/article/2433
https://community.perforce.com/s/article/2433

Overview

OV IV OW 108

Server security levels 108

Defining authentication forusers 110
Overview

User authentication can take place using one of three options:

m Against an Active Directory or LDAP server that is accessed according to an LDAP specification.
Enabling this option disables trigger-based authentication.

This section focuses on this option. It notes the advantages of using this option, it explains how
you create an LDAP configuration, it gives instructions on how you activate and test this
configuration, and it provides reference information on the commands and configurables you use
to implement this option.

m Against Helix Server’s internal user database, db . user.

This option allows plain-text password-based authentication. It is described in "Authenticating
using passwords and tickets" on page 111.

m Against an authentication server, using an authentication trigger.

These types of triggers are useful if you need to authenticate users against a non-standard
authentication server. Authentication triggers fire whenthe p4 loginorp4 passwd
commands execute. This option is described in the section "Triggering to use external
authentication" on page 278.

The authentication server you choose is used for user definitions, user authentication (passwords), group
definitions, license details, and ticket generation.

Authentication is configured on a per-user basis (except for trigger-based authentication): for each user,
you can specify what method should be used for authentication. Some options are mutually exclusive:
enabling configuration-based LDAP authentication turns off trigger-based authentication. However, you
can have some users authenticate using LDAP, while others authenticate against Helix Server's internal
user database. For more information, see "Defining authentication for users" on page 110.

When logging in using either authentication method, Helix Server encrypts the password before passing
it to the specified authentication agent.

Server security levels

The authentication option you choose is partly determined by the security level set for the server. Helix
Server superusers can configure server-wide password usage requirements, password strength
enforcement, and supported methods of user/server authentication by setting the security
configurable.

To set or change the securi ty configurable, issue the command:

$ p4 configure set security=securitylevel

108

Server security levels

where securitylevelis0,1, 2, 3,4, 5, 0r6:

Security Server behavior

level
0 (or The default security level 0 does not require passwords and does not enforce password
unset) strength.

Users with passwords can use either their PAPASSWD settingorthep4 login
command for ticket-based authentication.

1 Ensures that all users have passwords. (Users of old Helix Server applications can still
enter weak passwords.)

Users with passwords can use either their PAPASSWD settingorthep4 login
command for ticket-based authentication.

2 Ensures that all users have strong passwords. See "Password strength requirements"
on page 112.

Very old Helix Server applications continue to work, but users must change their
password to a strong password and upgrade to 2003.2 or later.

3 Requires that all users have strong passwords, and requires the use of ticket-based
(P4 login)authentication.

If you have scripts that rely on passwords, use p4 login to create a ticket valid for
the user running the script, orusep4 login -p todisplay the value of a ticket that
can be passed to Helix Server commands as though it were a password (that is, either
from the command line, or by setting P4APASSWD to the value of the valid ticket).

Setting passwords withthe p4 user formorthep4 passwd -O oldpass -P
newpass command is prohibited.

4 In multi-server and replicated environments this level ensures that only authenticated
service users (subject to all of the restrictions of level 3) can connect to this server.

The following checks are also made:

m The request must come from a replica with a valid serverid.
m The serverid must identify a valid server spec.

m |f the server spec has a user field, the request must come from that service
user.

m |f the server spec has filters, these are used in preference to whatever filters
might have been specified by the replica.

) Requires that any intermediary (such as a proxy or broker) has a valid authenticated
service user.

109

Defining authentication for users

Security Server behavior
level

6 Requires each intermediary to have a valid server spec, where the service user must
match the user named in the User field of the spec. The server spec is found by
matching the intermediary's P4APORT with a value in the Al1lowedAddresses field
of the spec.

For example, if connectingtoaproxyon10.0.0.100:1667, aserver spec with
this IP address and port number in the Al1lowedAddresses field must exist and
must specify the proxy's service user in the User field.

Errors relating to configuration of intermediaries are logged to the route . csv lodfile,
if structured logging is enabled. See "Enabling structured logging" on page 178.

Note
Use the dm. password.minlength configurable to enforce a minimum password length at

levels 1 - 3.

Authentication triggers or LDAP

Important
When user authentication occurs through authentication triggers or the native LDAP configuration,

if securityis:
m unset, orsetto 0, 1, or 2, the server behaves as if the security level is set to 3

m set to 3 or higher, the server uses that setting

Defining authentication for users
Authentication is defined by the setting of the AuthMe thod field of the user spec and also by
configurables that affect user authentication.

The AuthMe thod field of the user specification, created withthe p4 user command, specifies the
authentication method to be used for that user.

m ldap indicates that the user is to be authenticated against the LDAP directory defined by an
active LDAP configuration. User access can be further restricted to those users who belong to a
particular LDAP group.

All authentication triggers are disabled when LDAP authentication is enabled.

m perforce indicates that the useris to be authenticated by an authentication trigger script if
such a script exists, or against Helix Server’s internal user database. This is the default setting.

110

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_user.html

Authenticating using passwords and tickets

A superuser must edit the user spec withthe p4 user -f£ command to change the default value to
1ldap if desired.

Theauth.default.method configurable defines the default value for the AuthMethod
on new users. Possible values are perforce or 1dap.

Warning

By default, Helix Server creates a new user whenever a previously unknown user invokes any
command that can update the repository or its metadata. When executed by a nonexistent user, most
Perforce commands cause a user to be created. You can control this behavior by setting the
dm.user.noautocreate configurable withthe p4 configure command. For greatest
security, we recommend that only the Helix Server superuser be allowed to create new users:

$ p4 configure set dm.user.noautocreate=2

If you select the 1dap configurable, only superusers are allowed to create new users (using the p4
user command). To have new users automatically created upon login, you must set
auth.ldap.userautocreateto.

If you need more control over which LDAP users are allowed access to Helix Server, you can use the
group-related fields of the LDAP configuration to implement a basic authorization step that filters out non-
Helix Server users. For example, specifying a filter like the following limits access to LDAP users who
belong to the LDAP group with the common name perforce.

Base DN: ou=groups,dc=example,dc=org
LDAP query: (& (cn=perforce) (memberUid=%user%s))

In this case, only users who provide the proper credentials and who are members of the specified group
are authenticated. For more information about the auth . default.method configurable, see the
description of the p4 configure command and the "Configurables" section of the P4 Command
Reference.

Note
If a useris set to use LDAP-configuration based authentication, the user cannot update the password
with the p4 passwd command.

Authenticating using passwords and tickets

Helix Server supports two methods of authentication: password-based and ticket-based. Although it
might be more accurate to say that you can use password-only authentication or authentication that uses
passwords and associated tickets.

m Password-only authentication is based on plain-text passwords that do not expire and that are
passed around when the user executes a command.

111

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#auth.default.method
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#dm.user.noautocreate
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#auth.ldap.userautocreate
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/appendix.configurables.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_passwd.html

Password-based authentication

m Ticket-based authentication is based on tickets that are issued for a given amount of time and are
generated after the user has logged in with a valid password. After log in, the ticket is used to
authenticate the user (rather than the password being passed around).

Warning
Although ticket-based authentication is more secure than password-based authentication, it does not

encrypt network traffic between client workstations and the Helix Server.

To encrypt network traffic between client workstations and the Helix Server, configure your
installation to use SSL. See "Using SSL to encrypt connections to a Helix Server" on page 103.

Password-based authentication

Plain-text password-based authentication is stateless; after a password is correctly set, access is
granted for indefinite time periods. Passwords may be up to 1024 characters in length. To enforce
password strength and existence requirements, set the server security level. See "Server security
levels" on page 108 for details. Plain-text password based authentication is supported only at security
levels 0, 1, and 2.

The default minimum password length is eight characters. Minimum password length is configurable by
setting the dm. password.minlength configurable. For example, to require passwords to be at
least 16 characters in length, a superuser can run:

$ p4 configure set dm.password.minlength=16

To require users to change their passwords after a specified interval, assign your users to at least one
group and set the PasswordTimeout : value for that group. For users in multiple groups, the largest
defined PasswordTimeout (including unlimited, but ignoring unset) value applies.

Thep4 admin resetpassword command forces specified users with existing passwords to
change their passwords before they can run another command. (This command works only for users
whose authMethod is set to perforce. However, you can use it in a mixed environment, that is an
environment in which both Helix Server-based and LDAP-based authentication are enabled.)

Password strength requirements

Certain combinations of security level and Helix Server applications releases require users to set
"strong" passwords. Helix Core Server defines a strong password as:

m atleastdm.password.minlength long, which, by default, is 8 characters
m contains at least two of the following :

« Uppercase letter(s)

« Lowercase letter(s)

« Non-alphabetic character(s)

112

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#dm.password.minlength

Managing and resetting user passwords

Although abed1234 is by default, considered a strong password in an environment with the security
configurable set to 2, it is too easy to guess.

Tip
To create secure password that is easy-to-remember:
1. Start with a phrase, such as
Perforce Enterprise-class Version Control.

2. Make the phrase resemble a single word, such as
PEnterprise-classVC.

3. Represent some letters with non-alphabetical characters:
PN2prI$-k|@zV (.

See also Server security levels in Helix Core Server Administrator Guide: Fundamentals.

You can configure a minimum password length requirement on a site-wide basis by setting the
dm.password.minlength configurable. For example, to require passwords to be at least 16
characters in length, a superuser can run:

$ p4 configure set dm.password.minlength=16

Passwords may be up to 1,024 characters in length. The default minimum password length is eight
characters.

Managing and resetting user passwords
Helix Server superusers can manually set a user's password with:

$ p4 passwd username
When prompted, enter a new password for the user.

To force a user with an existing password to reset his or her own password the next time they use Helix
Server, use the following command:

$ p4 admin resetpassword -u username

You can force all users with passwords (including the superuser that invokes this command) to reset their
passwords by using the command:

$ p4 admin resetpassword -a

Runningp4 admin resetpassword -aresets only the passwords of users who already exist
(and who have passwords). If you create new user accounts with default passwords, you can further
configure your installation to require that all newly-created users reset their passwords before issuing
their first command. To do this, setthe dm . user . resetpassword configurable as follows:

$ p4 configure set dm.user.resetpassword=1

113

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#security
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/DB5-49899.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Ticket-based authentication

Ticket-based authentication

Ticket-based authentication is based on time-limited tickets that enable users to connect to Helix Server
. Helix Server creates a ticket for a user when they log in using the p4 login -a command. Helix
Server applications store tickets in the file specified by the PATICKETS environment variable. If this
variable is not set, tickets are stored in $USERPROFILES% \p4tickets. txt on Windows, andin
SHOME/ . p4tickets on UNIX and other operating systems.

By default, tickets have a finite lifespan, after which they cease to be valid. By default, tickets are valid
for 12 hours (43200 seconds). To set different ticket lifespans for groups of users, edit the Timeout:
fieldinthe p4 group form for each group. The timeout value for a user in multiple groups is the largest
timeout value (including unlimi ted, but ignoring unset) for all groups of which a user is a member.
To create a ticket that does not expire, set the Timeout: fieldtounlimited.

Although tickets are not passwords, a Helix Server accepts valid tickets wherever users can specify
Helix Server passwords (except when logging in withthe p4 login command). This behavior provides
the security advantages of ticket-based authentication with the ease of scripting afforded by password
authentication. Ticket-based authentication is supported at all server security levels, and is required at
security level 3 and 4.

A ticket expires:

m |f the user's AuthMethod is changed
m |[f the user's password is changed and the user is using AuthMethod of perforce.

m When the ticket's password expires. This assumes that password aging is in effect.

Login process for the user
Users are authenticated in one of two ways:

m The userlogs in explicitly usingthe p4 login command.

The user enters a p4 command, and the command requires that the user be authenticated. If the
user is not already authenticated, the command will prompt for login. If the login is successful, the
original command continues.

Tolog in to Helix Server, the user obtains a ticket from the server by using the p4 login command:

$ p4 login

The user is prompted for a password, and a ticket is created for the user in the file specified by
PATICKETS. The user can extend the ticket’s lifespan by callingp4 login while already logged in;
this extends the ticket’s lifespan by 1/3 of its initial timeout setting, subject to a maximum of the user's
initial timeout setting.

The Helix Server service rate-limits the user’s ability torunp4 login after multiple failed login
attempts. To alter this behavior, set dm.user.loginattempts to the maximum allowable failed
login attempts before the service imposes a 10-second delay on subsequent login attempts.

114

Login process for the server

By default, Helix Server tickets are valid for the user’s IP address only. If the user has a shared home
directory that is used on more than one machine, the user can log in to Helix Server from both machines
by usingp4 login -a tocreate aticket inthe home directory that is valid from all IP addresses.

Tickets can be used by multiple clients on the same machine so long as they use the same user and port.

Note
The auth. csvlogis used to log the results of p4 login attempts. If the login failed, the reason

for this is included in the log. Additional information provided by the authentication method is included
in the log entries.

Login process for the server
The server uses the following process to login a user:

1. The userlogs in, specifying a name and password.
2. The server checks to see if LDAP integration has been enabled for the server.

m |f LDAP integration has been enabled, the server checks the user record as described in
Step 3.

= |f LDAP integration has not been enabled, the server passes the user’s credentials to an
authentication script if one exists, or it validates credentials using the db . user table; it
then issues a ticket if validation succeeds.

3. The server checks the user record to see which authentication method to use: 1dap or
perforce.

m If 1dap, the server cycles through available LDAP configurations to find the user. If the
user is found and the password is valid, a ticket is issued for the user.

m |fperforce, the server validates the user against the db . user table and issues a
ticket if the user exists and credentials are valid.

Logging out of Helix Server

To log out of Helix Server from one machine by removing your ticket, use the command:

$ p4 logout

The entry in your ticket file is removed. If you have valid tickets for the same Helix Serverbut those
tickets exist on other machines, those tickets remain present (and you remain logged in) on those other
machines.

If you are logged in to Helix Server from more than one machine, you can log out from all machines from
which you were logged in by using the command:

$ p4 logout -a

All of your Helix Server tickets are invalidated and you are logged out.

115

Determining ticket status

Determining ticket status

To see if your current ticket (that is, for your IP address, user name, and P4PORT setting) is still valid,
use the command:

$ p4 login -s
If your ticket is valid, the length of time for which it will remain valid is displayed.

To display all tickets you currently have, use the command:

S p4 tickets

The contents of your ticket file are displayed.

Invalidating a user’s ticket

As a super user, you can use the —a flag of the p4 logout command to invalidate a user’s ticket. The
following command invalidates Joe’s ticket.

$ p4 logout -a joe

LDAP authentication

The following sections explain how you can authenticate against Active Directory and LDAP servers.
Authenticating against Active Directory and LDAP servers 116
Creating an LDAP configuration 117
Defining LDAP-related configurables 120
Authorization using LDAP groups 121
Testing and enabling LDAP configurations 121
Getting information about LDAP servers 122
Using LDAP with single sign-on triggers 123

Authenticating against Active Directory and LDAP servers

LDAP, Lightweight Directory Access Protocoal, is supported by many directory services; chief among
these is Active Directory and OpenLDAP. Helix Server offers two ways of authenticating against Active
Directory or LDAP servers: using an authentication trigger or using an LDAP specification. The latter
method offers a number of advantages: it is easier to use, no external scripts are required, it allows users
who are not in the LDAP directory to be authenticated against the internal user database, and it is more
secure.

Note
Create at least one account with super access that uses perforce authentication. This will allow you

116

Creating an LDAP configuration

to login if by some chance you lose AD/LDAP connectivity.
SASL authentication is supported; SAML is not.

The steps required to set up configuration-based LDAP authentication are described in the following
sections. Throughout this section, information relating to LDAP authentication applies equally to using
Active Directory. In broad strokes, the configuration process include the following steps:

m Usethep4 1ldap command to create an LDAP configuration specification for each LDAP or
Active Directory server that you want to use for authentication.

m Define authentication-related configurables to enable authentication, to specify the order in which
multiple LDAP servers are to be searched, and to provide additional information about how LDAP
authentication is to be implemented.

m Set the AuthMethod field of the user specification for existing users to specify how they are to
be authenticated.

m Test the LDAP configurations you have defined to make sure searches are conducted as you
expect.

m |[f this is the first time you have enabled LDAP authentication, restart the server.

Note
You must restart the Helix Server whenever you enable or disable LDAP authentication:

m You enable LDAP authentication the first time you enable an LDAP configuration by setting the
auth.ldap.order. Nconfigurable.

m You disable LDAP authentication by removing or disabling all existing LDAP configurations.
You remove an LDAP configuration by using the —d option to the p4 1dap command. You
disable all LDAP configurations by havingno auth . 1dap . order . Nconfigurables set.

m LDAP implies at least security level 3.

Creating an LDAP configuration

An LDAP configuration specifies an Active Directory or other LDAP server against which the Helix
Server can authenticate users. You use the p4 1ldap command to create configurations.

To define an LDAP configuration specification, you provide values that specify the host and port of the
Active Directory or LDAP service, bind method information, and security parameters. Here is a sample
LDAP configuration using the search bind method:

Name : UK LDAP
Host: openldap.example.com
Port: 389

Options: getattrs

117

Creating an LDAP configuration

Encryption: tls

BindMethod: search

SearchBaseDN: ou=employees,dc=example, dc=com
SearchFilter: (cn=%user$%)

SearchScope: subtree

GroupSearchScope: subtree

You can choose among the following bind methods: SASL, simple, and search.

118

m SASL: One complication of the non-SASL bind methods is that the administrator needs to know

about the structure of the directory. Most LDAP and Active Directory servers have the option of
binding using SASL, which only requires a username and password to authenticate a user.

If the LDAP server supports SASL DIGEST-MD5 (Active Directory does), this method defers the
user search to the LDAP server and does not require a distinguished name to be discovered before
the bind is attempted. This method is recommended for Active Directory. Look how simple this is:

BindMethod: sasl

If your LDAP server has multiple realms (or domains in Active Directory), you might need to
specify which one the LDAP configuration should be using. In this case, you'll need to set the
SaslRealm field too. For example:

BindMethod: sasl

SaslRealm: example

Active Directory supports SASL out of the box, and most LDAP servers support SASL.

Simple: This method is suitable for simple directory layouts. It uses a pattern and the user’s
username to produce a distinguished name that the Helix Server attempts to bind against,
validating the user's password. The name given is set on the Simple Pattern field. For example:
BindMethod: simple

SimplePattern: uid=%user%, ou=users,dc=example, dc=com

This pattern is expanded when a user is logging in. For example, if the useris jsmi th, the Helix
Server would attempt to bind against the DN shown below, using the password the user provided.
uid=jsmith, ou=users,dc=example, dc=com

This bind method only works in environments where the user's username is part of their DN and all
of the users you want to authenticate are in the same organizational unit (OU).

Creating an LDAP configuration

m Search: This method performs a search for the user’s record in the directory, overcoming the
restrictions of the simple bind method Instead of a DN pattern, an LDAP search query is provided
to identify the user's record. The $user% placeholder is also used with this method. A starting
point and scope for the search are provided, allowing control over how much of the directory is
searched. The search relies on a known base DN and an LDAP search query; you provide these
using the SearchBaseDN, SearchFilter, and SearchScope fields of the LDAP
configuration specification. This method might also require the full distinguished name and
password of a known read-only entity in the directory. You supply these using the
SearchBindDN and SearchPasswd fields of the LDAP configuration. Here are two sample
search queries:

BindMethod: search

SearchBaseDN: ou=users,dc=example,dc=com

SearchFilter: (& (objectClass=inetOrgPerson) (uid=%user%))
SearchScope: subtree

SearchBindDN: CN=bruno, DC=foo, DC=com

SearchPasswd: *x***x%x

BindMethod: search

SearchBaseDN: ou=users,dc=example, dc=com

SearchFilter: (& (objectClass=user) (sAMAccountName=%user%))
SearchScope: subtree

SearchBindDN: CN=bruno, DC=foo, DC=com

SearchPasswd: *x*x**x%x

See the P4 Command Reference for information about the p4 1dap command and the LDAP
specification. The LDAP spec also allows you to fine tune the behavior of LDAP integration. In particular,
three options allows you to control the following behavior:

m Set the downcase option to specify that user names should be downcased from the directory on
an LDAP sync.

m Set the getattrs option to specify that the Fullname and Email fields should be populated for
autocreated users; the information is taken from the LDAP server.

m Set the realminusername option to specify that the realm should be taken for the SASL user
name if itis in UNC or UPN format

m Test your LDAP configuration using a command like the following:

S p4 ldap -t myuser myldapconfig

After you create the configuration, you must enable it using the auth . 1dap . order . N configurable.
For example:

$ p4 configure set auth.ldap.order.1=UK_LDAP

119

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_ldap.html

Defining LDAP-related configurables

(You must restart the server to enable LDAP.)

The configuration is now active and can be used for authentication. You might also have to define
additional configurables to define the authentication process. These are described in "Defining LDAP-
related configurables" below.

If you are using multiple directory servers for failover or user management, you might need to create
multiple LDAP configurations. In this case,

create an LDAP configuration for each LDAP server

use the auth.Idap.order.n configurable to specify the order in which they should be searched.
Configurables are keyed on their name, therefore you cannot have two LDAP configurations using
the same order number for the same Helix Server.

Defining LDAP-related configurables

To use LDAP authentication, you must set a number of authentication-related configurables:

auth.ldap.order. N-enables an LDAP server and specifies the order in which it should be
searched.

auth.default.method - specifies whether new users should be authenticated by Helix
Serverorusing LDAP. dm.user.noautocreate is implied at 2 for
auth.default.method=1dap.

auth.ldap.userautocreate - specifies whether new users should be automatically
created on login when using LDAP authentication. This requires
auth.default.method=1ldap.

You can set the getattrs Options field of the LDAP configuration to have the Ful1Name and
Email fields populated from the directory.

dm.user.noautocreate - further controls the behavior of user autocreation.
auth.ldap. timeout - time to wait before giving up on a connection attempt.

auth.ldap.cafile -the path to afile used for certification when the LDAP server uses SSL
or TLS.

auth.ldap.ssllevel -level of SSL certificate validation.

auth.ldap.ssllevel - helps you manage LDAP searches with paged results by setting
limits to page size.

For example, the following commands define the define the search order for active directories and the
default authentication method for new users to be perforce:

$ p4
$ p4
$ p4
$ p4

120

configure set auth.ldap.order.1=UK LDAP
configure set auth.ldap.order.2=US_LDAP
configure set auth.ldap.order.5=RU_LDAP

configure set auth.default.method=perforce

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#auth.ldap.order.n

Authorization using LDAP groups

For additional information about authentication-related configurables, see the "Configurables" appendix in
the P4 Command Reference.

Authorization using LDAP groups

You use bind methods to configure user authentication, but you don’t want to give everyone in your
organization the ability to log in to your Helix Server, especially if everyone is in the same directory.
Rather, you should create a group object in the directory that contains only authorized users. The new
LDAP integration provides support for checking group membership.

LDAP groups work just like the search bind method, where an LDAP search query determines whether a
user is a member of an allowed group and whether a search base and scope are also provided. For
example, if there is a group in the LDAP directory named perforce, whose users are allowed to
access a Helix Server, you might have a configuration like this:

GroupBaseDN: ou=groups, dc=example, dc=com
GroupSearchFilter: (& (objectClass=posixGroup) (cn=perforce)
(memberUid=%user%))

GroupSearchScope: subtree

Group objects in Active Directory are slightly different from those in OpenLDAP: rather than containing a
list of member’s user names, they contain a list of the member’s full DNs. These are not typically easy to
match; however, back references are added to the member’'s User objects, which can be matched.
Therefore, when using group authorization against Active Directory, you will probably need to search for
the user's User object and check that it contains amemberOf£ reference to the group. For example:

GroupBaseDN: ou=users, dc=example, dc=com
SearchFilter: (& (0bjectClass=user) (sAMAccountName=%user%)
(memberOf=cn=perforce, ou=groups, dc=example, dc=com))

SearchScope: subtree

Testing and enabling LDAP configurations

Before you enable LDAP configurations, you should create at least one account with super access that
uses perforce authentication. This will allow you to log in if you lose AD/LDAP connectivity.

Having created an LDAP configuration, you must test and enable the configuration. The ability to test
your LDAP configurations allows you to make sure everything is working properly without impacting
existing users, even if they are already using an authentication trigger to authenticate against LDAP.
Once the LDAP configuration proves successful, you can switch users to the new mechanism without
having to recreate them. The following steps illustrate the process of testing and activating a
configuration.

121

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Getting information about LDAP servers

1.

Test the configuration using the -t flagonthe p4 l1dap command. For example:

$ p4 ldap -t Cleopatra olivia

You will be prompted for the user’'s password. If the password is correct, the command completes
successfully.

The amount of information returned by testing depends on the bind method used:
m A simple bind returns only pass/fail feedback.

m A search-based bind returns information about whether the user's credentials are bad and
whether the user could be found.

m SASL binds usually provide more diagnostics than simple binds, but results can vary.

Definethe auth . ldap.order. Nto tell Helix Serverin what order to use this configuration;
for example:

$ p4 configure set auth.ldap.order.l=bruno
You must set this configurable even if you are only using one configuration.

Check active configurations by running the following command:
$ p4 ldaps -A
Restart the server:

$ p4 admin restart

Note
This disables authentication trigger support.

Check that the server is running in LDAP authentication mode by running the following command:

$ p4 -ztag info
Then check to see that 1dapAuth is enabled.

Create additional LDAP servers if needed, and repeat steps 1, 2, 3 for each. Of course, if you add
more configurations, you will need to assign a different priority to each.

Migrate users to LDAP authentication by setting the authMe thod to 1dap for each user to be
authenticated by LDAP.

In addition to testing authentication against a single LDAP server, you can test against multiple servers
usingthe p4 ldaps -t command. For more information, see the description of the see the
description of thep4 ldaps -t command inthe P4 Command Reference.

Getting information about LDAP servers

You can use two commands to get information about LDAP servers:

122

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using LDAP with single sign-on triggers

m Thep4 ldap -o command displays information about a single server.

m Thep4d4 ldaps command lists all defined servers or, using the —A option, lists only enabled
servers in order of priority.

For more information, see the description of the two commands in P4 Command Reference.

Using LDAP with single sign-on triggers

You have the option of using auth-check-sso type triggers when LDAP authentication is enabled.
In this case, users authenticated by LDAP can define a client-side SSO script instead of being prompted
for a password. If the trigger succeeds, the active LDAP configurations are used to confirm that the user
exists in at least one LDAP server. The user must also pass the group authorization check if it is
configured. Triggers of type auth-check-sso will not be called for users who do not authenticate
against LDAP.

For information about SSO triggers, see "Triggering to use external authentication” on page 278. For
information about group authorization, see the next section.

Multi-factor authentication

Most Perforce instances are behind a secure firewall and require user passwords. Multi-Factor
authentication adds an additional layer of security, in case a user password is compromised.

Multi-factor authentication (MFA) is a method of confirming a user's claimed identity. A user is granted
access only after successfully presenting two or more pieces of evidence (or factors) to an authentication
mechanism: knowledge (something they and only they know), possession (something they and only they
have), and inheritance (something they and only they are).

Helix MFA is designed to support the most common factors:

m One Time Password (OTP) codes

m Third party or external prompts, such as a mobile app authentication or a phone call
To learn how Helix can support MFA, see:

m the Perforce Okta MFA trigger at https://swarm.workshop.perforce.com/projects/perforce
software-mfa/files/main/okta/okta-mfa.rb

m "Triggering for multi-factor authentication (MFA)" on page 288, which:

« explains the three types of triggers necessary for Helix MFA (auth-pre-2£fa, auth-
init-2fa, andauth-check-2fa)

« shows an example of an auth-check-2fa trigger that Perforce has validated with Okta.
To find out more about Okta and the factors it supports, contact your Okta administrator or
see https://support.okta.com/help

« includes comments intended to make this example a starting point for working with the API
of other MFA services

123

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://en.wikipedia.org/wiki/Firewall_(computing)
https://en.wikipedia.org/wiki/Multi-factor_authentication
https://en.wikipedia.org/wiki/One-time_password
https://swarm.workshop.perforce.com/projects/perforce_software-mfa/files/main/okta/okta-mfa.rb
https://swarm.workshop.perforce.com/projects/perforce_software-mfa/files/main/okta/okta-mfa.rb
https://support.okta.com/help

Helix SAML

Helix clients that support MFA require no configuration, just the installation of the standalone Helix MFA
Authenticator app, which:

m provides the MFA login screen for Helix Core clients and plugins and is based on settings already
configured on the server. (Helix clients that do not yet support MFA display an error about requiring
MFA, but either the command-line interface or the standalome Helix MFA Authenticator can be run
manually to complete authentication.)

m comes pre-packaged with the P4V installer, so when your users upgrade to the latest P4V, the
app will already be part of the installer

Helix SAML

Helix Swarm is a browser-based web app that supports web browser single sign-on, the primary use
case for the Security Assertion Markup Language (SAML) standard.

The Helix Core clients are not browser-based web apps. Such clients include:

m Helix Command-Line Client (P4)

m Helix Visual Client (P4V)

m Helix Plugin for Visual Studio (P4VS)
m Helix Plugin for File Explorer (P4EXP)

For such clients, the Helix SAML feature provides an integration with SAML 2.0 for authentication that
enables the following flow:

T p4 login c P4LOGINSSO EEEEEEEE—— IdP Login Request
_—
-— o O e o =
- -
pdticket SAML response SAML response
pd command line, Helix SAML Agent Identity Provider

P4V, P4VS, etc. (IdP), such as Okta

auth-check-sso trigger
verifies SAML response

p—
—

Helix Core Server

When the user of a Helix Core client application attempts any command or action that requires logging in,
the Helix SAML agent prompts the user for credentials. The organization's Identity Provider sends a
response that the auth-check-sso trigger validates. If the user credentials are verified, the user
gains access to the Helix Core client application through the usual "Ticket-based authentication" on
page 114.

124

https://www.perforce.com/downloads/helix-mfa-authenticator
https://www.perforce.com/downloads/helix-mfa-authenticator
https://www.perforce.com/downloads/helix-mfa-authenticator
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language

Prerequisites

Prerequisites

m Onthe server, configure an auth-check-sso trigger that works with your IdP:
« Read ""Triggering to use external authentication" on page 278"

« Seetheinstructions at https://swarm.workshop.perforce.com/projects/perforce_software-
helix-saml

m Onthe Helix Core client, each end-user machine needs an installation of the Helix SAML agent
(see "Installation of the Helix SAML agent" below)

Note

Helix Swarm is a browser-based web app, and therefore does not need an installation of the
Helix SAML agent. For instructions on configuring the Swarm server for this feature, see "Helix
SAML authentication PHP config" in the Helix Swarm Guide.

System Requirements

Server

Helix Core18.2 patch server (December 2018 or later)

Client
A Helix Core client, such as:
m P4 (December 2018 or later)
m P4V 184
s P4vS 184
s P4EXP 18.4

Installation of the Helix SAML agent

m P4V has a Windows installer that includes an option to install the Helix SAML agent

m P4V on Mac or Linux and all of the other Helix Core clients require running the standalone installer
for the Helix SAML agent

m Helix Swarm is a web-based application, and therefore does not require an installation of the the
Helix SAML agent

For further details, see the release notes for your client.

125

https://swarm.workshop.perforce.com/projects/perforce_software-helix-saml
https://swarm.workshop.perforce.com/projects/perforce_software-helix-saml
https://www.perforce.com/perforce/doc.current/manuals/swarm/Content/Swarm/admin-saml_php_config.html
https://www.perforce.com/perforce/doc.current/manuals/swarm/Content/Swarm/admin-saml_php_config.html
http://www.perforce.com/perforce/doc.current/manuals/swarm/index.html

Authorizing access

Authorizing access

Helix Server provides a protection scheme to prevent unauthorized or inadvertent access tofiles in the
depot. The protections determine which Helix Server commands can be run, on which files, by whom,
and from which host. You configure protections withthe p4 protect command.

Note
Protections apply to files in the depot only. They do not apply to forms: changelists, workspace
views, and so on.

When should protections be set? 126
Setting protections with p4 protect 126
Granting access to groups of users 134
Comments in protection tables 138
How protections are implemented 138
Access levels required by Helix Servercommands 139

When should protections be set?

Runp4 protectimmediately afterinstalling Helix Server for the first time. Before the first call to p4
protect, every Helix Server user is a superuser and thus can access and change anything in the
depot. The first time auserruns p4 protect, a protections table is created that gives superuser
access to the user from all IP addresses, and lowers all other users' access level to wri te permission
on all files from all IP addresses.

The Helix Server protections table is stored in the db . protect file in the server root directory; if p4
protect is first run by an unauthorized user, the depot can be brought back to its unprotected state by
removing this file.

Setting protections with p4 protect

Thep4 protect form contains a single form field called Protections : that consists of multiple
lines. Eachlinein Protections: contains subfields, and the table looks like this:

Example A sample protections table
Protections:
read user emily * //depot/elm proj/...
write group devgrp * /] ...
write user @ 192.168.41.0/24 -//...
write user w [2001:db8:1:2::1/64 =//...
write user joe B -// ...

126

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html

Setting protections with p4 protect

write user lisag * -//depot/...
write user lisag * //depot/doc/. ..
super user edk @ //...

(The five fields might not line up vertically on your screen; they are aligned here for readability.)

Note
If your site makes use of the Helix Proxy or broker, prepend proxy - to the addresses in the host

field to make the lines apply to users of the proxy or broker. For details, see P4P and protections in
Helix Core Server Administrator Guide: Multi-Site Deployment.

The permission lines' five fields

Each line specifies a particular permission level and/or access right, as defined by five fields:

Field Meaning

Access Which access level (1ist, read, open, write, review, owner, admin,
Level or super) or specific right (=read, =open, =write, or=branch)is being
granted or denied.

m Each permission level includes all the permissions above it (except for
review)

m Each permission right (denoted by an =) only includes the specific right
and not all of the lesser rights.

In general, one typically grants an access level to a user or group, after which, if
finer-grained control is required, one or more specific rights may then be denied.

User/Group Does this protection apply to auser oragroup?

Name The user or group whose protection level is being defined. This field can contain
the * wildcard. A * by itself grants this protection to everyone, *e grants this
protection to every user (or group) whose username ends with an e.

127

https://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html#P4Dist/DB5-23637.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Setting protections with p4 protect

Field Meaning

Host The TCP/IP address of the host being granted access. This must be provided as
the numeric address of either one specific host (forinstance, 192.168.41.2
or[2001:db8:195:1:2::1234]) or a subnet expressed in CIDR notation.

The host field can also contain the * wildcard. A * by itself means that this
protection is being granted for all hosts. The wildcard can be used as in any
string, s0192.168.41. *isequivalentto192.168.41.0/24.

You cannot combine the * wildcard with CIDR notation, except at the start of a
line when controlling proxy matching. If you are using IPv6 with the * wildcard,
you must enclose the address with square brackets. [2001:db8:1:2:*] is
equivalentto [2001:db8:1:2: :]/64. Best practice is touse CIDR
notation, surround IPv6 addresses with brackets, and to avoid the * wildcard.

For more about controlling access to a Helix Server via the Helix Proxy, see the
relevant chapter of Helix Core Server Administrator Guide: Multi-Site
Deployment.

Files A file specification representing the files in the depot on which permissions are
being granted. Helix Server wildcards can be used in the specification.

"//..." means all files in all depots.

If a depot is excluded, the user denied access will no longer see the depot in the
output of p4 depots. Norwill the depot show up, for this user, in the default
branch, client, and label views.

Access levels

The access level is described by the first value on each line. The permission levels and access rights are
described in the following table:

Level Meaning

list Permission is granted to run Helix Server commands that display file metadata, such
aspd4 filelog.Nopermissionis granted to view or change the contents of the
files.

read The user can run those Helix Server commands that are needed to read files, such as

p4 clientandp4 sync. The read permissionincludes 1ist access.

=read If this right is denied, users cannotuse p4 print,p4 diff,orp4 syncon
files.

128

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_depots.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_filelog.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_client.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_sync.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_print.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_diff.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_sync.html

Setting protections with p4 protect

Level Meaning

open Grants permission to read files from the depot into the client workspace, and gives
permission to open and edit those files. This permission does not permit the user to
write the files back to the depot. The open level is similar to wri te, except that with
open permission, users are not permittedtorunp4 submit orp4 lock.

The open permission includes read and 1ist access.

=open If this right is denied, users cannot open files withp4 add,p4 edit,p4
delete,orp4 integrate.

write Permission is granted to run those commands that edit, delete, or add files. The
write permissionincludes read, 1ist, and open access.

This permission allows use of all Helix Server commands except protect, depot,
obliterate,andverify.

=write If this right is denied, users cannot submit open files.

=branch Ifthis rightis denied, users may not use files as a source forp4 integrate.

review Provides list and read access, plus use of the p4 review command. Thisis a
special permission granted to review scripts.

owner Allows access tothe p4 protect command to the specified user or group, for the
specified path. See "Delegate management of parts of the protections table" on
page 131 for details.

admin For Helix Server administrators; grants permission to run Helix Server commands that
affect metadata, but not server operation. Provides write and review access plus
the added ability to override other users' branch mappings, client specifications, jobs,
labels, and change descriptions, as well as to update the typemap table, verify and
obliterate files, and customize job specifications.

super For Helix Server superusers; grants permission to run all Helix Server commands.
Provides write, review, and admin access plus the added ability to create
depots and triggers, edit protections and user groups, delete users, reset passwords,
and shut down the server.

Each Helix Server command is associated with a particular minimum access level. For example, to run
p4 syncorp4 print ona particularfile, the user must have been granted at least read access on
that file. For a full list of the minimum access levels required to run each Helix Server command, see
"How protections are implemented" on page 138.

The specific rights of =read, =open, =write, and =branch can be used to override the automatic
inclusion of lower access levels. This makes it possible to deny individual rights without having to then
re-grant lesser rights.

For example, if you want administrators to have the ability to run administrative commands, but to deny
them the ability to make changes in certain parts of the depot, you could set up a permissions table as
follows:

129

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_submit.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_lock.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_add.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_edit.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_delete.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_delete.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_integrate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_review.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_sync.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_print.html

Setting protections with p4 protect

admin user joe & /] ...
=write user joe & -//depot/build/...
=open user joe w -//depot/build/. ..

In this example, user joe can perform administrative functions, and this permission applies to all depots
in the system. Because the admin permission level also implies the granting of all lower access levels,
joe can also write, open, read and list files anywhere in the system, including / /depot/build/. To
protect the build area, the =write and =open exclusionary lines are added to the table. User joe is
prevented from opening any files for edit in the build area. He is also prevented from submitting any
changes in this area he might already have open. He can continue to create and modify files, but only if
those files are outside of the protected / /depot/build/. . . area.

Default protections

Beforep4 protectisinvoked, every user has superuser privileges. Whenp4 protect s first
run, two permissions are set by default. The default protections table looks like this:

write user * & /...
super user edk = /...

This indicates that write access is granted to all users, on all hosts, to all files. Additionally, the user
who firstinvoked p4 protect (inthis case, edk)is granted superuser privileges.

Which users should receive which permissions?

The simplest method of granting permissions is to give wri te permission to all users who don’'t need to
manage the Helix Server system and super access to those who do, but there are times when this
simple solution isn’t sufficient.

Read access to particular files should be granted to users who never need to edit those files. For
example, an engineer might have write permission for source files, but have only read access to the
documentation, and managers not working with code might be granted read access to all files.

Because open access enables local editing of files, but does not permit these files to be written to the
depot, open access is granted only in unusual circumstances. You might choose open access over
write access when users are testing their changes locally but when these changes should not be seen
by other users. Forinstance, bug testers might need to change code in order to test theories as to why
particular bugs occur, but these changes are not to be written to the depot. Perhaps a codeline has been
frozen, and local changes are to be submitted to the depot only after careful review by the development
team. In these cases, open access is granted until the code changes have been approved, after which
time the protection level is upgraded to wri te and the changes submitted. open access is also useful
with shelves. Using open is enough to shelve changes but not submit them and can be useful for code
reviews.

130

Setting protections with p4 protect

Interpreting multiple permission lines

The access rights granted to any user are defined by the union of mappings in the protection lines that
match her user name and client IP address. (This behavior is slightly different when exclusionary
protections are provided and is described in the next section.)

Example

Lisa, whose Helix Server username is 1isag, is using a workstation with the IP address
195.42.39.17. The protections file reads as follows:

read user & 195.42.39.17 /...
write user lisag 195.42.39.17 //depot/elm proj/doc/...
read user lisag % YV
super user edk B /...

The union of the first three permissions applies to Lisa. Her username is 1isag, and she’s currently
using a client workspace on the host specified in lines 1 and 2. Thus, she can wri te files located in
the depot’'s elm_proj/doc subdirectory but can only read otherfiles. Lisa tries the following:

Shetypesp4 edit depot/elm proj/doc/elm-help.1, andis successful.

Shetypesp4 edit //depot/elm proj/READ.ME, andis told that she doesn't have the
proper permission. She is trying to write to a file to which has only read access. She types p4

sync depot/elm proj/READ.ME, and this command succeeds, because only read access
is needed, and this is granted to her on line 1.

Lisa later switches to another machine with IP address 195.42 .39 .13. Shetypes p4 edit
//depot/elm proj/doc/elm-help. 1, andthe command fails because on this host, only
the third permission applies to her, and she only has read privileges.

Delegate management of parts of the protections table

It is possible to delegate management of parts of the protections table to non-super users or groups by
creating an entry with the mode owner. These entries must have a unique path, without wildcards,
except for a trailing ellipsis (...).

Users with super or that have been granted owner for a path canrunthe p4 protect command
specifying the granted path as an argument, accessing the sub-protections table for that path.

The server appends any entries in this table to the effective protections table directly below the owner
entry; if an owner entry is removed, so are any entries in the sub-protections table for that path. Neither
owner nor super entries can be added to a sub-protections table, and any other entries' paths must be
within the scope of the sub-protections table’s path.

If a path argument is specified, and an owner entry with the same path exists, the sub-protections table
for that path will be accessed instead of the main protections table.

Suppose super user Bruno issues the following commands:

131

Setting protections with p4 protect

Create a user called Sally
S p4 user -f sally

Create a depot called stats
$ p4 depot stats

Edit the protections table
$ p4 protect

The last command opens the protections table in an editor. Let’s suppose the protections table contains
the following lines:

Protections:
write user * * //...
super user bruno * //...

Suppose Bruno wants to delegate control of the sub-protections table for the path //stats/dev/... to
Sally. He edits the protections table to append the necessary line to the protections table, which now
looks like this:
Protections:

write user * * //...

super user bruno * //...

owner user sally * //stats/dev/...

Exclusionary protections

A user can be denied access to particular files by prefacing the fifth field in a permission line with a minus
sign (=). This is useful for giving most users access to a particular set of files, while denying access to
the same files to only a few users.

To use exclusionary mappings properly, it is necessary to understand some of their peculiarities:

m When an exclusionary protection is included in the protections table, the order of the protections is
relevant: the exclusionary protection is used to remove any matching protections above it in the
table.

m No matter what access level is provided in an exclusionary protection, all access levels for the
matching files and IP addresses are denied. The access levels provided in exclusionary
protections are irrelevant. See "How protections are implemented" on page 138 for a more detailed
explanation.

= Without exclusionary mappings, the order of items in the protections table is not important.

132

Setting protections with p4 protect

Example
An administrator has used p4 protect to set up protections as follows:

write user % % /] ...

read user emily & //depot/elm proj/...
super user joe w -//...

list user lisag % -//...

write user lisag & //depot/elm proj/doc/...

The first permission looks like it grants write access to all users to all files in all depots, but this is
overruled by later exclusionary protections for certain users.

The third permission denies Joe permission to access any file from any host. No subsequent lines
grant Joe any further permissions; thus, Joe has been effectively denied any file access.

The fourth permission denies Lisa all access to all files on all hosts, but the fifth permission gives her
back write access on all files within a specific directory. If the fourth and fifth lines were switched,
Lisa would be unable to run any Helix Server command.

Displaying protections for a user, group, or path.

Usethep4 protects command to display the lines from the protections table that apply to a user,
group, or set of files.

With no options, p4 protects displays the lines in the protections table that apply to the current
user. If a £i1e argument is provided, only those lines in the protection table that apply to the named files
are displayed. Using the —m flag displays a one-word summary of the maximum applicable access level,
ignoring exclusionary mappings.

Helix Server superusers canuse p4 protects -atoseealllinesforallusers, orp4 protects
-u user, -g group, or-h host flags to see lines for a specific user, group, or host IP address.

Use the —s option to display protection information from a protect table referenced by the file revision
specified with the spec argument. For example, the following command returns information about the
user sam in the third revision of the protections table:

C:\> p4 -u super protects -s //spec/protect.pds#3 -u sam
write user* * //...

This is useful when users lose access privileges at a given point in time and you want to check what
changes were made to the protection table just before that date.

Note

To use this option, you must define a spec depot for protect forms; this automatically saves revisions
to the protect specification every time you edit the protection table. See the description of the p4
depot command in the P4 Command Reference for information on how to create a spec depot.

133

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Granting access to groups of users

Granting access to groups of users

Helix Server groups simplify maintenance of the protections table. The names of users with identical
access requirements can be stored in a single group. The group name can then be entered in the table,
and all the users in that group receive the specified permissions.

Groups are maintained withp4 group, and their protections are assigned withp4 protect. Only
Helix Server superusers can use these commands. (Helix Server administrators can use p4 group -
A to administer a group, but only if the group does not already exist.)

For information about groups and LDAP, see "Synchronizing Helix Server users and groups with LDAP
groups" on the facing page.

Creating and editing groups

Ifp4 group groupname is called with a nonexistent groupname, a new group named
groupname is created. Callingp4 group with an existing groupname allows editing of the user
list for this group.

To add users to a group, add user names in the Users : field of the form generated by the p4 group
groupname command. User names are entered under the Users : field header. Each user name
must be typed on its own line, indented. A single user can be listed in any number of groups. Group
owners are not necessarily members of a group. If a group owner is to be a member of the group, the
userid must also be added to the Users : field.

Groups can contain other groups as well as individual users. To add all users in a previously defined
group to the group you’re working with, include the group name in the Subgroups : field of the p4
group form. User and group names occupy separate namespaces, so groups and users can have the
same names.

Adding nonexistent users to group definitions does not actually create the users, nor does it consume
licenses. To create users, use the p4 user command.

Groups and protections

Touse agroupwiththe p4 protect form, specify a group name instead of a user name in any line in
the protections table and set the value of the second field on the line to group instead of user. All the
users in that group are granted the specified access.

Example Granting access to Helix groups

This protections table grants 1ist access to all members of the group devgrp, and super access
to user edk:

list group devgrp % /] ...

super user edk & /...

According to the following three permission lines, group ac1 will have write access to / /acl/. ..
while giving the group read-only access to //acl/acl_dev/.. ..

134

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_group.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html

Granting access to groups of users

write group acl % //acl/...
list group acl ® -//acl/acl dev/...
read group acl & //acl/acl dev/...

If a user belongs to multiple groups, one permission can override another. For instance, if you use
exclusionary mappings to deny access to an area of the depot to members of group1l, but grant access
to the same area of the depot to members of group2, a user who is a member of both group1 and
group?2 is either granted or denied access based on whichever line appears last in the protections table.
The actual permissions granted to a specific user can be determined by replacing the names of all groups
to which a particular user belongs with the user’'s name within the protections table and applying the rules
described earlier in this chapter.

Synchronizing Helix Server users and groups with LDAP groups

You can configure Helix Server to automatically synchronize the contents of a given Helix Server user or
user group with that of an LDAP user or group. Protections are still assigned based on the identity of the
Helix Server user or group (usingthe p4 protect command), but which users are included in the
Helix Server group is determined by the membership of the LDAP group.

Synchronization can happen once or at specified intervals. See the Description of the p4 Idapsync
command in the P4 Command Reference .

Before you configure group synchronization, you need to define an LDAP configuration.

Note
If the LDAP server requires login for read-only queries, the LDAP configuration must contain valid bind

credentials in the LDAP spec’s SearchBindDN and SearchPasswd fields.

To configure group synchronization, you must do the following:

1. Define the following fields in the Helix Servergroup spec:

m LdapConfig: The name of an LDAP configuration created usingthe p4 ldap
command.

The LDAP configuration:
« provides the hostname, port, and encryption for the LDAP connection

« specifies how authentication is to be done using the SearchBindDN,
SearchPasswd, and GroupSearchBaseDN fields.

m LdapSearchQuery: The search query to identify the group member records.

m LdapUserAttribute: The attribute that contains the group member’s user id. This
user name is added to the Helix Server group.

2. Define a group owner for the Helix Server group. The owner does not have to be a member of the
corresponding LDAP group.

135

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_ldapsync.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Granting access to groups of users

3. Usethep4 ldapsync command, specifying which Helix Server group(s) should be
synchronized, to test the anticipated results using a command like the following.

$ p4 ldapsync -g -n my-perforce-groupl my-perforce-group2

p4 ldapsync uses the context provided by the LDAP configuration to execute the search
query and collect all the defined attributes from the results that are returned. The resultant list
becomes the members list of the group.

4. If you are satisfied with the preview results, runp4 ldapsync again (without -n)to
synchronize the groups.

To schedule synchronization to occur at regular intervals, make the p4 ldapsync command

run at startup time and specify the value of the interval. See the Examples in the p4 Idapsync
command in P4 Command Reference.

The following examples, included in "Synchronizing with Active Directory" below and "Synchronizing
with OpenLDAP" on the facing page, demonstrate two ways in which you can define group
synchronization. These examples illustrate how configurations depend on how references to users and
groups are stored on different servers:

m OpenLDAP stores alist of memberUid’s in its group records. These can often be used directly as
Helix Server user names.

m Active Directory stores alist of member’s full DN’s in its group records, and the full DN of each
group a user belongs to in its user records. In this case, look for the user records that contain the
back reference to the group instead of finding the group record directly.

Note the difference in the GroupBaseDn in the LDAP spec. In Active Directory, we're looking for users

who are in the group. In OpenLDAP, we're looking for groups that contain users. This affects the path
we’re searching under.

In the following examples, both servers have user under the DN

ou=users , dc=example,dc=com. We will be creating a Helix Server group called
development thatis populated from the LDAP group

cn=development, ou=groups,dc=example,dc=com.

Synchronizing with Active Directory

We begin with a sample LDAP configuration named my-ad-example defined as follows:

Name: my-ad-example

Host: ad.example.com

Port: 389

Encryption: tls

BindMethod: search

SearchBaseDN: ou=users,dc=example, dc=com

SearchFilter: (& (objectClass=user) (sAMAccountName=%user%))
SearchBindDN: CN=agupta, OU=users, DC=foodomain, DC=com

136

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_ldapsync.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Granting access to groups of users

SearchPasswd:
SearchScope:
GroupBaseDN:

GroupSearchScope:

password
subtree
ou=users,dc=example, dc=com

subtree

The group spec created by the command p4 group development, would then look like this:

Group:
LdapConfig:
LdapSearchQuery:

LdapUserAttribute:

Owners:

development
my-ad-example
(& (objectClass=user) (memberOf=cn=development, ou=groups,

dc=example, dc=com))
sAMAccountName

super

Synchronizing with OpenLDAP

We begin with a sample LDAP configuration named my-openldap-example defined as follows:

Name:

Host:

IPOIETE 3
Encryption:
BindMethod:
SearchBaseDN:
SearchFilter:
SearchBindDN:
SearchPasswd:
SearchScope:
GroupBaseDN:

GroupSearchScope:

my-openldap-example

openldap.example.com

389

tls

search

ou=users, dc=example, dc=com

(& (objectClass=inetOrgPerson) (uid=%user%s))
CN=agupta, OU=users, DC=foodomain, DC=com
password

subtree

ou=groups, dc=example, dc=com

subtree

The group spec created by the command p4 group development, would then look like this:

Group:

LdapConfig:
LdapSearchQuery:
LdapUserAttribute:

Owners:

development

my-openldap-example

(& (objectClass=posixGroup) (cn=development))
memberUid

super

137

Comments in protection tables

Deleting groups

To delete a group, invoke

S p4 group -d groupname

Alternately, invoke p4 group groupname and delete all users, subgroups, and owners from the
group in the resulting editor form. The group will be deleted when the form is closed.

Comments in protection tables

Protection tables can be difficult to interpret and debug. Including comments can make this work much
easier.

= You can append comments at the end of a line using the ## symbols:
write user * 10.1.1.1 //depot/test/... ## robinson crusoe
= Oryou can write a comment line by prefixing the line with the ## symbols:

robinson crusoe

write user * 10.1.1.1 //depot/test/...

Warning

Comments you have created using the P4AAdmin tool are not compatible with comments created
using the 2016.1 version of p4 protect. You can use the following command to convert a file
containing comments created with P4AAdmin into a file containingp4 protect type comments:

$ p4 protect --convert-p4admin-comments -o

Then save the resulting file.

Once you have converted the comments, you must continue to define and manage protections using
P4 protect andcan nolonger use P4Admin to do so because this tool is unable to parse p4
protect comments.

How protections are implemented

This section describes the algorithm that Helix Server follows to implement its protection scheme.
Protections can be used properly without reading this section; the material here is provided to explain the
logic behind the behavior described above.

Users' access tofiles is determined by the following steps:

1. The command is looked up in the command access level table shown in "Access levels required
by Helix Server commands" on the facing page to determine the minimum access level needed to
run that command. In our example, p4 printis the command, and the minimum access level

138

Access levels required by Helix Server commands

required to run that command is read.

2. Helix Server makes the first of two passes through the protections table. Both passes move up
the protections table, bottom to top, looking for the first relevant line.

The first pass determines whether the user is permitted to know if the file exists. This search
simply looks for the first line encountered that matches the user name, host IP address, and file
argument. If the first matching line found is an inclusionary protection, the user has permission to
at least list the file, and Helix Server proceeds to the second pass. Otherwise, if the first matching
protection found is an exclusionary mapping, or if the top of the protections table is reached
without a matching protection being found, the user has no permission to even list the file, and will
receive amessagesuchas File not on client.

Example Interpreting the order of mappings in the protections table
Suppose the protections table is as follows:

write user * * /] ...
read user edk ® =/ f oo
read user edk & //depot/elm proj/...

IfEdruns p4 print //depot/file. c, Helix Server examines the protections table
bottom to top, and first encounters the last line. The files specified there don’t match the file
that Ed wants to print, so this line is irrelevant. The second-to-last line is examined next; this
line matches Ed’s user name, his IP address, and the file he wants to print; since this line is an
exclusionary mapping, Ed isn’'t allowed to list the file.

3. Ifthefirst pass is successful, Helix Server makes a second pass at the protections table; this
pass is the same as the first, except that access level is now taken into account.

If an inclusionary protection line is the first line encountered that matches the user name, IP
address, and file argument, and has an access level greater than or equal to the access level
required by the given command, the user is given permission to run the command.

If an exclusionary mapping is the first line encountered that matches according to the above
criteria, or if the top of the protections table is reached without finding a matching protection, the
user has no permission to run the command, and receives a message such as:

You don't have permission for this operation

Access levels required by Helix Server commands

The following table lists the minimum access level required to run each command. For example, because
p4 add requires at least open access, you canrunp4 add if you have open, write, admin, or
super access.

139

Access levels required by Helix Server commands

Command Access Notes
Level

add open

admin super

annotate read

archive admin

attribute write The - £ flag to set the attributes of submitted files
requires admin access.

branch open The - £ flag to override existing metadata or other
users' data requires admin access.

branches list

cachepurge super

change open The -o flag (display a change on standard output)
requires only 1ist access. The - £ flag to override
existing metadata or other users' data requires
admin access.

changes list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

clean read

client list The - £ flag to override existing metadata or other
users' data requires admin access.

clients list

clone read On the remote server.

configure super

copy list 1list access to the source files; open access to
the destination files.

counter review 1list access to at least one file in any depot is
required to view an existing counter’s value;
review access is required to change a counter’s
value or create a new counter.

counters list

140

Access levels required by Helix Server commands

Command Access Notes
Level

cstat list

dbschema super

dbstat super

dbverify super

delete open

depot super The -o flag to this command, which allows the form
to be read but not edited, requires only 1ist
access.

depots list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

describe read The -s flag to this command, which does not
display file content, requires only 1ist access.

diff read

diff2 read

dirs list

diskspace super

edit open

export super

fetch admin

filelog list

files list

fix open

fixes list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

flush list

141

Access levels required by Helix Server commands

Command Access Notes
Level
fstat list
grep read
group super The -o flag to this command, which allows the form
to be read but not edited, requires only 1ist
access.

The -a flag to this command requires only 1ist
access, provided that the user is also listed as a
group owner.

The -A flag requires admin access.

groups list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in

any depot.

have list

help none

ignores N/A

info none

init N/A

integrate open The user must have open access on the target
files and read access on the source files.

integrated list

interchanges list

istat list

job open The -o flag to this command, which allows the form
to be read but not edited, requires only 1ist
access.
The - £ flag to override existing metadata or other
users' data requires admin access.

jobs list This command doesn’t operate on specific files.

Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

142

Access levels required by Helix Server commands

Command Access Notes
Level

jobspec admin The -o flag to this command, which allows the form
to be read but not edited, requires only 1ist
access.

journalcopy super

journaldbchecksums super

journals super or

operator

key review 1list access to at least one file in any depot is
required to view an existing key’s value; review
access is required to change a key’s value or create
anew key.

key list admin access is required if the dm . keys . hide
configurable is set to 2.

keys list admin access is required if the dm . keys . hide
configurable is setto 1 or 2.

label open This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.
The - £ flag to override existing metadata or other
users' data requires admin access.

labels list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

labelsync open

ldap super

ldaps super

ldapsync super

license super The —u flag, which displays license usage, requires
only admin access.

list open

lock write

143

Access levels required by Helix Server commands

Command Access Notes
Level

lockstat super

logappend list

logger review

login list

logout list

logparse super

logrotate super

logschema super

logstat super

logtail super

merge open

monitor list super access is required to terminate or clear

processes, or to view arguments.

move open

obliterate admin

opened list

passwd list

ping admin

populate open

print read

property list, listtoread, admin to add/delete new

admin properties, or show a property setting and sequence

number for all users and groups.

protect super

protects list super access is required to use the —a, -g, and -
u flags.

proxy none Must be connected to a Helix Proxy.

prune write For stream owner.

144

Access levels required by Helix Server commands

Command Access Notes
Level
pull super
push reador read on the local server or write on the remote
write server.
reconcile open
reload open admin access is requiredtousep4 reload -
£ to reload other users' workspaces and labels.
remote open or open or 1ist to use the —o option oradmin to
listor use the - £ option.
admin
remotes list
rename reador readfor fromFileorwrite for toFile.
write
renameuser super
reopen open
replicate super
resolve open
resolved open
restore admin
resubmit writeor write oradmin for -1 option.
admin
revert list
review review This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.
reviews list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.
server super
serverid list super access is required to set the server ID.

145

Access levels required by Helix Server commands

Command Access Notes
Level
servers list
set none
shelve open admin access is required to forcibly delete shelved

files withp4 shelve -f -d

sizes list

status open

stream open

streams list

submit write

switch open or open to use the —c or —r options, or 1ist touse

listor the =L, or wri te for default switching.
write

sync read

tag list

tickets none

triggers super

trust none

typemap admin The -o flag to this command, which allows the form
to be read but not edited, requires only 1ist
access.

unload open admin access is required touse p4 unload -
£ to unload other users' workspaces and labels.

unlock open The - £ flag to override existing metadata or other
users' data requires admin access.

unshelve open

unsubmit admin

unzip admin

update list

146

Access levels required by Helix Server commands

Command Access Notes
Level
user list This command doesn’t operate on specific files.

Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

The - £ flag (which is used to create or edit users)
requires super access.

users list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

If the run.users.authorize configurable is
set to 1, you must also authenticate yourself to the
server before youcanrunp4 users.

verify admin

where list This command doesn’t operate on specific files.
Permission is granted to run the command if the
user has the specified access to at least one file in
any depot.

workspace list

workspaces list

zip super

Commands that list files, suchas p4 describe, list only those files to which the user has at least
list access.

Some commands (for example, p4 change, when you edit a previously submitted changelist) take a -
£ flag that can only be used by Helix Server superusers. See "Forcing operations with the -f flag" on
page 181 for details.

147

Backup and recovery

The Perforce service stores two kinds of data: versioned files and metadata.

m Versioned files are files submitted by Helix Server users. Versioned files are stored in directory

trees called depots.

There is one subdirectory under the server’s root directory for each depot in your Helix Server
installation. The versioned files for a given depot are stored in a tree of directories beneath this

subdirectory.

m Database files store metadata, including changelists, opened files, client workspace

specifications, branch mappings, and other data concerning the history and present state of the

versioned files.

Database files appear as db . * files in the top level of the server root directory. Each db . * file

contains a single, binary-encoded database table.

This chapter describes the commands and processes you use to back up and recover your Helix Core

Server. For information about backup and recovery of distributed systems, see Helix Core Server

Administrator Guide: Multi-Site Deployment.

Backup and recovery concepts
Checkpoint files
Journal files

Backup procedures
Recovery procedures
Database corruption, versioned files unaffected
Both database and versioned files lost or damaged
Ensuring system integrity after any restoration
Failover
High Availability and Disaster Recovery
Potential data loss
Failover process
PrereqUISItES ...
Configurables affected

Backup and recovery concepts

Disk space shortages, hardware failures, and system crashes can corrupt any Helix Server files. That’s

why the entire Helix Server root directory structure (your versioned files and your database) must be

backed up regularly.

The versioned files are stored in subdirectories beneath your Helix Server root and can be restored

directly from backups without any loss of integrity.

148

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Checkpoint files

The files that constitute the Helix Server database, on the other hand, are not guaranteed to be in a state
of transactional integrity if archived by a conventional backup program. Restoring the db . * files from
regular system backups can result in an inconsistent database. The only way to guarantee the integrity of
the database after it’s been damaged is to reconstruct the db . * files from Helix Server checkpoint and
journal files:

m A checkpoint is a snapshot or copy of the database at a particular moment in time.

m A journalis alog of updates to the database since the last snapshot was taken.

The checkpoint file is often much smaller than the original database, and it can be made smaller still by
compressing it. The journal file, on the other hand, can grow quite large. It is truncated whenever a
checkpoint is made, and the older journal is renamed. The older journal files can then be backed up
offline, freeing up more space locally.

Both the checkpoint and journal are text files, and have the same format. A checkpoint and (if available)
its subsequent journal can restore the Helix Server database.

Warning
Checkpoints and journals archive only the Helix Server database files, not the versioned files stored
in the depot directories!

You must always back up the depot files (your versioned file tree) with the standard OS backup
commands after checkpointing.

Because the information stored in the Helix Server database is as irreplaceable as your versioned files,
checkpointing and journaling are an integral part of administering Helix Server, and must be part of your
regular backup cycle.

Checkpoint files

A checkpoint is afile that contains all information necessary to re-create the metadata in the Helix Server
database. When you create a checkpoint, the database is locked, enabling you to take an internally
consistent snapshot of that database.

Versioned files are backed up separately from checkpoints. This means that a checkpoint does not
contain the contents of versioned files, and as such, you cannot restore any versioned files from a
checkpoint. You can, however, restore all changelists, labels, jobs, and so on, from a checkpoint.

To guarantee database integrity upon restoration, the checkpoint must be as old as, or older than, the
versioned files in the depot. This means that the database must be checkpointed, and the checkpoint
generation must be complete, before the backup of the versioned files starts.

Regular checkpointing is important to keep the journal from getting too long. Making a checkpoint
immediately before backing up your system is good practice.

149

Checkpoint files

Creating a checkpoint

Checkpoints are not created automatically; someone or something must run the checkpoint command on
the Helix Server machine. To create a checkpoint, invoke the p4d program with the - jc (journal-create)
flag:

$ p4d -r server root -jc

You can create a checkpoint while the Perforce service (p4d) is running. The checkpoint is created in
your server root directory (that is, PAROOT if no server_ rootis specified).

To make the checkpoint, p4d locks the database and then dumps its contents to a file named
checkpoint. ninthe PAROOT directory, where n is a sequence number.

Before unlocking the database, p4d also copies (on UNIX where the journal is uncompressed, renames)
the journal file to a file named journal . n-1 in the PAROOT directory (regardless of the directory in
which the current journal is stored), and then truncates the current journal. The MD5 checksum of the
checkpoint is written to a separate file, checkpoint. n.md5, and the
lastCheckpointAction counteris updated to reflect successful completion.

Note

When verifying the MD$ signature of a compressed checkpoint, the checkpoint must first be
uncompressed into a form that reflects the line ending convention native to the system that produced
the checkpoint. (That is, a compressed checkpoint generated by a Windows server should have
CRI/LF line endings, and a compressed checkpoint generated on a UNIX system should have LF line
endings.)

This guarantees that the last checkpoint (checkpoint . n) combined with the current journal
(Journal) always reflects the full contents of the database at the time the checkpoint was created.

The sequence numbers reflect the roll-forward nature of the journal. To restore databases to older
checkpoints, match the sequence numbers. That is, you can restore the state of Helix Server as it was
when checkpoint. 6 was taken by restoring checkpoint. 5 and thenloading journal .5
which contains all the changes made between checkpoint. 5 and checkpoint. 6. In most
cases, you're only interested in restoring the current database, which is reflected by the highest-
numbered checkpoint. nrolled forward with the changes in the current journal.

To specify a prefix or directory location for the checkpoint and journal, use the -3 c option. For example,
you might create a checkpoint with:
S p4d -jc prefix

In this case, your checkpoint and journal files are named prefix.ckp.nand prefix.jnl.n
respectively, where prefixis as specified on the command line and n is a sequence number. If no
prefixis specified, the default flenames checkpoint . nand journal. nare used. You can
store checkpoints and journals in the directory of your choice by specifying the directory as part of the
prefix. For example:

$pd -r . -J /where/my/journal/lives/journal -z -jc

/Users/bruges/serverl51/checkpoints/mybackup

150

Journal files

returns

Checkpointing to
/Users/bruges/serverl51/checkpoints/mybackup.ckp.299.gz. ..
MD5 (/Users/bruges/serverl51/checkpoints/mybackup.ckp.299) =
5D7D8E548D080B16ECB66AD6CEOF2ES5D

Rotating journal to
/Users/bruges/serverl51/checkpoints/mybackup.jnl.298.gz...

You can also specify the prefix for a server with:

S p4 configure set journalPrefix=prefix

When the journalPrefix configurable is set, the configured prefix takes precedence over the
default filenames. This behavior is particularly useful in multi-server and replicated environments.

To create a checkpoint without being logged in to the machine running the Perforce service, use the
command:

S p4 admin checkpoint [-z | -Z] [prefix]

Runningp4 admin checkpointisequivalenttop4d -jc exceptthatusingp4 admin
checkpoint requires that you be connected to the server. You must be a Helix Server superuser to
usep4 admin.

You can set up an automated program to create your checkpoints on a regular schedule. Be sure to
always check the program’s output to ensure that checkpoint creation was started. Compare the
checkpoint’s actual MD5 checksum with that recorded in the . md5 file, and back up the . md5 file along
with the checkpoint. After successful creation, a checkpoint file can be compressed, archived, or moved
onto another disk. At that time or shortly thereafter, back up the versioned files stored in the depot
subdirectories.

To restore from a backup, the checkpoint must be at least as old as the files in the depots, that is, the
versioned files can be newer than the checkpoint, but not the other way around. As you might expect, the
shorter this time gap, the better.

If the checkpoint command itself fails, contact Perforce Technical Support immediately. Checkpoint
failure is usually a symptom of a resource problem (disk space, permissions, and so on) that can put your
database at risk if not handled correctly.

Note
You can verify the integrity of a checkpoint using the p4d -3jwv command.

Journal files

The journal is the running transaction log that keeps track of all database modifications since the last
checkpoint. It's the bridge between two checkpoints.

151

Journal files

If you have Monday’s checkpoint file and the journal file that was collected from then until Wednesday,
those two files contain the same information as a checkpoint made Wednesday. If a disk crash were to
cause corruption in your Helix Server database on Wednesday at noon, for instance, you could still
restore the database even though Wednesday’s checkpoint hadn’t yet been made.

Warning
By default, the current journal filename is journal, and the file resides in the PAROOT directory.

However, if a disk failure corrupts that root directory, your journal file will be inaccessible too.

We strongly recommend that you set up your system so that the journal is written to a filesystem
other than the P4ROOT filesystem. To do this, specify the name of the journal file in the environment
variable P4 JOURNAL or use the -J filename flag when starting p4d.

To restore your database, you only need to keep the most recent journal file accessible, but it doesn’t hurt
to archive old journals with old checkpoints, should you ever need to restore to an older checkpoint.

Journaling is automatically enabled on all Windows and UNIX platforms. If P4 JOURNAL is left unset
(and no location is specified on the command line), the default location for the journal is
$P4ROOT/journal.

The journal file grows until a checkpoint is created; you'll need make regular checkpoints to control the
size of the journal file. An extremely large current journal is a sign that a checkpoint is needed.

Every checkpoint after your first checkpoint starts a new journal file and renames the old one. The old
journal is renamed to journal . n, where nis a sequence number, and a new journal fileis
created.

By default, the journal is written to the file journal in the server root directory (P4ROOT. Because
there is no sure protection against disk crashes, the journal file and the Helix Server root should be
located on different filesystems, ideally on different physical drives. The name and location of the journal
can be changed by specifying the name of the journal file in the environment variable P4 JOURNAL or by
providingthe -3 filename] flagtop4d.

Warning
If you create a journal file with the -J filename flag, make sure that subsequent checkpoints use

the same file, or the journal will not be properly renamed.

Whether you use PAJOURNAL orthe -J journalfile optiontop4d, the journal filename can be
provided either as an absolute path, or as a path relative to the server root.

Example Specifying journal files
Starting the service with:

$ p4d -r $P4AROOT -p 1666 -J /usr/local/perforce/journalfile
Perforce Server starting...

requires that you either checkpoint with:

152

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4JOURNAL.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4JOURNAL.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html

Journal files

$ p4d -r $P4ROOT -J /usr/local/perforce/journalfile -jc
Checkpointing to checkpoint.19...

Saving journal to journal.1l8...

Truncating /usr/local/perforce/journalfile...

or set PAJOURNAL to /usr/local/perforce/journalfile and use the following
command:

$ p4d -r $P4ROOT -jc

Checkpointing to checkpoint.19...

MD5 (checkpoint.19)=48769A82387B04987568309823E784C9
Rotating /usr/local/perforce/journalfile to journal.l18

If your PAJOURNAL environment variable (or command-line specification) doesn’t match the setting
used when you started the Perforce service, the checkpoint is still created, but the journal is neither
saved nor truncated. This is highly undesirable!

Checkpoint and journal history

Youcanusethep4 journals command todisplay the history of checkpoint and journal activity for
the server. This history includes information about the following events: the server takes a checkpoint,
journal rotation, journal replay, checkpoint scheduling. For detailed information about command output
and options, see the description of thep4 journals command inthe P4 Command Reference.

Verifying journal integrity

You can verify the integrity of a checkpoint using the p4d -3jv command.

Automating maintenance work after journal rotation

To configure Helix Server to run trigger scripts when journals are rotated, use the journal-rotate
and journal-rotate-1lock type triggers. Journal-rotate triggers are executed after the journal is
rotated on a running server, but only if journals are rotated withthe p4 admin journal orp4
admin checkpoint commands. Journals are not rotated if you invoke the p4d -jcorp4d --
JjJj commands.

Journal-rotate triggers allow you to run maintenance routines on servers after the journal has been
rotated, either while the database tables are still locked or after the locks have been released. These
triggers are intended to be used on replicas or edge servers where journal rotation is triggered by journal
records. The server must be running for these triggers to be invoked.

See "Triggering on journal rotation" on page 266 for more information.

153

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_journals.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_admin.html

Versioned files

Disabling journaling

To disable journaling, stop the service, remove the existing journal file (if it exists), set the environment
variable PAJOURNAL to of £, and restart p4d without the —-J flag.

Versioned files

Your checkpoint and journal files are used to reconstruct the Helix Server database files only. Your
versioned files are stored in directories under the Helix Server root, and must be backed up separately.

Versioned file formats

Versioned files are stored in subdirectories beneath your server root. Text files are stored in RCS format,
with filenames of the form £ilename ,v. There is generally one RCS-format (, v)file per text file.
Binary files are stored in full in their own directories named £ilename , d. Depending on the Helix
Server file type selected by the user storing the file, there can be one or more archived binary files in each
filename, ddirectory. If more than one file resides in a £ilename, d directory, each file in the
directory refers to a different revision of the binary file, and is named 1 . n, where n is the revision
number.

Helix Server also supports the AppleSingle file format for Macintosh. These files are stored in full and
compressed, just like other binary files. They are stored in the Mac’s AppleSingle file format; if need be,
the files can be copied directly from the server root, uncompressed, and used as-is on a Macintosh.

Because Helix Server uses compression in the depot file tree, do not assume compressibility of the data
when sizing backup media. Both text and binary files are either compressed by p4d (and are denoted by
the . gz suffix) before storage, or they are stored uncompressed. At most installations, if any binary files
in the depot subdirectories are being stored uncompressed, they were probably incompressible to begin
with. (For example, many image, music, and video file formats are incompressible.)

Backing up after checkpointing

In order to ensure that the versioned files reflect all the information in the database after a post-crash
restoration, the db . * files must be restored from a checkpoint that is at least as old as (or older than)
your versioned files. For this reason, create the checkpoint before backing up the versioned files in the
depot directory or directories.

Although your versioned files can be newer than the data stored in your checkpoint, it is in your best
interest to keep this difference to a minimum; in general, you'll want your backup script to back up your
versioned files immediately after successfully completing a checkpoint.

Backup procedures

To back up your Helix Server installation, perform the following steps as part of your nightly backup
procedure.

154

Backup procedures

1.

155

Verify the integrity of your server by using the p4 verify command:

S p4 verify //...

or

$ p4 verify -q //...
The —qg (quiet) option produces output only if errors are detected.

By running p4 verify before the backup, you verify that the archive data on the server is
correct and has not been damaged since the files were submitted.

Regularuse of p4 wverify is good practice because it enables you to:
m |ocate any corruption before a backup,

m determine whether or not the files restored from your backups following a crash are in good
condition

Note
For large installations, p4 wverify might take some time to run. Furthermore, the server is

under heavy load when p4 verify is verifying files, which can impact the performance of
other Helix Server commands. Administrators of large sites might choose to perform p4
verify on aweekly basis, rather than a nightly basis.

For more about the p4 verify command, see "Verifying files by signature" on page 51.

Make a checkpoint by invoking p4d with the —jc (journal-create) flag, or by using the p4 admin
command. Use one of the following:

On the host, where you might have a script that runs daily and also manages checkpoint files:

$ p4d -jec

or, on the client that is physically separate from the host:

$ p4 admin checkpoint

Because p4d locks the entire database when making the checkpoint, you do not generally have
to stop the Perforce service during any part of the backup procedure.

Note
If your site is very large (gigabytes of db . * files), creating a checkpoint might take a

considerable length of time.

Under such circumstances, you might want to defer checkpoint creation and journal truncation
until times of low system activity. You might, for instance, archive only the journal filein
your nightly backup and only create checkpoints and roll the journal file on a weekly basis.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_verify.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_admin.html

Backup procedures

3. Ensure that the checkpoint has been created successfully before backing up any files. (After a
disk crash, the last thing you want to discover is that the checkpoints you've been backing up for
the past three weeks were incomplete!)

Verifying either of the following:
s pd4d -jc(orp4 admin checkpoint)returns the value of 0
m the current journal file is truncated
You can also use the command p4d -7jv to verify the integrity of a checkpoint.

4. Confirm that the checkpoint was correctly written to disk by comparing the MD5 checksum of the
checkpoint with the . md5 file created by the checkpoint process.

The checksum in the . md5 file corresponds to the checksum of the file as it existed before any
compression was applied, and assumes UNIX-style line endings even if the service is hosted on
Windows.

If your checkpoint file was created with the —z compression option, you might need to
decompress it and account for line ending differences. On Windows, after decompressing a
checkpoint, Windows line endings must be re-added before calculating the . md5 sum.

156

Backup procedures

5. Once the checkpoint has been created successfully, back up:

157

m the checkpoint file and its . md5 file

m the rotated journal file. If the checkpoint is n, the rotated journal is journal.n-1. See
also "Journal files" on page 151.

m thelicensefile

m the versioned files

Tip
OPTIONAL for backup:

m logfiles

m readonly clients - see "Using read-only clients in automated builds" on page 205
There is no use case for backing up the following:

m db. * files

m server.locks directory

Note

There are rare instances (for instance, users obliterating files during backup, or submitting files
on Windows servers during the file backup portion of the process) in which your versioned file
tree can change during the interval between the time the checkpoint was taken and the time at
which the versioned files are backed up by the backup utility.

Most sites are unaffected by these issues. Having Helix Server available on a 24/7 basis is
generally a benefit worth this minor risk, especially if backups are being performed at times of
low system activity.

If, however, the reliability of every backup is of paramount importance, consider stopping the
Perforce service before checkpointing, and restart it only after the backup process has
completed.

Note
On Windows, if you make your system backup while the Perforce service is running, you must
ensure that your backup program doesn’t attempt to back up the db . * files.

If you try to back up the db . * files with a running server, Windows locks them while the
backup program backs them up. During this brief period, Helix Server is unable to access the
files; if a user attempts to perform an operation that would update the file, the server can fail.

If your backup software doesn’t allow you to exclude the db . * files from the backup process,
stop the serverwithp4 admin stop before backing up, and restart the service after the
backup process is complete.

Recovery procedures

6. If youhave usedthep4 serverid command toidentify your server with a server. idfile,
the server. idfile (which exists in the server’s root directory) must be backed up.

Recovery procedures

If the database files become corrupted or lost either because of disk errors or because of a hardware
failure such as a disk crash, the database can be re-created with your stored checkpoint and journal.

There are many ways in which systems can fail. Although this guide cannot address all failure scenarios,
it can at least provide a general guideline for recovery from the two most common situations, specifically:

m corruption of your Helix Server database only, without damage to your versioned files
m corruption to both your database and versioned files.

The recovery procedures for each failure are slightly different and are discussed separately in the
following two sections.

If you suspect corruption in either your database or versioned files, contact Perforce Technical Support.

Database corruption, versioned files unaffected 158
Both database and versioned files lost ordamaged 160
Ensuring system integrity after any restoration 162

Database corruption, versioned files unaffected

If only your database has been corrupted, (that is, your db . * files were on a drive that crashed, but you
were using symbolic links to store your versioned files on a separate physical drive), you need only re-
create your database.

You will need:

m The last checkpoint file, which should be available from the latest P4AROOT directory backup. If,
when you backed up the checkpoint, you also backed up its corresponding . md5 file, you can
confirm that the checkpoint was restored correctly by comparing its checksum with the contents
of the restored . md5 file.

m The current journal file, which should be on a separate filesystem from your P4AROOT directory,
and which should therefore have been unaffected by any damage to the filesystem where your
P4ROOT directory was held.

You will not need:

m Your backup of your versioned files; if they weren'’t affected by the crash, they’re already up to
date.

158

Database corruption, versioned files unaffected

To recover the database

1.

Stop the current instance of p4d:

$ p4 admin stop
(You must be a Helix Server superusertouse p4 admin.)

Rename (or move) the database (db . *)files:

$ mv your root dir /db.* /tmp

There can be nodb . * files in the PAROOT directory when you start recovery from a checkpoint.
Although the old db . * files are never used during recovery, it's good practice not to delete them
until you're certain your restoration was successful.

Verify the integrity of your checkpoint using a command like the following:

$ p4d -jv my checkpoint file
The command tests the following:
m Canthe checkpoint be read from start to finish?
m [fit's zipped can it be successfully unzipped?
m [f it has an MD5 file with its MD5, does it match?
m Does it have the expected header and trailer?
Use the -z flag with the —jv flag to verify the integrity of compressed checkpoints.

Invoke p4d with the —j r (journal-restore) flag, specifying your most recent checkpoint and
current journal. If you explicitly specify the server root (P4ROOT), the -r $P4ROOT argument
must precede the —j r flag. Also, because the p4d process changes its working directory to the
server root upon startup, any relative paths forthe checkpoint fileand journal file
must be specified relative to the PAROOT directory:

$ p4d -r $P4ROOT -jr checkpoint file journal file

This recovers the database as it existed when the last checkpoint was taken, and then applies the
changes recorded in the journal file since the checkpoint was taken.

Note
Version 2018.1

Starting with Version 2018.1, you no longer need to specify the —z option when restoring compressed
journals and checkpoints. This is especially useful when restoring a compressed checkpoint and
multiple journals in the same operation. For example:

p4d -r . -jr checkpoint.42.gz journal.42 journal.43 journal

159

Both database and versioned files lost or damaged

Prior to version 2018.1

If you're using the —z (compress) option to compress your checkpoints upon creation, you'll have to
restore the uncompressed journal file separately from the compressed checkpoint.

That is, instead of using:

$ p4d -r $P4ROOT -jr checkpoint file journal file
you'll use two commands:

$ p4d -r $P4ROOT -z -jr checkpoint file.gz

$ p4d -r $P4ROOT -jr journal file

You must explicitly specify the . gz extension yourself when using the -z flag, and ensure that the -
r $P4ROOT argument precedes the -j r flag.

Check your system

Your restoration is complete. See "Ensuring system integrity after any restoration" on page 162 to make
sure your restoration was successful.

Your system state

The database recovered from your most recent checkpoint, after you’ve applied the accumulated
changes stored in the current journal file, is up to date as of the time of failure.

After recovery, both your database and your versioned files should reflect all changes made up to the
time of the crash, and no data should have been lost. If restoration was successful, the
lastCheckpointAction counter will indicate "checkpoint completed”.

Both database and versioned files lost or damaged

If both your database and your versioned files were corrupted, you need to restore both the database and
your versioned files, and you'll need to ensure that the versioned files are no older than the restored
database.

You will need:

m The last checkpoint file, which should be available from the latest PAROOT directory backup. If,
when you backed up the checkpoint, you also backed up its corresponding . md5 file, you can
confirm that the checkpoint was restored correctly by comparing its checksum with the contents
of the restored . md5 file.

m Your versioned files, which should be available from the latest P4AROOT directory backup.
You will not need:

= Your current journal file.

160

Both database and versioned files lost or damaged

The journal contains a record of changes to the metadata and versioned files that occurred between the
last backup and the crash. Because you'll be restoring a set of versioned files from a backup taken before
that crash, the checkpoint alone contains the metadata useful for the recovery, and the information in the
journal is of limited or no use.

To recover the database

1.

Stop the current instance of p4d:

$ p4 admin stop
(You must be a Helix Server superusertouse p4 admin.)

Rename (or move) the corrupt database (db . *)files:

$ mv your root dir /db.* /tmp

The corrupt db . * files aren’t actually used in the restoration process, but it's safe practice not to
delete them until you're certain your restoration was successful.

Compare the MD5 checksum of your most recent checkpoint with the checksum generated at the
time of its creation, as stored in its corresponding . md5 file.

The . md5 file written at the time of checkpointing holds the checksum of the file as it existed
before any compression was applied, and assumes UNIX-style line endings even if the service is
hosted on Windows. (If your checkpoint file was created with the —z compression option, you
may need to decompress them and account for line ending differences.)

Invoke p4d with the —j r (journal-restore) flag, specifying only your most recent checkpoint:

$ p4d -r $P4ROOT -jr checkpoint file

This recovers the database as it existed when the last checkpoint was taken, but does not apply
any of the changes in the journal file. (The —x $P4ROOT argument must precede the - r flag.
Also, because the p4d process changes its working directory to the server root upon startup, any
relative paths forthe checkpoint _£file must be specified relative to the PAROOT directory.)

The database recovery without the roll-forward of changes in the journal file brings the database up
to date as of the time of your last backup. In this scenario, you do not want to apply the changes in
the journal file, because the versioned files you restored reflect only the depot as it existed as of
the last checkpoint.

To recover your versioned files

After you recover the database, you then need to restore the versioned files according to your system’s
restoration procedures (for instance, the UNIX restore (1) command) to ensure that they are as new
as the database.

161

Ensuring system integrity after any restoration

Check your system

Your restoration is complete. See "Ensuring system integrity after any restoration" below to make sure
your restoration was successful.

Files submitted to the depot between the time of the last system backup and the disk crash will not be
present in the restored depot.

Note

Although "new" files (submitted to the depot but not yet backed up) do not appear in the depot after
restoration, it’s possible (indeed, highly probable!) that one or more of your users will have up-to-date
copies of such files present in their client workspaces.

Your users can find such files by using the following Helix Server command to examine how files in
their client workspaces differ from those in the depot. If they run this command:
$ p4 diff -se

They are provided with a list of files in their workspace that differ from the files Helix Server believes
them to have. After verifying that these files are indeed the files you want to restore, you may want to
have one of your users open these files for edi t and submit the files to the depot in a changelist.

Your system state

After recovery, your depot directories might not contain the newest versioned files. That is, files
submitted after the last system backup but before the disk crash might have been lost.

m Inmost cases, the latest revisions of such files can be restored from the copies still residing in
your users' client workspaces.

m Inacase where only your versioned files (but not the database, which might have resided on a
separate disk and been unaffected by the crash) were lost, you might also be able to make a
separate copy of your database and apply your journal to it in order to examine recent changelists
to track down which files were submitted between the last backup and the disk crash.

In either case, contact Perforce Technical Support for further assistance.

Ensuring system integrity after any restoration
After any restoration, use the command:

S p4 counter lastCheckpointAction

to confirm that the 1lastCheckpointAction counter has been updated to reflect the date and time
of the checkpoint completion.

Youshouldalsorunp4 verify toensure that the versioned files are at least as new as the database:

S p4d verify -q //...

162

Failover

This command verifies the integrity of the versioned files. The —q (quiet) option tells the command to
produce output only on error conditions. Ideally, this command should produce no output.

If any versioned files are reported as MISSING by the p4 werify command, you'll know that there is
information in the database concerning files that didn’t get restored. The usual cause is that you restored
from a checkpoint and journal made after the backup of your versioned files (that is, that your backup of
the versioned files was older than the database).

If (@s recommended) you've been usingp4 verify as part of your backup routine, you can run p4
verify after restoration to reassure yourself that the restoration was successful.

If you have any difficulties restoring your system after a crash, contact Perforce Technical Support for
assistance.

Failover

Failover is the process by which a standby server takes over as the new "master" server.

High Availability Standby

(option: mandatory)

.

Shared network
file system wedge server (dev)
for versioned
@ file content edge server (build)
e < -
— < . commit server (master)
(metadata)
journalcopy thread
pull -L T l copies Master journal ¢ : | *—
thread i i entries to the Standby
journalcopy file @ journal
e
N/

Disaster Recovery Standby
(option: nomandatory) |
o
R o

pull -u S
thread gets i
pull -L T the Master's
thread ﬁlzcor:e;n n n
applies the Jjournalcopy file ‘;‘:E é"&n"dl?;

journalcopy
entries to the

standby database

The master can be configured as a master server, a commit server, or an edge server.

163

High Availability and Disaster Recovery

High Availability and Disaster Recovery

The Failover feature supports two scenarios:

= High Availability (HA)
« The master can be configured as a master server, a commit server, or an edge server.
« Typically, the standby server is in the same hardware rack as the master server.
« Typical use case: scheduled maintenance, but also possible if the master hardware fails
« Typically, the master participates in the failover process:
« disabling itself in an orderly fashion
« waiting for the journalcopy of the remaining transactions to the Standby

« allowing the standby to stop the Master

Note
If the master server does not participate in the failover, a check is made to ensure that the

standby server to which failover is to occur has the mandatory option set. Without the
participation of the master server, failing over to amandatory standby serveris
required to ensure that the other replicas remain consistent with the new master server
after failover. Consistency is assured because during production operations, metadata
must be journalcopy'd by all mandatory standby servers before that metadata is
replicated to the other replicas. Deploying one or more manda tory standby servers
local to the master server is recommended. This is because journalcopy performance of
themandatory standby servers can affect the production replication to the other

replicas.

m Disaster Recovery (DR)

« Typical use case: due to a sudden catastrophe, the master server and its HA standbys are
unable to operate.

« Contact support for assistance with failing over to a non-mandatory standby server when the
master server is inaccessible.

Consistency of the downstream replicas is assured for failing over when:

= the master server participates, in which case:
« the standby server need not be a "mandatory" standby

« the standby server's journalcopy, pull -L,andpull -uthreads are an integral
part of the failover

= the master server does not participate and the standby serveris a "mandatory" standby, in
which case only the standby server's pull -L thread is anintegral part of the failover

164

High Availability and Disaster Recovery

Important
m Thep4 failover command must be runon aserverof Type standby or

forwarding-standby

m The server from which failover can occur is usually called the master. However, failover can
occur from a server that provides standard, commit-server, oredge-server
services.

Server type: standby or forwarding-standby
For a streamlined failover, consider a dedicated standby.

For situations where failover completion is less time-critical, a forwarding-standby might reduce
hardware costs.

High availability with the mandatory server specification option

In the server specification, under Options, mandatory is possible fora standby (or
forwarding-standby)server. This option ensures that no replica has metadata that has not been
copied to the journalcopy of all standby (or forwarding-standby) servers, which ensures that a
consistent failover is possible whether or not the original master is available at failover time.

If the server from which failover is to occur is not participating in the failover (because the master is
unavailable or the —i option causes the master to be ignored), the p4 failover command returns an
error if it is running on a standby (or forwarding-standby) server that is not properly configured
with the mandatory option.

For high availability failover, the local standby typically has a server specification with the Option set to
mandatory.

Note
A best practice for deploying amandatory standby is:

1. Deploy as nomandatory
2. Wait for its journalcopy to catch up with the master

3. Change on the master the server spec for that standby tomandatory

Disaster recovery with the nomandatory server specification option

For disaster recovery failover, the remote standby typically has a server specification with the Option set
tonomandatory. This is because the journalcopy performance of amandatory standby can affect
the speed of replication to the replicas of the master.

165

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_failover.html

Potential data loss

Potential data loss

Master

participates Master does not participate

Standby is mandatory

Any commands that were not completed when failover began might need to be executed again on the
new master server.

There should The transactions that were done directly on the master prior to the failover that had

not be any data not yet been journalcopy'd to the standby being used for the failover will be lost.
loss.

To minimize data loss when the master server does not participate in the failover,
the standby used for the failover should be the standby that was the most current
with the master at the time of the failover, which is likely the standby that is in the
same rack with the master.

The downstream replicas are consistent with the new master server

The downstream replicas will not have data loss relative to the new master server

Failover process
The Failover feature allows the super user to:

1. Get areport of whether conditions look good for a successful failover.

Warnin

If the repgrt indicates that the existing master server is still accessible and ignoring that server
has been requested with the —i option, this could result in two separate servers, each of which
is unaware of the other. This "split-brain" situation can produce inconsistencies that
compromise the integrity of your data.

166

https://en.wikipedia.org/wiki/Split-brain_(computing)

Prerequisites

2. Initiate the failover process.

a. This automatically stops the standby (or forwarding standby) server that will become the new
master.

b. During the failover process, end-user might notice that the master server does not process
any new commands.

c. A verification process ensures that recent file content was correctly replicated to the new
master. See the p4 failover command for the —w option.

d. During the failover process, the P4AROOT directory will get a new file named statefailover.
This file is the last consistency point journalcopy'd by the standby immediately prior to the
failover. This file will be deleted by the new master server when it is no longer needed.

3. Monitor the steps that are reported during the process. If the Failover process encounters an error,
the process is designed to inform the superuser and to stop the failover process so that corrective
action can be taken and a new attempt can occur.

4. If an erroris encountered after the standby server has stopped the master server, the standby
server will not restart the master server.

5. Verify, after the completion of a successful failover, that the former standby (or forwarding
standby) has been restarted as the new master by issuing the p4 info command and checking the
ServerID toensurethatitis the ServerID of the master server that was failed over.

6. Following a successful failover, site-specific changes might be needed to use the new master
server. For example, it might be necessary to make DNS changes so that users and replicas can
connect to the new master server.

The end users can now issue new commands.

Prerequisites

m Make sure that monitoring (p4 monitor) was enabled when the standby server was started.

« Monitoring must be enabled at server startup of the standby prior to running the p4 failover'
command because the monitor subsystem is used to terminate the journalcopy, pull
-L,andpull -u threads during the failover sequence.

m Ensure that all the standby and forwarding-standby servers have a value for the
ReplicatingFromfield in their server spec. This will allow the statefailover filein the
P4ROOT of the new master server to be automatically deleted when it is no longer needed.

m |f an edge server is being failed over, the service user of the edge server should be logged into the
commit (or master) server using the file specified by the PATICKETS configurable (and likely the
P4TRUST configurable) defined for the standby of the edge server.

167

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_failover.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html

Configurables affected

m The standby server must be appropriately licensed for its new role following the failover.

Configurables affected

The failover process:
« makes no changes to the configurables on the original master server

« can make changes to the following configurables for the new master so that the values are
appropriate for the new environment:

client.readonly.dir P4AUDIT

client.sendq.dir P4JOURNAL

journalPrefix P4LOG

pull.trigger.dir P4ATICKETS

server.depot.root = P4TRUST

server.locks.dir P4ROOT

statefile

Configurables and edge server

When failing over to a standby from an edge (or other replica) server, the updated configurables for
the edge server will need to be manually changed on the commit server. This is because the
update of the configurables cannot be propagated back to the commit (or upstream) server
automatically, given that the edge server might, or might not, be participating in the failover.

168

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#client.readonly.dir
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4AUDIT.html
http://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#client.sendq.dir
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4JOURNAL.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#journalPrefix
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4LOG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#pull.trigger.dir
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4TICKETS.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#server.depot.root
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4TRUST.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#server.locks.dir
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#statefile

Monitoring the server

Monitoring disk space Usage 169
Specifying values for filesys configurables 170
Determining available disk SPaCe L 170

MonNitoring ProCeSSeS o 170
Enabling process MonitoniNg o 171
Enabling idle processes mOonitoring L 172
Listing running PrOCESSES o o o 172

Diagnostic flags for monitoring the server 173
Performance Tracking o 173
Command TraCing 174
Setting the diagnostic flags L 174

Showing information about locked files 175

Auditing user file access 175

Logging and structured log files 176
Examples of possible log entries 176
Logging ComMmMaAaNAS i 177
Enabling structured loggingo .. 178
Structured logfile rotation 179

Monitoring disk space usage

Usethep4 diskspace command to monitor diskspace usage. By default, p4 diskspace

displays the amount of free space, diskspace used, and total capacity of any filesystem used by Helix

Server.

By default, Helix Server rejects commands when free space on the filesystems housing the PAROOT,

P4JOURNAL, P4LOG, or TEMP falls below 250 megabytes. To change this behavior, set the
filesys.P4ROOT .min (and corresponding) configurables to your desired limits:

m filesys.P4ROOT.min

m filesys.P4JOURNAL.min
m filesys.P4LOG.min

m filesys.TEMP.min

m filesys.depot.min

If the user account that runs the Helix Server process is subject to disk quotas, the Server observes
these quotas with respect tothe £ilesys . * . min configurables, regardless of how much physical

free space remains on the filesystem(s) in question. The next section explains the options you have in

reconfiguring default values.

For more information, see Configurables in the P4 Command Reference.

169

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.depot.min
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.P4JOURNAL.min
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.P4LOG.min
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.TEMP.min
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.depot.min
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/appendix.configurables.html%3FTocPath%3DConfigurables|_____0
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Specifying values for filesys configurables

Specifying values for filesys configurables

In specifying £ilesys . * .min values, you have the option of specifying an absolute number or a
percentage indicating a portion of the current space:

Format Meaning

nnn A plain number, used as is.

nnnK A number in kilobytes

$ p4 configure set filesys.P4TEMP.min=100K

nnnM A number in megabytes

$ p4 configure set filesys.P4ROOT.min=10M

nnnG A number in gigabytes.

$ p4 configure set filesys.P4JOURNAL.min=1G

nnnT A number in terabytes.

nnn% A number as a percentage of the current space.

To reserve ten percent of the total disk space for PAROOT:

$ p4 configure set filesys.P4ROOT.min=10%

Determining available disk space

To estimate how much disk space is currently occupied by specific files in a depot, usethe p4 sizes
command with a block size corresponding to that used by your storage solution. For example, the
command:

$ p4 sizes -a -s -b 512 //depot/...

shows the sum (-s) of all revisions (-a)in //depot/ . . ., as calculated with a block size of 512
bytes.

//depot/... 34161 files 277439099 bytes 5429111 blocks

The datareported by p4 sizes reflects the disk space required when files are synced to a client
workspace, but can provide a useful estimate of server-side disk space consumption.

Monitoring processes

Usethep4 monitor command to observe and control Helix Server-related processes running on your
Helix Server machine.

170

Enabling process monitoring

Enabling process monitoring 171
Enabling idle processes monitoring 172
Listing running proCesSses 172

Enabling process monitoring

Server process monitoring requires minimal system resources, but you must enable process monitoring
forp4 monitor towork.

For example, to monitor active commands, set the mon it or configurable to 1:

$ p4 configure set monitor=1

Valid values for the monitor configurable are:

m 0: Server process monitoring off. (Default)

= 1: monitor active commands

m 2: active commands and idle connections

m 3:sames as 2, but also includes connections that failed to initialize (stuck at the Init() phase)

m 5:sames as 2, but also includes a list of the files locked by the command for more than one
second

m 10:sameas 5, but also includes lock wait times

m 25:sames as 10, except that the list of files locked by the command includes files locked for any
duration

Note
m Regarding 5, 10, or 25, for Linux and MacOS systems, see the p4 monitor topic on the —-L

option.

m Microsoft Windows does not have the 1sof utility to list open files, so 5, 10, or 25 are not
relevant to Windows.

Important
Setting monitor to a valid non-zero value activates db.monitor.interval. For example,

1. Set a valid non-zero value for monitor, suchas p4 configure set monitor=1l

2. (Optional): If you want a different monitoring interval than the default 30 seconds, set the
db.monitor.interval configurable with a command such as p4 configure set
db.monitor.interval=120

171

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#monitor
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#monitor
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#monitor
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.monitor.interval
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#monitor
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.monitor.interval

Enabling idle processes monitoring

Tip
See "Terminating blocked processes" on page 197.

Enabling idle processes monitoring

By default, IDLE processes, which are often associated with custom applications based on the C/C++
API, are not included in the output of p4 monitor. To include idle processes in the default output of p4
monitor, use monitoring level 2.

$ p4 configure set monitor=2

To display idle processes, use the command:

$ p4 monitor show -s I

Listing running processes
To list the processes monitored by Helix Server, use the command:

$ p4 monitor show

To restrict the display to processes currently in the running state, use the command:

$ p4 monitor show -s R

By default, each line of p4 moni tor output looks like this:

pid status owner hh:mm:ss command [args]

where pidis the UNIX process ID (or Windows thread ID), status is R or T depending on whether the
process is running or marked for termination, owner is the Helix Server user name of the user who
invoked the command, hh :mm: ss is the time elapsed since the command was called, and command
and args are the command and arguments as received by Helix Server. For example:

$ p4 monitor show

74612 R gatool 00:00:47 job
78143 R edk 00:00:01 filelog
78207 R p4admin 00:00:00 monitor

To show the arguments with which the command was called, use the —a (arguments) flag:

$ p4 monitor show -a

74612 R gatool 00:00:48 job job004836

78143 R edk 00:00:02 filelog //depot/main/src/proj/filel.c //dep
78208 R p4admin 00:00:00 monitor show -a

172

https://www.perforce.com/perforce/doc.current/manuals/p4api/
https://www.perforce.com/perforce/doc.current/manuals/p4api/
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html

Diagnostic flags for monitoring the server

To obtain more information about user environment, use the —e flag. The —e flag produces output of the
form:

pid client IP-address status owner workspace hh:mm:ss command
[args]

where client s the Helix Server application (and version string or API protocol level), IP-address
is the IP address of the user's Helix Server application, and workspace is the name of the calling
user’'s current client workspace setting. For example:

$ p4 monitor show -e

74612 p4/2011.1 192.168.10.2 R gatool buildenvir 00:00:47 job
78143 192.168.10.4 R edk eds_elm 00:00:01 filelog
78207 p4/2011.1 192.168.10.10 R pdadmin pdserver 00:00:00 monitor
By default, all user names and (if applicable) client workspace names are truncated at 10 characters, and
lines are truncated at 80 characters. To disable truncation, use the -1 (long-form) option:

$ p4 monitor show -a -1

74612 R gatool 00:00:50 job job004836

78143 R edk 00:00:04 filelog //depot/main/src/proj/filel.c //dep
ot/main/src/proj/filel.mpg

78209 R pdadmin 00:00:00 monitor show -a -1

Only Helix Server administrators and superusers can use the —a, -1, and —e options.

Diagnostic flags for monitoring the server

Using diagnostic flags can help you monitor the server.

Any user commands that exceed certain thresholds for resource usage (such as CPU, lapse time,
database 1/0, network 1/0) automatically get logged into the server error log specified by P4LOG. Trace
output appears in the log file, and shows the date, time, username, IP address, and the command for
each request the server processes.

Performance Tracking

Performance tracking is on by default (determined by the number of users shown in the server license
file) but can be turned off or adjusted withthe p4 configure set track=xcommand.

Performance Tracking

Description

0 Turn off tracking

173

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4LOG.html

Command Tracing

Performance Tracking

Description

1 Track all commands

Track excess usage for a server with less than 10 users

Track excess usage for a server with less than 100 users

Track excess usage for a server with less than 1000 users

o | s W(DN

Track excess usage for a server with more than 1000 users

Command Tracing

Command Tracing is on by default but can be tumed off or adjusted withthe p4 configure set
server=xcommand:

Command Tracing Levels

0 Turn off tracking

1 Include the start information for each command

2 Include the start and stop information for each command
3 Add a "compute end" message for certain commands

4 Include errors sent to the client to the server log.

Setting the diagnostic flags

To modify the behavior of command tracing or performance tracking, use the p4 configure command. For
example:

$ p4 configure set server=3
Tip
Before you activate logging, make sure that you have at least the minimum required disk space (see
filesys.P4LOG.min in P4 Command Reference) and be aware that you might need more.

Setting server debug levels on a Helix Server server (p4d) has no effect on the debug level of a Helix
Proxy (p4p) process, and vice versa.

174

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#filesys.P4LOG.min

Showing information about locked files

Note

The highest levels of the Helix Server command tracing and tracking flags are typically recommended
only for system administrators working with Perforce Technical Support to diagnose or investigate
problems.

To enable both server and track flags:
Issue these two commands:

p4 configure set track=1l

p4 configure set server=3

Note
m Diagnostic flags can also be set using PADEBUG or on the server command line using the -v

option.

m For additional information, see the Knowledge Base article, Interpreting server log files.

Showing information about locked files

You can use the —L option of the p4 moni tor to show information about locked files. The information
is collected only for the duration of the p4 monitor command and is not persisted. See the
description of the p4 monitor command for more information about how to set up this kind of
monitoring.

The following sample output to the p4 monitor show -L command, shows the information

displayed about locked files:

8764 R user 00:00:00 edit
[server.locks/clients/88,d/ws4 (W),db.locks (R),db.rev (R)]

8766 R user 00:00:00 edit
[server.locks/clients/89,d/ws5 (W) ,db.locks (R),db.rev (R)]

8768 R user 00:00:00 monitor

Following pid, status, owner, and time information, output shows two edit commands that have various
files locked, including the client workspace lock in exclusive mode for the workspaces ws4 and ws5,
anddb. locks and db . rev tables in read-only mode.

Auditing user file access

Helix Server is capable of logging individual file accesses to an audit logfile. Auditing is disabled by
default, and is only enabled if PAAUDIT is set to point to the location of the audit log file, or if the server
is started withthe -A auditlogflag.

175

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4DEBUG.html
https://community.perforce.com/s/article/2525

Logging and structured log files

When auditing is enabled, the server adds a line to the audit log file every time file content is transferred
from the server to the client. On an active server, the audit log file will grow very quickly.

Lines in the audit log appear in the form:

date time user@client clientIP command file#rev

For example:

$ tail -2 auditlog
2011/05/09 09:52:45 karl@nail 192.168.0.12 diff //depot/src/x.c#l
2011/05/09 09:54:13 jim@stone 127.0.0.1 sync //depot/inc/file.h#1

If a command is run on the machine that runs the Helix Server, the c1ientIP is shown as
127.0.0.1.

If you are auditing server activity in a replicated environment, each of your build farm or forwarding replica
servers must have its own P4AUDIT log set.

Logging and structured log files

Helix Server can be configured to write log files in a structured (. csv) format. Structured log files contain
more detail than conventional log files, are easier to parse, and Helix Server offers additional commands
to help customize your site’s logging configuration.

Note
All p4d error and info logs are in UTF8 for a server in unicode mode. You need an UTF8 console or

editor to properly render this log information.

Examples of possible log entries

The following is a subset of possible log entries:

Entry Meaning

rmt- Used by a p4 pull thread on a replica server to retrieve journal records that contain
Journal metadata from a master.
m inthe replica serverlog, you might see the pull processes

= inthe masterlog, you might see rmt-Journal entries corresponding to
the metadata being pulled from the master to the replica server

176

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_pull.html

Logging commands

Entry Meaning

rmt- Usedby p4 pull -uonanreplicaserverto retrieve archive files, or by parallel
FileFetch | submitfrom an replica server to transfer archive files from the replica server to the
master.
= Inthe masterlog, you might see rmt-FileFetch entries from the pull
—u commands running on replica servers.
= Inthe Edge Serverlog, you might see rmt-FileFetch entries during
parallel submit from the pull command running on the Commit Server to get
the archives onto the Commit Server
Monitor or user-transmit -t <taskID> [-b batch -s batchsize -r]
log entries

Processes spawned by parallel sync, submit, or shelve that transfer batches of files
in parallel. The arguments correspond to the batch and batchsize arguments
of the parallel sync, submit, or shelve command.

m The internally-generated —xr argument indicates that the parallel submit or
shelve transfers from the client to the server, rather than server to client (like
sync)

m The -t argument is internal

Logging commands

You can use the following commands to work with logs.

Command Meaning

p4 If the user log is enabled, write an entry touser. csv.

logappend

p4 Parse a structured log file and return the logged data in tagged format

logparse

p4 Rotate a named logfile, or, if no name is specified, all server logs. This command

logrotate applies only to structured logs; it does not rotate the unstructured P4LOG or
P4AUDIT logs.

p4 Return a description of the specified log record type.

logschema

p4 Report the file size of the journal (P4JOURNAL, error log (P4LOG), audit log

logstat (P4AUDIT), or the named structured log file.

p4 Output the last block of the error log (P4LOG).

logtail

177

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logappend.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logappend.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logparse.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logparse.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logrotate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logrotate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logschema.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logschema.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logstat.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logstat.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logtail.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logtail.html

Enabling structured logging

Enabling structured logging

To enable structured logging, set the serverlog. £ile . N configurable to the name of the file. Valid
names for structured log files and the information logged are shown in the following table. You can use a
file path in conjunction with the file name.

Warning

You must use one of the file names specified in the table. If you use an arbitrary name, no data will be
logged to the file you specify.

Filename Description

all.csv All loggable events (commands, errors, audit, etc...)
audit.csv Audit events (audit, purge)
auth.csv Theresults of p4 1ogin attempts. If the login failed, the reason for this is

included in the log. Additional information provided by the authentication
method is also included.

commands .csv Command events (command start, compute, and end)
€rrors.csv Error events (errors-failed, errors-fatal)
events.csv Server events (startup, shutdown, checkpoint, journal rotation, etc.)

integrity.csv Major events that occur during replica integrity checking.

ldapsync.csv p4 ldapsync events, such as when:

m auseris added, updated, or removed

m auseris added or removed from a group

route.csv Log the full network route of authenticated client connections. Errors related
tonet.mimcheck are also logged against the related hop.

track.csv Command tracking (track-usage, track-rpc, track-db)

user.csv User events; one record every time a userruns p4 logappend.

Files do not have to be set in consecutive order:

$ p4 configure set serverlog.file.l=audit.csv
$ p4 configure set serverlog.file.2=auth.csv

$ p4 configure set serverlog.file.4=track.csv

178

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_login.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_ldapsync.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.mimcheck
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logappend.html

Structured lodfile rotation

Note

Enabling all structured logging files can consume considerable diskspace. See "Structured logfile
rotation" below for information on how to manage the size of the log file and the number of log
rotations.

The value you specify for N may not exceed 500.

Structured lodfile rotation

Each of the configured serverlog. file. Nfiles has its own corresponding
serverlog.maxmb.Nand serverlog.retain. Nconfigurables. For each configured server
log type, these configurables control the maximum size (in megabytes) of the logfile before rotation, and
the number of rotated server logs retained by the server.

Structured log files are automatically rotated on checkpoint, journal creation, overflow of associated
serverlog.maxmb . Nlimit (if configured), and the p4 logrotate command. You can disable
log rotation after journal rotation by setting the configurable dm. rotatelogwithjnl to 0. Disabling
this behavior can help when you’re doing frequent journal rotations and you want the log rotated on a
different schedule.

You can use the serverlog. counter . Nconfigurable to create a counter that tracks the number of
times a structured log file has been rotated. For example, the following command creates a rotation
counter calledmyErrorsCount:

$ p4 configure set serverlog.counter.3=myErrorsCount

Eachtimethe errors. csv logfile is rotated, the counter is increased by one. In addition, the name of
the log file is changed to specify the pre-incremented counter value. That is, if the countermyErrors is
7,theerrors.csvfileis named errors-6.csv.

You can create a counter for each file described in the preceding table. Do not use system reserved
counter names for your counter: change, maxCommitChange, job, journal, traits,
upgrade.

Thep4 logtail command returns the current value of the counter when you logtail that log. It also
returns the current size of the log at the end of the output (along with the ending offset in the log). The size
and offset are identical if p4 logtail reads to the end of the log. Security monitoring tools can use
counters andthe p4 logtail command inthe process of scanning log files to monitor suspicious
activity.

179

Managing the server and its resources

This chapter describes common management, maintenance, and troubleshooting tasks:

m Managing the sharing of code

m Managing distributed development
m Managing users

m Managing changelists

m Backing up a workspace

m Managing disk space

m Managing processes

m Scripted client deployment

= Troubleshooting Windows installations

These are all tasks that go beyond the initial configuration of the server.

Forcing operations with the -fflag 181
Managing the sharing of code 182
Managing distributed development 182
Distributed development using Fetchand Push 183
Code drops without connectiVity L 185
ManNaging USersS . 186
US I Iy DS 186
Preventing automatic creation of users 189
ReNaming USerS .. . L 189
Deleting obsolete users 190
Reverting files left open by obsolete users 190
Deleting changelists and editing changelist descriptions .._..................... 190
Managing shelves L 191
Backing up a Workspace L 192
Managing disk space 192
Diskspace Requirements 192
SavIiNg disSK SPaCE L 193
Reclaiming disk space by archivingfiles 194
Reclaiming disk space by obliterating files 195
Managing ProCeSSesSl 196
Pausing, resuming, and terminating processes 196
Clearing entries inthe process table L 196
Terminating blocked proCesSes 197
Managing the database tables 197
Scripted client deployment on Windows 197
Troubleshooting Windows installations 198

180

Forcing operations with the -f flag

Resolving Windows-related instabilities 198
Resolving issues with PAEDITOR or P4DIFF

Forcing operations with the -f flag

Certain commands support the - £ flag, which enables Helix Server administrators and superusers to
force certain operations unavailable to ordinary users. Helix Server administrators can use this flag with
p4 branch,p4 change,p4 client,p4 job,p4 label,andp4 unlock. Helix Server
superusers can also use it to override the p4 user command. The usages and meanings of this flag
are as follows.

Command Syntax Function

p4 p4 branch -f Allows the modification date to be changed while
branch branchname editing the branch mapping

p4 branch -f -d Deletes the branch, ignoring ownership

branchname
p4 p4 change -f Allows the modification date to be changed while
change [changelist#] editing the changelist specification
p4 change -f Allows the description field and username in a
changelist# committed changelist to be edited
p4 change -f -d Deletes empty, committed changelists
changelist#
p4 p4 client -£ Allows the modification date to be changed while
client clientname editing the client specification

p4 client -f -d Deletes the client, ignoring ownership, even if the client

clientname has opened files
p4 job p4 job -f Allows the manual update of read-only fields
[jobname]
p4 label p4 label -f Allows the modification date to be changed while
labelname editing the label specification
p4 label -f -d Deletes the label, ignoring ownership
labelname
p4 p4 unlock -c Releases alock (set withp4 lock)onanopenfilein
unlock changelist -f a pending numbered changelist, ignoring ownership

file

181

Managing the sharing of code

Command Syntax Function

p4 user p4 user -f Allows the update of all fields, ignoring ownership
username This command requires super access.
p4 user -f -d Deletes the user, ignoring ownership
username

This command requires super access.

Managing the sharing of code
Users have three options in how they share code:

m Using distributed development

This method allows users to share code and development. Using this option, users connect to a
shared server and use the p4 push and p4 fetch commands to copy files to and from the shared
server. Integration with the shared server is bi-directional and both file contents and history is
shared. See "Distributed development using Fetch and Push" on the next page for more
information about this option.

m Using the p4 zip and p4 unzip commands

This option allows users to share code. In addition to file contents, users can see the associated
changelists, fixes, file attributes and integration history. See "Code drops without connectivity" on
page 185 for additional information about this option.

= Using remote depots

This option enables independent organizations with separate Helix Server installations to integrate
changes between installations. Code integration is only one way, and metadata information
cannot be accessed. This option allows code drops to expose only files and file content. This
might be preferable for security reasons.

For additional information about this option, see "Working with depots" on page 88.

Managing distributed development

This section explains the work you need to do to support code sharing between distributed sites. This
functionality is similar to using remote depots to do code drops, except that you can move file history in
addition to files.

Distributed development using Fetchand Push 183
Code drops without connectivity

182

Distributed development using Fetch and Push

Distributed development using Fetch and Push

The following sections describe how you use thep4 fetch andp4 push commands to share code
easily between distributed sites.

Consider the scenario described below.

The gaming company Ukko Productions has offices in France, Japan and the United States. Each site is
responsible for a different part of the gaming code; each does development on the section of code or
"component" for which it is responsible. This work happens on the office’s Helix Server, in a depot
directory called dev. dewv will contain locally submitted changes.

Let’s suppose France is working on a widget which is used by the developers in Japan and the United
States. First, France makes the widget code available to Japan and the United States by dropping the
code —using the p4 push into drop directories on the servers in Japan and the United States (see "1"
in the figure below). (Alternatively, the Japan and United States developers could use thep4 fetchto
copy France’s code into their drop directories.) The Japan and United States development teams can
then merge the France widget code into their respective dewv directories usingp4 merge (See "2"in
the figure below). They can then customize the widget for their own purposes, without sharing these
customizations with the France developers.

If developers in the US and Japan have a subset of changes they do want to share with France, they use
p4 push to copy this code into a special drop location on the France server — one location for Japan
and one for the United States. (See "3" in the figure below). (Alternatively, France could use the p4
fetch to obtain the code and drop it into the appropriate locations.) The France developers can then
merge the Japan and United States code into their dev directory usingp4 merge (See "4" in the figure
below).

Then the cycle repeats.

This scenario is illustrated in the following drawing:

183

Distributed development using Fetch and Push

|
N

A

[—

//depot/France-dev/...

fetch ’ \
or
20 _ /JleN

//depot/code-droplapan/ . //depot/code-droplUSA/

A A

Y © Y

fetch
) :

or
push

fetch
//depot/code-dropFrance/. C:rP1 //depot/code-dropFrance/ .
push
? merge merge
//depot/Japan-dev/.___ [/depot/USA-dev/

o
—

N

The next section explains how you must define remote specs to be able to implement this scenario.

Configuring the remote specifications

Inorder forthep4 pushandp4 fetch commands towork properly, each of the three servers —
Japan’s, the United States' and France’s — must have properly configured remote specifications.
Remote specifications determine which remote servers alocal server can fetch from or push to and
which files will be fetched and pushed. (For more information about remotes and remote specifications,
see the section "Understanding Remotes" in Using Helix Core Server for Distributed Versioning.)

Because the Japan developers are fetching from or pushing to France’s server, their server's remote
spec would look as follows:

184

https://www.perforce.com/perforce/doc.current/manuals/dvcs/#DVCS/chapter.remotes.html?Highlight="understanding remotes"
http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html

Code drops without connectivity

RemoteID: ServerFrance
Address: ServerFrance:1666
DepotMap:
//depot/code-dropA/... //depot/France-dev/...
//depot/Japan-dev/... //depot/code-dropS/...
Because the United States developers are fetching from or pushing to France’s server, their server's
remote spec would look as follows:
RemoteID: ServerFrance
Address: ServerFrance:1666
DepotMap:
//depot/code-dropUSA/... //depot/France-dev/...
//depot/USA-dev/... //depot/code-dropS/...
Because the France developers are fetching from or pushing to Japan, their server's remote spec would
look as follows:
RemoteID: ServerJapan
Address: ServerJapan:1666
DepotMap:
//depot/code-dropS/... //depot/Japan-dev/...
//depot/France-dev/... //depot/code-dropd/...
Because the France developers are also fetching from or pushing to the United States, their server would
have a second remote spec that would look as follows:
RemoteID: ServerUnitedStates
Address: ServerUnitedStates:1666
DepotMap:
//depot/code-dropS/... //depot/USA-dev/...
//depot/France-dev/... //depot/code-dropUSA/...

Code drops without connectivity

Helix Server provides a pair of commands that enable you to move files and their associated change
history between servers when there is no connectivity between the servers; they arep4 zip andits
companion command p4 unzip.

Thep4 zip takes the specified list of files and the changelists which submitted those files and writes
them to the specified zip file. It lets you bundle up any depot path from a server — from a subset to all the
files on the server — into a zip file. You can also bundle by changelist number, capturing any number of
changes through history.

You canthen usethe p4 unzip to unzip the content of the zip file into any Helix Server.

185

Managing users

Managing users

This section describes the three types of Helix Server users and explains how you can create users, add
new licensed users, rename users, delete users, and manage the files of deleted users.

For information about authenticating users and granting them access, please see "Securing the server"
on page 101.

US Ol fY PO 186

Preventing automatic creationofusers 189

Renaming USers 189

Deleting obsolete Users L 190

Reverting files left open by obsoleteusers 190
User types

There are three types of Helix Server users: standard users, operator users, and service
users.

m A standard useris atraditional user of Helix Server.

Standard users are the default, and each standard user consumes one Helix Server license.
= Anoperator useris intended for human or automated system administrators.

An operator user does not require a Helix Server license.

m A service useris used for server-to-server authentication, whether in the context of remote
depots (see "Remote depots and distributed development” on page 94) or in distributed
environments (see Helix Core Server Administrator Guide: Multi-Site Deployment.)

Service users do not require licenses, but are restricted to automated inter-server communication
processes in replicated and multi-server environments.

The following sections describe these types and how they need to be managed.

Important
Once you set the user type, you cannot change it.

Creating standard users

By default, Helix Server creates a new user record in its database whenever a command is issued by a
user who does not exist. Helix Server superusers can also use the - £ (force) flag to create a new user as
follows:

S p4 user -f username

Fill in the form fields with the information for the user you want to create.

186

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

User types

The p4 user command also has an option (—1i) to take its input from the standard input instead of the
forms editor. To quickly create a large number of users, write a script that reads user data, generates
output in the format used by the p4 user form, and then pipes each generated formtop4 user -i
-£f.

Service users

Creating a service user for each Perforce service you install can simplify the task of interpreting your
server logs, and also improve security by requiring that any remote Perforce services with which yours is
configured to communicate have valid login tickets for your installation. Service users do not consume
Helix Server licenses.

A service user can run the following commands:

m p4 dbschema
m p4 export
= p4info
m p4login
= p4 logout
m p4logparse
m p4logschema
m p4 logstat
= p4logtail
m p4 passwd
m p4 servers
m p4 user
Note
Although a service user cannot run p4 pull directly on the command line, the service user on a replica

automatically runs this command to retrieve metadata and archive content (versioned files) from the
master.

To create a service user, run the command:

$ p4 user -f servicel

The standard user form is displayed. Enter a new line to set the new user's Type : tobe service:
User: servicel

Email: services@example.com

FullName: Service User for remote depots

Type: service

187

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_dbschema.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_export.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_info.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_login.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_logout.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_logparse.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_logschema.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_logstat.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_logtail.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_passwd.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_servers.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_user.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_info.html

User types

By default, the output of p4 users omits service users. To include service users, runp4 users -
a.

Tickets and timeouts for service users

A newly-created service user that is not a member of any groups is subject to the default ticket timeout of
12 hours. To avoid issues that arise when a service user’s ticket ceases to be valid, create a group for
your service users that features an extremely long timeout, or set the value tounlimited. Onthe
master server, issue the following command:

$ p4 group service users

Add servicel tothelist of Users: inthe group, and set the Timeout: and
PasswordTimeout: values to alarge value ortounlimited.

Group: service users

Timeout: unlimited

PasswordTimeout: unlimited

Subgroups:
Oowners:
Users:

servicel

Permissions for service users

Onyourserver, use p4 protect togrant the service user super permission. Service users are
tightly restricted in the commands they can run, so granting them super permission is safe. If you are
only using the service user for remote depots and code drops, you may further reduce this user's
permissions as described in "Restricting access to remote depots" on page 97.

Operator users

Organizations whose system administrators do not use Helix Server versioning capabilities might be able
to economize on licensing costs by using the operator usertype.

The operator usertype is intended for system administrators who, even though they have super or
admin privileges, are responsible for the maintenance of the Helix Core Server, rather than the
development of software or other assets on the server.

An operator userdoes not require a Helix Server license, and can run only the following commands:

p4 admin stop P4 admin restart P4 admin checkpoint
P4 admin journal p4 dbstat p4 dbverify
p4 depots p4 diskspace p4 configure

188

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_users.html

Preventing automatic creation of users

p4 counter (including -£f) p4 counters p4 info

P4 journaldbchecksums P4 jobs (including -R) P4 login

P4 logout P4 logappend P4 logparse
P4 logrotate P4 logschema P4 logstat
p4 logtail P4 lockstat P4 monitor
p4 passwd P4 ping p4 serverid
p4 verify p4 user

Preventing automatic creation of users

Warning
By default, Helix Server creates a new user whenever a previously unknown user invokes any

command that can update the repository or its metadata. When executed by a nonexistent user, most
Perforce commands cause a user to be created. You can control this behavior by setting the
dm.user.noautocreate configurable withthe p4 configure command. For greatest
security, we recommend that only the Helix Server superuser be allowed to create new users:

$ p4 configure set dm.user.noautocreate=2

Renaming users

Youcanusethep4 renameuser command to rename users. The command renames the user and
modifies associated artifacts to reflect the change: the user record, groups that include the user,
properties that apply to the user, and so on. For detailed information see the description of the p4
renameuser command in the P4 Command Reference. In general, the user name is not changed in
descriptive text fields such as change descriptions. It is only changed where the name appears as the
owner or user field of the database record.

For best results, follow these guidelines:

m Before you use this command, check to see that the new user name does not already exist. Using
an existing name might result in the merging of data for the existing and the renamed user despite
the best efforts of the system to prevent such merges.

m The userissuing this command should not be the user being renamed.

m The user being renamed should not be using the server when this command executes. After the
command completes, the user should log out and then log back in.

189

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/configurables.configurables.html#dm.user.noautocreate
https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/p4_configure.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Deleting obsolete users

= Thep4 renameuser command does not process unloaded workspaces: all the user’s
workspaces should be reloaded (or deleted) first.

A distributed installation might contain local workspaces or local labels owned by the user; these
workspaces and labels, which are bound to Edge Servers, should be deleted or moved to the
Commit Server first.

= Files of type +k which contain the $Author$ tag that were submitted by the user will have
incorrect digests following this command. Usep4 verify -wv torecompute the digestvalue
after the rename.

Deleting obsolete users

Each standard user on the system consumes one Helix Server license. A Helix Server administrator can
free up licenses by deleting users with the following command:
$ p4 user -d -f username

Before you delete a user, you must first revert (or submit) any files a user has open in a changelist. If you
attempt to delete a user with open files, Helix Server displays an error message to that effect.

Deleting a user frees a Helix Server license but does not automatically update the group and protections
tables. Usep4 group andp4 protect todelete the user from these tables.

Reverting files left open by obsolete users

If files have been left open by a nonexistent or obsolete user (for instance, a departing employee), a Helix
Server administrator can revert the files by deleting the client workspace specification in which the files
were opened.

As an example, if the output of p4 opened includes:

//depot/main/code/file.c#8 - edit default change (txt) by jim@stlouis

you can delete the stlouis client workspace specification with:

$ p4 client -d -f stlouis

Deleting a client workspace specification automatically reverts all files opened in that workspace,
deletes pending changelists associated with the workspace, and any pending fix records associated with
the workspace. Deleting a client workspace specification does not affect any files in the workspace
actually used by the workspace’s owner; the files can still be accessed by other employees.

Deleting changelists and editing changelist descriptions

Helix Server administrators can use the — £ (force) flagwithp4 change to change the description,
date, or user name of a submitted changelist. The syntaxis p4 change -f changenumber. This
command presents the standard changelist form, but also enables superusers to edit the changelist’s
time, description, date, and associated user name.

190

Managing shelves

You can also use the - £ flag to delete any submitted changelists that have been emptied of files with p4
obliterate. Thefull syntaxis p4 change -d -f changenumber.

Example Updating changelist 123 and deleting changelist 124
Usep4 change withthe - £ (force) flag:

$ p4 change -f 123
$ p4 change -d -f 124

TheUser: andDescription: fields for change 123 are edited, and change 124 is deleted.

Managing shelves

It's a good idea to check periodically for stale or abandoned shelves. Based on the last time a shelf was
accessed, you might decide to delete the shelf.

Thecommandp4 -Ztag change -o displays, inaddition to otherinformation, the access time for
shelved files. You can use this information to determine if a shelved file has been abandoned and needs
to be removed.

pr4 -Ztag change -o 38
. Change 38
. Date 2015/10/01 16:54:47
. Client edge-one
. User markm
. Status pending

. Description shelve file

. FilesO //depot/new/code/dma/dmajob.cc
. Type public
. extraTag0 IsPromoted
. extraTagTypeO int
IsPromoted 1
. extraTagl shelveAccess
. extraTagTypel date
shelveAccess 2015/10/08 15:53:12

Note
When a shelf is viewed or modified, its access time is updated if its last access time was longer than
the limit specified by the value of dm. shelve .accessupdate.

191

Backing up a workspace

Backing up a workspace

You canusethe -o flagtothe p4 unload command to unload a client, label, or task stream to a flat
file on the client rather than to a file in the unload depot. This can be useful for seeding a client into
another database or for creating a private backup of the client. The flat file uses standard journal format.
The client, label, or task stream remains fully loaded after the command is run.

Managing disk space

You can manage disk space by minimizing the amount of space taken up by journal files and checkpoints
and by relocating files. The following sections describe the strategies available for minimizing disk space
use.

Diskspace Requirements 192
Saving disk SPace ... 193
Reclaiming disk space by archiving files 194
Reclaiming disk space by obliterating files 195

Diskspace Requirements

By default, the Helix Server rejects commands when free space on the filesystems housing the
P4ROOT, P4AJOURNAL, P4LOG, or TEMP fall below 10 megabytes. To change this behavior, set the
filesys.P4ROOT .min (and corresponding) configurables to your desired limits:

Configurable Default Meaning

Value

filesys.P4ROOT .min 10M Minimum diskspace required on server root
filesystem before server rejects commands.

filesys.P4JOURNAL.min 10M Minimum diskspace required on server journal
filesystem before server rejects commands.

filesys.P4LOG.min 10M Minimum diskspace required on server log
filesystem before server rejects commands.

filesys.TEMP.min 10M Minimum diskspace required for temporary
operations before server rejects commands.

filesys.depot.min 10M Minimum diskspace required for any depot before
server rejects commands. (If there is less than
filesys.depot.min diskspace available for
any one depot, commands are rejected for
transactions involving all depots.)

You can use the following abbreviations to specify size:

192

Saving disk space

t or T for tebibytes
g or G for gibibytes
m or M for mebibytes
k or K for kibibytes

You can also use a percentage to specify the relative amount of free diskspace required. For example,
setting filesys . P4JOURNAL.min to 5% means that at least 5% of total diskspace must be free for
the server to continue to accept commands.

Saving disk space

All files versioned by Helix Server reside in subdirectories beneath the server root, as do the database
files, and (by default) the checkpoints and journals. If you are running low on disk space, consider the
following approaches to limit disk space usage:

193

Configure Helix Server to store the journal file on a separate physical disk. Use the PAJOURNAL
environment variable orp4d -J to specify the location of the journal file.

Keep the journal file short by taking checkpoints on a daily basis.
Compress checkpoints, or use the —z option to tell p4d to compress checkpoints on the fly.

Use the -jc prefix option with the p4d command to write the checkpoint to a different disk.
Alternately, use the default checkpoint files, but back up your checkpoints to a different drive and
then delete the copied checkpoints from the root directory. Moving checkpoints to separate drives
is good practice not only in terms of diskspace, but also because old checkpoints are needed
when recovering from a hardware failure, and if your checkpoint and journal files reside on the
same disk as your depot, a hardware failure could leave you without the ability to restore your
database.

On UNIX systems, you can relocate some or all of the depot directories to other disks by using
symbolic links. If you use symbolic links to shift depot files to other volumes, create the links only
after you stop the Perforce service.

If your installation’s database files have grown to more than 10 times the size of a checkpoint, you
might be able to reduce the size of the files by re-creating them from a checkpoint. See
"Checkpoints for database tree rebalancing" on page 223.

Usethep4 diskspaceandp4 sizes commands to monitor the amount of disk space
currently consumed by your entire installation, or by selected portions of your installation. See
"Monitoring disk space usage" on page 169.

If you have large binary files that are no longer accessed frequently, consider creating an archive
depot and usingthe p4 archiwve command to transfer these files to bulk, near-line, or off-line
storage. See "Reclaiming disk space by archiving files" on the facing page.

Reclaiming disk space by archiving files

Reclaiming disk space by archiving files

Over time, Helix Server accumulates many revisions of files from old projects that are no longer in active
use. Because p4 delete merely marks files as deleted in their head revisions, it cannot be used to
free up disk space on the server.

Archive depots are a solution to this problem. You use archive depots to move infrequently-accessed
files to bulk storage. To create one, mount a suitable filesystem, and use the p4 archive (and related
p4 restore)commands to populate an archive depot located on this storage.

Note
Archive depots are not a backup mechanism.

Archive depots are merely a means by which you can free up diskspace by reallocating infrequently-
accessed files to bulk storage, as opposedtop4 obliterate, which removes file data and
history.

Archiving is restricted to files that meet all of the following criteria:

m By default, files must be stored in full (+F') or compressed (+C) format. To archive text files (or
other files stored as deltas), usep4 archiwve -t, butbe aware that the archiving of RCS
deltas is computationally expensive.

m Files must not be copied or branched from other revisions
m Files must not be copied or branched to other revisions

m Files must already exist in a local depot.
To create an archive depot and archive files toit:

1. Create anew depot withp4 depot and set the depot’'s Type : to archive. Set the archive
depot’s Map : to point to a filesystem for near-line or detachable storage.

2. Mount the volume to which the archive depot is to store its files.
3. Usep4d archive totransferthe files from alocal depot to the archive depot.

4. (Optionally), unmount the volume to which the archive files were written.

Disk space is freed up on the (presumably high-performance) storage used for your local depot, and users
can no longer access the contents of the archived files, but all file history is preserved.

To restore files from an archive depot:

1. Mount the volume on which the archive depot’s files are stored.

2. Usethep4 verify -Acommand to verify files before you restore them.

3. Usep4d restore totransferthe files from the archive depot to a local depot.
4

(Optionally), unmount the volume to which the archive files were restored.

To purge data from an archive depot

194

Reclaiming disk space by obliterating files

1. Mount the volume on which the archive depot’s files are stored.
2. Usep4 archive -p topurge the archives of the specified files in the archive depot.

On completion, the action for affected revisions is set to purge, and the purged revisions can no
longer be restored. The data is permanently lost.

3. (Optionally), unmount the volume from which the archive files were purged.

Reclaiming disk space by obliterating files

The purpose of a version management system is to enable your organization to maintain a history of what
operations were performed on which files. Thep4 obliterate command defeats this purpose; as
such, it is intended only to be used to remove files that never belonged in the depot in the first place, and
not as part of a normal software development process. Consider usingp4 archive and p4
restore instead.

Note alsothat p4 obliterate is computationally expensive; obliterating files requires that the entire
body of metadata be scanned per file argument. Avoid usingp4 obliterate during peak usage
periods.

Warning
Usep4 obliterate with caution. This is the one of only two commands in Helix Server that

actually remove file data. (The other command that removes file data is the archive-purging option for
p4 archive.)

Occasionally, users accidentally add files (or entire directory trees) to the wrong areas of the depot by
means of an inadvertent branch or submit. There may also be situations that require that projects not only
be removed from a depot, but the history of development work be removed with it. These are the
situations inwhichp4 obliterate can be useful.

Helix Server administrators canuse p4 obliterate filename toremove alltraces of afile from
a depot, making the file indistinguishable from one that never existed.

Warning
Do not use operating system commands (erase, rm, and their equivalents) to remove files from the

Helix Server root by hand.

By default, p4 obliterate filename does nothing; it merely reports onwhat it would do. To
actually destroy the files, usep4 obliterate -y filename.

To destroy only one revision of afile, specify only the desired revision number on the command line. For
instance, to destroy revision 5 of afile, use:

$ p4 obliterate -y file#5

Revision ranges are also acceptable. To destroy revisions 5 through 7 of afile, use:

S p4 obliterate -y file#5,7

195

Managing processes

Warning
If you intend to obliterate a revision range, be certain you've specified it properly. If you fail to specify
arevision range, all revisions of the file are obliterated.

The safest way touse p4 obliterate is touse it without the —y flag until you are certain the
files and revisions are correctly specified.

Managing processes

The following sections describe the circumstances under which you might want to pause or terminate a
process, and explain why you might need to do some clean-up work after a process has terminated.

Pausing, resuming, and terminating processes 196
Clearing entries in the process table 196
Terminating blocked processes 197

Pausing, resuming, and terminating processes

To pause and resume long-running processes (such as p4 verifyorp4 pull), aHelix Server
superuser can use the commands p4 monitor pause andp4 monitor resume. Ifaprocess
on a Helix Core Server machine consumes excessive resources, it can also be marked for termination
withp4 monitor terminate.

Once marked for termination, the process is terminated by the Helix Server within 50,000 scan rows or
lines of output. Only processes that have been running for at least ten seconds can be marked for
termination.

Users of terminated processes are notified with the following message:

Command has been canceled, terminating request

Processes that involve the use of interactive forms (such as p4 joborp4 user)can also be marked
for termination, but data entered by the user into the form is preserved. Some commands, such as p4
obliterate, cannot be terminated.

Clearing entries in the process table
Under some circumstances (for example, a Windows machine is rebooted while certain Helix Server
commands are running), entries may remain in the process table even after the process has terminated.

Helix Server superusers can remove these erroneous entries from the process table altogether with p4
monitor clear pid, wherepidis the erroneous process ID. To clear all processes from the
table (running or not), use p4 monitor clear all.

Running processes removed from the process table withp4 monitor clear continuetorunto
completion.

196

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html

Terminating blocked processes

Terminating blocked processes

As soon as you are done "Enabling process monitoring" on page 171, each process that is added to the
monitor table is eligible for a termination request. You can issue the following command:

P4 monitor terminate pid

where pid is a process identifier.

You then wait the full db .monitor.interval, andif the process was blocked waiting for client
input, you can confirm that the Helix server terminated the process by looking at the output of p4
monitor show -ael.

Managing the database tables

Usethep4 dbstat command to display statistics on the internal state of the Helix Server database.
For example,
$ p4 dbstat -a

You can also specify the name of a database file in your server’s root directory. This command is
typically used in conjunction with Perforce Technical Support to estimate disk seeks due to sequential
database scans.

Options allow you to display the following:
m statistics for all tables
m apage count, free pages, and percent free data for the specified table
m ahistogram showing distances between leaf pages
m areport on the file sizes of database tables

Warning
Because p4 dbstat blocks write access to the database while it scans the tables, use this

command with care. You will most often use this command when working with Perforce Technical
Support.

Scripted client deployment on Windows

The Helix Server installer supports scripted installation, enabling you to accelerate a deployment of Helix
Server across a large number of desktops.

Scripted installations are controlled by a configuration file that comes with the scriptable version of the
installer for the Helix Core Server. You can edit this file:

197

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.monitor.interval

Troubleshooting Windows installations

m to preconfigure Helix Server environment variables (such as P4 PORT) for your environment
m to automatically select Helix Server applications in use at your site

= and more

For command-line options for automated deployment of Helix Client applications, see the Support
Knowledgebase article, "Automated Deployment of Perforce P4V".

Troubleshooting Windows installations

Resolving Windows-related instabilities 198
Resolving issues with PAEDITOR or PADIFF 198

Resolving Windows-related instabilities

Many large sites run a Helix Server on Windows without incident. There are also sites in which a Perforce
service or Helix Server installation appears to be unstable; the server dies mysteriously, the service
can'’t be started, and in extreme cases, the system crashes. In most of these cases, this is an indication
of recent changes to the machine or a corrupted operating system.

Though not all Helix Server failures are caused by OS-level problems, a number of symptoms can
indicate the OS is at fault. Examples include: the system crashing, the Helix Core Server exiting without
any error in its log and without Windows indicating that the server crashed, or the Perforce service not
starting properly.

In some cases, installing third-party software after installing a service pack can overwrite critical files
installed by the service pack; reinstalling your most-recently installed service pack can often correct
these problems. If you've installed another application after your last service pack, and server stability
appears affected since the installation, consider reinstalling the service pack.

Resolving issues with P4EDITOR or P4DIFF

Your Windows users might experience difficulties using the Helix Server Command-Line Client
(p4 . exe)if they use the PAEDITOR or PADIFF environment variables.

The reason for this is that Helix Server applications sometimes use the DOS shell (cmd . exe) to start
programs such as user-specified editors or diff utilities. Unfortunately, when a Windows command is run
(such as a GUI-based editor like notepad . exe) from the shell, the shell doesn’t always wait for the
command to complete before terminating. When this happens, the Helix Server client then mistakenly
behaves as if the command has finished and attempts to continue processing, often deleting the
temporary files that the editor or diff utility had been using, leading to error messages about temporary
files not being found, or other strange behavior.

You can get around this problem in two ways:

198

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html
https://community.perforce.com/s/article/2456

Resolving issues with PAEDITOR or P4DIFF

m Unset the environment variable SHELL. Helix Server applications under Windows use
cmd . exe only when SHELL is set; otherwise they call spawn () and wait for the Windows
programs to complete.

m Setthe PAEDITOR or PADIFF variable to the name of a batch file whose contents are the
command:
start /wait program %1 %2

where programis the name of the editor or diff utility you want to invoke. The /wait flag
instructs the system to wait for the editor or diff utility to terminate, enabling the Helix Server
application to behave properly.

Some Windows editors (most notably, Wordpad) do not exhibit proper behavior, even when
instructed to wait. There is presently no workaround for such programs.

199

Tuning Helix Server for performance

Your Helix Server installation should normally be a light consumer of system resources. As your
installation grows, however, you might want to revisit your system configuration to ensure that it is
configured for optimal performance.

This chapter briefly outlines some of the factors that can affect the performance of Helix Server, provides
a few tips on diagnosing network-related difficulties, and offers some suggestions on decreasing server
load for larger installations:

m |t describes the variables that affect performance: operating system, disk subsystem, file system,
CPU, memory, network connectivity settings, journal and archive location, use patterns, the use
of read-only clients, and parallel processing for submits and syncs.

m [t explains how you can improve performance with lockless reads.
m |t explains how you can diagnose slow response times.
m |t describes the factors that create server swamp.

m [t explains how you can improve performance by rebalancing B-trees.

Tuning for performance 201
Operating SY S emMS . L 201
Disk SUDSY S teM L 201
File SY S eMS L 202
CPU 202
I EMOTY 203
N WOIK 204
Journal and archive location 205
USe Patlerns 205
Using read-only clients in automated builds 205
Using parallel processing for submits and syncs 206

Improving concurrency with locklessreads 207
Commands implementing lockless reads 208
Overriding the default locking behavior 210
Observing the effect of lockless reads 210
Side-track servers must have the same db.peekinglevel 211

Diagnosing slow response times 211
Hostname vs. 1P address 211
Windows WildCards ... 212
DNS lookups and the hosts file 212
Location of the p4d executable 212
Working over unreliable networks 213

Preventing server SWamp 214
USiNg tignt VIEWS L 214
ASSIgNING ProteCtIONS .. 215
Limiting database QUENes 215

200

Tuning for performance

Limiting simultaneous CoNNECtioNs L 218
Unloading infrequently-used metadata 218
Scripting efficiently .. L 219
Using compression efficiently 222
Other serverconfigurables 222
Checkpoints for database tree rebalancing 223

Tuning for performance

In general, Helix Server performs well on any server-class hardware platform. The following variables can
affect the performance of Helix Server.

Operating systems . .. 201
Disk subsystem . 201
File SYStemMS 202
CPU 202
VI EMIOTY 203
NtWOIK 204
Journal and archive location 205
Use patterns . . 205
Using read-only clients in automated builds 205

Using parallel processing for submits and syncs

Operating systems

32-bit operating systems might not be able to address large amounts of physical memory, which can
restrict the effective size of the filesystem cache. The various 64-bit operating systems each have their
own performance characteristics that can favor a particular Helix Server workload. In general, Linux
distributions using later Linux 2.6 64-bit kernels have good performance characteristics for most Helix
Server workloads.

Disk subsystem

For 1/0 requests that must be satisfied from beyond the filesystem cache, there might be several
improvements possible for the I/O subsystem. The storage subsystem containing the db . * files should
have a memory cache; maximizing the storage subsystem’s memory cache is also a good
recommendation. For best performance, write-back caching should be enabled, which of course requires
that the storage subsystem’s memory have battery backup power. I/O latency to the logical drive where
the db . \ * files are located should be minimized, including the rotational latency of the physical drives
themselves. Minimizing 1/0O latency might require direct connections between the host and the storage
subsystem, and usually requires physical drives with the fastest rotational speed (such as 15K RPM).

201

File systems

RAID 1+0 (or RAID 10) is usually the better performing RAID configuration, and is recommended for the
logical drive where the db . * files are located. The number of physical drives in the logical drive can also
have an affect on *p4d* performance. Generally, performance improves as the number of physical drives
in the logical drive increases. For a given amount of disk space required, better performance might result
from using more smaller-capacity physical drives. The stripe size for the logical drive can also affect
performance; the optimal stripe size might be dependent upon the number of physical drives in the logical
drive.

Hardware-based RAID implementations (that is, RAID logic that is not implemented as software running
on the host) usually have good performance characteristics. Software-based RAID implementations can
require CPU cycles that might otherwise be needed for p4d processes. Therefore, software-based
RAID implementations should be avoided.

File systems

Filesystem performance is an important component of operating system performance. The various
operating systems usually offer several filesystems, each with their own performance characteristics
that can favor a particular Helix Server workload. For best p4d performance, the db . * files should be
located on a high-performance filesystem. In general, the XFS filesystem has good performance
characteristics for most Helix Server workloads. The XFS filesystem is available on several operating
systems, including Linux distributions using later Linux 2.6 64-bit kernels.

Reading pages into a cache in anticipation of being requested is an optimization that is often
implemented within various 1/0 subsystem components. This optimization is commonly known as "read-
ahead". In some implementations, read-ahead can be tuned, which might result in better performance.
But tuning read-ahead can be a bit of an art. For example, increasing the read-ahead size might result in
better performance for operations requiring mostly sequential reads. But the same increased read-ahead
size applied consistently during random reads might unnecessarily discard previously-cached data that
might have satisfied subsequent requests.

CPU

CPU resource consumption can be adversely affected by compression, lockless reads, or a badly
designed protections table. In general, there is a trade-off between speed and the number of cores. A
minimum of 2.4 GHZ and 8 cores is recommended. With greater speed, fewer cores will do: for example,
a 3.2 GHZ and 4-core processor will also work.

Faster processors and memory in the machine where p4d executes might result in faster execution of
p4d commands. Since portions of some commands acquire and hold resources that might block other
commands, it is important that these portions of the commands execute as fast as possible. For
example, most p4d commands have a compute phase, during which shared locks are acquired and held
on some of the db . * files. A shared lock on adb . \ * file blocks an operation that writes to the same
db . \ * file. If the data needed for a command’s compute phase is cached within the operating system’s
filesystem cache, only the processor and memory speed constrains the compute phase.

202

Memory

If you are using lockless reads, CPU speed is not as critical, but can still be helpful for good performance.
Since some readers will no longer block a writer (and a writer will no longer block some readers),
speeding commands through the server might not be as critical from a concurrency point of view. And
since more commands might now run concurrently through the Helix Core Server, more CPU cores might
be better utilized.

The complexity of the site’s protections table and of client views can affect CPU requirements. You can
monitor CPU utilization using OS utilities such as top (on Linux and Unix) and pexrfmon (on
Windows). Installations with high CPU utilization on the machine where p4d executes that are already
using faster processors might need more processors and/or processors with more cores while
maintaining the speed of the processors.

Note
If you are using SSL to secure client-server connections, choose a CPU that supports the AES

instruction set. Helix Server normally uses AES-256 to encrypt its SSL connections, so usinga CPU
that supports AES will minimize the encryption overhead: in most CPUs, it will eliminate the
performance penalty.

Some processors and operating systems support dynamic frequency scaling, which allows the
processor to vary power consumption by dynamically adjusting the processor voltage and core
frequency. As more demand is placed on the processor, the voltage and core frequency increase. Until
the processor is ramped up to full speed, p4d performance might be impacted. Although the power-
saving capability of the dynamic frequency scaling feature is useful for mobile computers, it is not
recommended for the machine where p4d executes.

Examples of dynamic frequency scaling include the following:

m Intel SpeedStep - available on some Xeon processors and generally available on mobile
computers

m AMD PowerNow! - available on an array of AMD processors, including server-level processors

Both features are supported on Linux (and enabled by default in some SuSE distributions), Windows, and
Mac OS X platforms. If this feature is enabled on the machine where p4d executes, we recommend
disabling it. In some Linux distributions, such as SuSE, this feature can be disabled by setting the
"powersaved" service to "off".

You might be able to determine the current speed of the processors on your computer. On Linux, the
current speed of each core is reported on the "cpu MHZz" line in the output from the cat
/proc/cpuinfo OS command.

Memory

Server performance is highly dependent upon having sufficient memory. Two bottlenecks are relevant.
The first bottleneck can be avoided by ensuring that the server doesn’t page when it runs large queries,
and the second by ensuring that the db . rewv table (or at least as much of it as practical) can be cached
in main memory:

203

Network

m Determining memory requirements for large queries is fairly straightforward: the server requires
about 1 kilobyte of RAM per file to avoid paging; 10,000 files will require 10 MB of RAM.

m Tocachedb. rev, the size of the db . rev file in an existing installation can be observed and
used as an estimate. New installations of Helix Server can expect db . rewv to require about 150-
200 bytes per revision, and roughly three revisions per file, or about 0.5 kilobytes of RAM per file.

m |/Orequests that can be satisfied from a larger filesystem cache complete faster than requests
that must be satisfied from beyond the filesystem cache.

Thus, if there is 1.5 kilobytes of RAM available per file, or 150 MB for 100,000 files, the server does not
page, even when performing operations involving all files. It is still possible that multiple large operations
can be performed simultaneously and thus require more memory to avoid paging. On the other hand, the
vast majority of operations involve only a small subset of files.

One way to determine if you have allocated sufficient memory is to look at the physical read rate on the
device that contains only the database files. This read rate should be trivial.

Network

Helix Server can run over any TCP/IP network. For remote users or distributed configurations, Perforce
offers options like proxies and the commit/edge architecture that can enhance performance over a WAN.
Compression in the network layer can also help.

Helix Server uses a TCP/IP connection for each client interaction with the server. The server’s port
address is defined by P4PORT, but the TCP/IP implementation picks a client port number. After the
command completes and the connection is closed, the port is left in TIME WAIT state for two minutes.
Although the port number ranges from 1025 to 32767, generally only a few hundred or thousand can be
in use simultaneously. It is therefore possible to occupy all available ports by invoking a Helix Server
command many times in rapid succession, such as with a script.

TCP keepalive

By default, keepalives are enabled if that functionality is supported by the OS. If your network silently
drops idle connections, users might experience unexpected connectivity issues. The following p4 server
configurables override the behavior configured in the operating system:

m net.keepalive.count
m net.keepalive.disable
m net.keepalive.idle

m net.keepalive.interval

For a general explanation of keepalive technology, see:
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html

204

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.keepalive.count
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.keepalive.disable
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.keepalive.idle
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.keepalive.interval
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html
http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/usingkeepalive.html

Journal and archive location

Journal and archive location

For recoverability, the live journal should not be on the same physical device that contains the db . *
files. Separating the live journal and the db . \ * files also improves performance. During operations that
write to the db . * files, entries are written to the live journal as records are written to the db . \ * files. If
the live journal and the db . * files are on the same physical device, the 1/0 throughput tothe db . \ *
files is degraded. For best performance, the live journal should be on a separate storage subsystem
connected to a separate host adapter. The live journal should be on a logical drive and filesystem that is
optimized for sequential writes.

The versioned files should be located on a separate logical drive than the logical drives where the db . *
files and the live journal are located. For best performance, the logical drive where the versioned files are
located should be on a separate storage subsystem connected to a separate host adapter. Since the
versioned files typically require significantly more disk space and the 1/0 throughput is not as critical as
forthe db . \ * files, a more economical RAID configuration, such as RAID 5, can be used for the logical
drive where the versioned files are located.

Use patterns

Helix Server usage can affect performance. There are several usage patterns that can have a direct
effect on performance. Since the depot filenames are the leading portion of the key in several important
db. * files (db. rev, db. revhx, and db. integed are among the more notable), the length of
paths in the depot filenames have a direct effect on performance. As the length of paths increase,
performance decreases. It is therefore prudent to discourage the use of overly-descriptive paths in the
depot filenames.

The development methodology can also have a direct effect on performance. If the development
methodology calls for frequent creation of full branches (perhaps branching for each bug fix), then the
amount of metadata rapidly increases, resulting in more levels within the db . * file B-trees. As the
number of levels increase, more key comparisons and I/0 requests are required to traverse to the leaf
pages, which will impact performance. Creating full branches also requires more metadata read and
written; the additional metadata read and written might affect the filesystem cache to the detriment of
other Helix Server tasks. Rather than frequent creation of full branches, it might be prudent to branch only
those files needed for each bug fix, or consider a development methodology in which multiple bug fixes
can occur on the same branch.

Using read-only clients in automated builds

Build automation scripts, which routinely create, sync, and tear down clients, may fragment the
db . have table over time. To avoid this, you can specify the type readonly for these clients. Such
clients cannot add, delete, edit, integrate, or submit files, but this should not be an issue in build scripts.

A readonly client is assigned its own personal db . have database table, and the location of this table is
specified usingthe client . readonly . dir configurable.

To set up a read-only client:

205

Using parallel processing for submits and syncs

1. Settheclient.readonly.dir configurable to the directory where the db . * tables for the
client should be stored.

For example, if you create a read-only client whose name is myroc and you set
client.readonly.dirto /perforce/1, then syncing files using this client will write to
the following database:

/perforce/1l/server.dbs/client/hashdir/db.myroc

2. Setthe Type field of the client spec to readonly.

Tip
The client storage type cannot be changed after client is created. For example, a readonly client
cannot be changed into awriteable client.

Using parallel processing for submits and syncs

You can configure the server to transfer files in parallel for submit and sync processing. Parallel
processing is most effective with long-haul, high latency networks or with other network configuration
that prevents the use of available bandwidth with a single TCP flow. Parallel processing might also be
appropriate when working with large compressed binary files, where the client must perform substantial
work to decompress the file.

m Usethenet.parallel .max configurable to:
« Transfer files in parallel during the submit process.

o Speed up sync processing by having the p4 sync command transfer files using multiple
threads. You do this by settingthe net . parallel . max configuration variable to a value
greater than one and by using the --parallel optiontothep4 sync command.

m Usethenet.parallel.submit.threads configurable to specify the number of threads
to be used for sending files in parallel for each submit (P4V 2017.3 and later).

m Usethenet.parallel. threads configurable to turn on parallel sync in a server. This
parameter specifies the number of independent network connections that can be used for syncing
files concurrently for each sync. When this parameter is set, parallel sync is automatically
enabled in P4V as well (P4V 2017.3 and later).

= Toreduce lock contention during parallel syncs, setthe client . sendq.dir configurable.

For more information see the p4 submit command and thep4 sync command in P4 Command
Reference.

206

http://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#net.parallel.max
http://www.perforce.com/manuals/cmdref/Content/CmdRef/p4_sync.html
http://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#net.parallel.submit.threads
http://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#net.parallel.threads
http://www.perforce.com/manuals/cmdref/Content/CmdRef/configurables.configurables.html#client.sendq.dir
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Improving concurrency with lockless reads

Improving concurrency with lockless reads

Prior to Release 2013.3, commands that only read data from the database take a read-lock on one (or
more) database tables. Although other commands can read from the tables at the same time, any
commands attempting to write to the read-locked tables are forced to wait for the read-lock to complete
before writing could begin. Currently, the default behavior is to allow some commands to perform lock-
free reads (or "peeks") on these tables, without sacrificing consistency or isolation. This provides
significant performance improvement by ensuring that write operations on these tables can run
immediately, rather than being held until the read-lock is released.

Note
Lockless reads require that server locks be enabled. Because this can cause issues for long duration

syncs, the default value for controlling the 'sync' server lock (server . locks. sync)is currently
disabled by default.

maxlocktime has been changed when peeking is enabled. To revert to the old behavior, set the
dbpeeking.usemaxlock configurableto 1.

To change the setting of lockless reads on your Helix Core Server, usethep4 configure set
db . peeking=Ncommand.

Tip
db.peeking is adynamic configurable, but prior to the 2017.1 release, a change to the value of
this configurable required a server restart.

Possible values for db . peeking are as follows:

0 If db . peekingis unset or 0, the old database locking order is used and
lockless reads ("peeking") are disabled.

This corresponds to the behavior of Helix Server at release 2013.2 and below.

1 Ifdb.peekingis set to 1, the new database locking order is used, but peeking
remains disabled.

This configuration is intended primarily for diagnostic purposes.

2 (default) If db.peekingis set to 2, the new database locking order is used and lockless
reads ("peeking") are enabled.

This configuration is expected to provide the best performance results for most
sites. It is the default value.

207

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.peeking

Commands implementing lockless reads

If db.peekingis set to 3, the new database locking order is used and lockless
reads ("peeking") are enabled, but optimizations for the db . revhx and
db . revdx tables are bypassed.

This configuration involves a trade-off between concurrency and command
completion speed; in general, if a repository has many revisions per file, then some
commands will complete more slowly with db . peeking=3, but will no longer
require read locks onthe db . revhx and db . revdx tables. If read locks on
these tables are in fact the bottleneck, overall performance may still be better with
db . peeking=3. One guideline: if you have lots of history, use the default; if
you have lots of single revision branch data, try db . peeking=3; if you max out
cpu, go back to the default (2).

Commands implementing locklessreads 208
Overriding the default locking behavior 210
Observing the effect of locklessreads 210
Side-track servers must have the same db.peeking level 211

Commands implementing lockless reads

When peeking is enabled, the following commands run lockless:

Command Notes

annotate

branches

changes

clients

counters

depots

describe

diff

diff2

dir2

filelog

files

Appliesto files -a

208

Commands implementing lockless reads

Command Notes

fixes

fstat

whendb . peeking=3

have

interchanges

integ

integed

istat

jobs

keys

labels

merge

streams

sizes

Appliestosizes -a

sync

when db . peeking=3

print

Applies toprint -a

resolved

users

verify

The following commands run partially lockless; in most cases these commands will operate lock-free,

but lockless operation is not guaranteed:

Command Notes

copy

cstat

fstat whendb . peeking=2
interchanges in the context of copy operations
istat in the context of copy operations
opened

sync whendb . peeking=2

209

Overriding the default locking behavior

Overriding the default locking behavior

You can override the db . peeking setting on a per-command basis by using the -Zpeeking=flag
followed by your preferred value. For example, to disable peeking for one command, run the following
command:

$ p4 -Zpeeking=1 fstat

and compare the results with:

$ p4 -Zpeeking=2 fstat

Observing the effect of lockless reads

To determine whether read locks are impacting performance (and the extent to which enabling lockless
reads has improved performance), you can examine the server logs, or you can use the -Ztrack flag to
output, for any given command, the lines that would be written to the PALOG. For example:

$ p4 -Zpeeking=1] -Ztrack sync

produces output for 11 database tables. The relevant lines here are those that referto "locks
read/write".

--— db.counters

== pages intout+cached 3+0+2

=== locks read/write 1/0 rows get+pos+scan put+del 1+0+0 0+0
=== glo,UsErE

=== pages intout+cached 3+0+2

== locks read/write 1/0 rows get+pos+scan put+del 1+0+0 0+0

The 1 appearingin ("locks read/write 1/0")every table’s locking results shows one read lock
taken per table. By contrast, the diagnostic output from:

$ p4 -Zpeeking=2 -Ztrack sync

—-—— db.counters
=== pages intout+cached 3+0+2
== locks read/write 0/0 rows get+pos+scan put+del 1+0+0 0+0

210

Side-track servers must have the same db.peeking level

shows that the sync operation completed without any read or write locks required on db . counters (if
you try it yourself, on many other tables); when peeking is enabled, many commands will show
read/write 0/0 locks (orat least, fewer locks) taken.

Side-track servers must have the same db.peeking level

A single Helix Serverinstance can detect and ignore inadvertent attempts to override db . peeking
that would change table locking order and risk deadlock.

For example, if you attempt to use db . peeking=3 on a server for which peeking is disabled (
db.peekingis set to 0 or unset), the attempt is ignored.

However, this protection is not available with the "side-track servers" described in the Support
Knowledgebase article,"Setting Up a 'Side-track' Server to Control Priority".

Warning
All side-track servers must have the same db . peeking setting as the main server. Server

deadlock may result.

Diagnosing slow response times

Helix Serveris normally a light user of network resources. Although it is possible that an extremely large
user operation could cause the Helix Server to respond slowly, consistently slow responses to p4
commands are usually caused by network problems. Any of the following can cause slow response
times:

1. Misconfigured domain name system (DNS)
2. Misconfigured Windows networking
3. Difficulty accessing the p4 executable on a networked file system
A good initial testis torunp4 info. If this does not respond immediately, then there is a network

problem. Although solving network problems is beyond the scope of this manual, here are some
suggestions for troubleshooting them.

Hostname vs. IP address 211
Windows wildcards ... 212
DNS lookups and the hosts file 212
Location of the p4 executable 212
Working over unreliable networks 213

Hostname vs. IP address
Try setting PAPORT to the service’s IP address instead of its hostname. For example, instead of using:

P4PORT=host.domain:1666

211

https://community.perforce.com/s/article/3132

Windows wildcards

try using:

P4PORT=1.2.3.4:1666

with your site-specific IP address and port number.

On most systems, you can determine the IP address of a host by invoking:

$ ping hostname

Ifp4 info responds immediately when you use the IP address, but not when you use the hostname,
the problem is likely related to DNS.

Windows wildcards

In some cases, p4 commands on Windows can result in a delayed response if they use unquoted file
patterns with a combination of depot syntax and wildcards, such as:

$ p4 files //depot/*
You can prevent the delay by putting double quotes around the file pattern, like this:
$ p4d files "//depot/*"

The cause of the problem is the p4 command’s use of a Windows function to expand wildcards. When
quotes are not used, the function interprets / /depot as a networked computer path and spends time in
a futile search for a machine named depot.

DNS lookups and the hosts file

On Windows, the $SystemRoot%\system32\drivers\etc\hosts file can be used to
hardcode IP address-hostname pairs. You might be able to work around DNS problems by adding entries
to this file. The corresponding UNIX fileis /etc/hosts.

Location of the p4 executable

If none of the above diagnostic steps explains the sluggish response time, it’s possible that the p4
executable itself is on a networked file system that is performing very poorly. To check this, try running:

S p4 -V

This merely prints out the version information, without attempting any network access. If you get a slow
response, network access to the p4 executable itself might be the problem. Copying or downloading a
copy of p4 onto a local filesystem should improve response times.

212

Working over unreliable networks

Working over unreliable networks

To set a hard upper bound on how long a connection is willing to wait on any single network read or write,
set the net.maxwait configurable to the number of seconds to wait before disconnecting with a network
error. Users working over unreliable connections can set net .maxwai t value either in their
P4CONFIGfiles, oruse —vnet . maxwai t=t on a per-command basis, where t is the number of
seconds to wait before timing out.

Note

Although net . maxwai t can be set on the Helix Core Server, it is generally inadvisable to do so.
For example, if net .maxwait is set to 60 on the server, users of the Command-Line Client must
complete every interactive form within one minute before the command times out. If, however,
individual users set net .maxwait in their own P4CONFIG files (which reside on their own
workstations) their connections are not subject to this limitation; commands only fail if the versioning
service takes more than 60 seconds to respond to their requests.

Itis useful to combine net . maxwai t with the —xN global option, where Nis the number of times to
attempt reconnection in the event that the network times out. For example:
$ p4 -r3 -vnet.maxwait=60 sync

attempts to sync the user’'s workspace, making up to three attempts to resume the sync if interrupted.
The command fails after the third 60-second timeout.

Because the format of the output of a command that times out and is restarted cannot be guaranteed (for
example, if network connectivity is broken in the middle of a line of output), avoid the use of —x on any
command that reads from standard input. For example, the behavior of the following command, which
reads a list of files from stdin and passes it to p4 add, can result in the attempted addition of "half a
filename" to the depot.

$ find . -print | p4 -x - -r3 add

To prevent this from happening (for example, if adding a large number of files over a very unreliable
connection), consider an approach like the following:

$ find directoryname -type f -exec p4 -r5 -vmax.netwait=60 add {}
\;

All files (-type f£)indirectoryname arefound, and added one at a time, by invoking the
command"p4 -r5 -vmax.netwait=60 add"foreach fileindividually.

After all files have been added, assign the changelist a changelist number with p4 change, and submit the
numbered atomically with:

$ p4 -r5 -vmax.netwait=60 submit -c changenum

If connectivity is interrupted, the numbered changelist submission is resumed.

213

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#net.maxwait
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4CONFIG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_add.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_change.html

Preventing server swamp

Preventing server swamp

Generally, the performance of Helix Server depends on the number of files a user tries to manipulate in a
single command invocation, not on the size of the depot. That is, syncing a client view of 30 files from a
3,000,000-file depot should not be much slower than syncing a client view of 30 files from a 30-file depot.

The number of files affected by a single command is largely determined by the following factors:

m p4 command-line arguments (or selected folders in the case of GUI operations)

Without arguments, most commands operate on, or at least refer to, all files in the client
workspace view.

m Client views, branch views, label views, and protections

Because commands without arguments operate on all files in the workspace view, it follows that
the use of unrestricted views and unlimited protections can result in commands operating on all
files in the depot.

When the server answers a request, it locks down the database for the duration of the computation
phase. For normal operations, this is a successful strategy, because the server can "get in and out"
quickly enough to avoid a backlog of requests. Abnormally large requests, however, can take seconds,
sometimes even minutes. If frustrated users press CTRL+C and retry, the problem gets even worse; the
server consumes more memory and responds even more slowly.

Warning
The p4 obliterate command scans the entire database once per file argument and locks the entire
database while scanning. It is best to do this during off hours for large sites.

At sites with very large depots, unrestricted views and unqualified commands are not optimal . Users and
administrators can ease load on their servers:

Using tight VIeWs . 214
Assigning protectionsl 215
Limiting database queries 215
Limiting simultaneous connections 218
Unloading infrequently-used metadata 218
Scripting efficiently 219
Using compression efficiently 222
Other server configurables 222
Using tight views

The following "loose" view is trivial to set up but could invite trouble on a very large depot:

//depot/. .. //workspace/. ..

214

Assigning protections

In the loose view, the entire depot was mapped into the client workspace; for most users, this can be
"tightened" considerably. The following view, for example, is restricted to specific areas of the depot:

//depot/main/srv/devA/. .. //workspace/main/srv/devA/. ..
//depot/main/drv/lport/. .. //workspace/main/dvr/lport/. ..
//depot/rel2.0/srv/devA/bin/. .. //workspace/rel2.0/srv/devA/bin/. ..
//depot/ga/s6test/dvr/. .. //workspace/ga/s6test/dvr/. ..

Client views, in particular, but also branch views and label views, should also be set up to give users just
enough scope to do the work they need to do.

Client, branch, and label views are set by a Helix Server administrator or by individual users with the p4
client,p4 branch,andp4 label commands, respectively.

Two of the techniques for script optimization (described in "Using branch views" on page 220 and "Using
a temporary client workspace" on page 221) rely on similar techniques. By limiting the size of the view
available to a command, fewer commands need to be run, and when run, the commands require fewer
resources.

Assigning protections

Protections (see "Authorizing access" on page 126) are actually another type of Helix Server view.
Protections are set withthe p4 protect command and control which depot files can be affected by
commands run by users.

Unlike client, branch, and label views, however, the views used by protections can be set only by Helix
Server superusers. (Protections also control read and write permission to depot files, but the permission
levels themselves have no impact on server performance.) By assigning protections in Helix Server, a
Helix Server superuser can effectively limit the size of a user's view, even if the user is using "loose"
client specifications.

Protections can be assigned to either users or groups. For example:

write user sam @ //depot/admin/. ..
write group rocketdev & //depot/rocket/main/. ..
write group rocketrel? o //depot/rocket/rel2.0/...

Helix Server groups are created by superusers with the p4 group command. Not only do they make it
easier to assign protections, they also provide useful fail-safe mechanisms in the form of maxresults
andmaxscanrows, described in the next section.

Limiting database queries

Each Helix Server group has an associated maxresults, maxscanrows, and maxlocktime value. The
default for each is unset, but a superuser can use p4 group to limit it for any given group.

215

Limiting database queries

MaxResul ts prevents the server from using excessive memory by limiting the amount of data
buffered during command execution. Users in limited groups are unable to run any commands that buffer
more database rows than the group’s MaxResul ts limit. (For most sites, MaxResul ts should be
larger than the largest number of files anticipated in any one user’s individual client workspace.)

Like MaxResults, MaxScanRows prevents certain user commands from placing excessive
demands on the server. (Typically, the number of rows scanned in a single operation is roughly equal to
MaxResul ts multiplied by the average number of revisions per file in the depot.)

Finally, MaxLockTime is used to prevent certain commands from locking the database for prolonged
periods of time. Set MaxLockTime to the number of milliseconds for the longest permissible database
lock.

To set these limits, fill in the appropriate fields inthe p4 group form. If a user s listed in multiple
groups, the highest of the MaxResul ts (orMaxScanRows, or MaxLockTime) limits (including
unlimi ted, but not including the default unse t setting) for those groups is taken as the user’s
MaxResults (orMaxScanRows, orMaxLockTime) value.

Example Effect of setting maxresults, maxscanrows, and maxlocktime

As an administrator, you want members of the group rocketdewv to be limited to operations of
20,000 files or less, that scan no more than 100,000 revisions, and lock database tables for no more
than 30 seconds:

Group: rocketdev
MaxResults: 20000
MaxScanRows: 100000
MaxLockTime: 30000
Timeout: 43200
Subgroups:
Owners:
Users:

bill

ruth

sandy

Suppose that Ruth has an unrestricted (loose) client view. She types:

$ p4 sync

Her sync command is rejected if the depot contains more than 20,000 files. She can work around this
limitation either by restricting her client view, or, if she needs all of the files in the view, by syncing
smaller sets of files at a time, as follows:

S p4 sync //depot/projA/...

$ p4 sync //depot/projB/...

216

Limiting database queries

Either method enables her to sync her files to her workspace, but without tying up the server to
process a single extremely large command.

Ruth tries a command that scans every revision of every file, such as:

$ p4 filelog //depot/proja/...

If there are fewer than 20,000 revisions, but more than 100,000 integrations (perhaps the proja
directory contains 1,000 files, each of which has fewer than 20 revisions and has been branched more
than 50 times), the MaxResul ts limit does not apply, but the MaxScanRows limit does.

Regardless of which limits are in effect, no command she runs will be permitted to lock the database
for more than the MaxLockTime of 30,000 milliseconds.

To remove any limits on the number of result lines processed (or database rows scanned, or milliseconds
of database locking time) for a particular group, set the MaxResul ts orMaxScanRows, or
MaxLockTime value for that group tounlimited.

Because these limitations can make life difficult for your users, do not use them unless you find that
certain operations are slowing down your server. Because some Helix Server applications can perform
large operations, you should typically set MaxResults no smaller than 10,000, set MaxScanRows
no smaller than 50,000, and MaxLockTime to somewhere within the 1,000-30,000 (1-30 second)
range.

For more information, including a comparison of Helix Server commands and the number of files they
affect, type:

$ p4 help maxresults

$ p4 help maxscanrows

S p4 help maxlocktime

from the command line.

MaxResults, MaxScanRows and MaxLockTime for users in multiple
groups

As mentioned earlier, if a user is listed in multiple groups, the highest numeric MaxResults limit of all
the groups a user belongs to is the limit that affects the user.

The default value of unset is not a numeric limit; if a useris in a group where MaxResults is set to
unset, he or she is still limited by the highest numeric MaxResults (orMaxScanRows or
MaxLockTime) setting of the other groups of which he or she is a member.

A user’'s commands are truly unlimited only when the user belongs to no groups, or when any of the
groups of which the user is a member have theirMaxResults settounlimited.

217

Limiting simultaneous connections

Limiting simultaneous connections

If monitoring is enabled (p4 configure set monitor=1 orhigher), you can set the
server .maxcommands configurable to limit the number of simultaneous command requests that the

service will attempt to handle.

Ideally, this value should be set low enough to detect a runaway script or denial of service attack before
the underlying hardware resources are exhausted, yet high enough to maintain a substantial margin of
safety between the typical average number of connections and your site’s peak activity.

If PALOG is set, the server log will contain lines of the form:

Server is now using nnn active threads.

You can use the server log to determine what levels of activity are typical for your site. As a general
guideline, set server .maxcommands to af least 200-500% of your anticipated peak activity.

Unloading infrequently-used metadata

Over time, Helix Server accumulates metadata associated with old projects that are no longer in active
development. On large sites, reducing the working set of data, (particularly that stored in the db . have
anddb . 1labels tables) can significantly improve performance.

Create the unload depot

To create an unload depot named / /unload, enterp4 depot unload, andfill in the resulting form
as follows:

Depot: unload
Type: unload
Map: unloaded/. ..

In this example, unloaded metadata is stored in flat files in the /unloaded directory beneath your
server root (that is, as specified by the Map : field).

After you have created the unload depot, you canuse p4 unloadandp4 reload tomanage your
installation’s handling of workspace and label-related metadata.

Unload old client workspaces, labels, and task streams

The p4 unload command transfers infrequently-used metadata from the Helix Core Serverdb . *
files to a set of flat files in the unload depot.

Individual users can use the —¢, -1, and -s flags to unload client workspaces, static labels, or task
streams that they own. For example, maintainers of build scripts that create one workspace and/or label
per build, particularly in continuous build environments, should be encouraged to unload the labels after
each build:

218

Scripting efficiently

$ p4 unload -c oldworkspace
$ p4 unload -1 oldlabel

Similarly, developers should be encouraged to unload (p4 unload -s oldtaskstream)or
delete (p4 stream -d oldtaskstream)task streams after use.

To manage old or obsolete metadata in bulk, administrators can use the —a, —al, or —ac flags in
conjunction withthe -d date and/or —u user flags to unload all static labels and workspaces older
than a specific da te, owned by a specific user, or both.

By default, only unlocked labels or workspaces are unloaded; use the —L flag to unload locked labels or
workspaces.

To unload or reload a workspace or label, a user must be able to scan all the files in the workspace’s have
list and/or files tagged by the label. Set MaxScanrows and MaxResults high enough (see
"MaxResults, MaxScanRows and MaxLockTime for users in multiple groups" on page 217) that users do
not need to ask for assistance withp4 unloadorp4 reload operations.

Accessing unloaded data

By default, Helix Server commands suchas p4 clients,p4 labels,p4 files,p4 sizes,
andp4 £fstat ignore unloaded metadata. Users who need to examine unloaded workspaces and
labels (or other unloaded metadata) can use the —U flag when using these commands. For more
information, see the P4 Command Reference.

Reloading workspaces and labels

If it becomes necessary to restore unloaded metadata back into the db . have ordb . 1labels table,
usethep4 reload command.

Scripting efficiently

The Helix Server Command-Line Client, p4, supports the scripting of any command that can be run
interactively. Helix Server can process commands far faster than users can issue them, soin an all-
interactive environment, response time is excellent. However, p4 commands issued by scripts —
triggers, or command wrappers, for example — can cause performance problems if you haven'’t paid
attention to their efficiency. This is not because p4 commands are inherently inefficient, but because the
way one invokes p4 as an interactive user isn’'t necessarily suitable for repeated iterations.

This section points out some common efficiency problems and solutions.

lterating through files

Each Helix Server command issued causes a connection thread to be created and a p4d subprocess to
be started. Reducing the number of Helix Server commands your script runs might make it more efficient
if the command is lockless. Depending on the use of shared locks however, it might be more efficient to
have several commands operate on smaller sets of files than having one command operate on a large set
of files.

219

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Scripting efficiently

To minimize the number of commands, try this approach:

for i in p4 diff2 pathl/... path2/...
do

[process diff output]
done

Instead of an inefficient approach like:

for i in p4 files pathl/...
do
p4 diff2 pathl/$i path2/$i[process diff output]

done

Using list input files

Any Helix Server command that accepts a list of files as a command-line argument can also read the
same argument list from a file. Scripts can make use of the list input file feature by building up a list of
files first, and then passing the list file top4 -x.

For example, if your script might look something like this:

for components in headerl header2 header3
do

P4 edit ${component}.h
done

A more efficient alternative would be:

for components in headerl header2 header3
do

echo ${component}.h >> LISTFILE
done
P4 -x LISTFILE edit

The -x fileflaginstructs p4 to read arguments, one per line, from the named file. If the file is
specified as - (a dash), the standard input is read.

By default, the server processes arguments from —x file in batches of 128 arguments at a time; you
can change the number of arguments processed by the server by usingthe -b batchsizeflagto
pass arguments in different batch sizes.

Using branch views

Branch views can be used withp4 integrate orp4 diff2 toreduce the numberof Helix Server
command invocations. For example, you might have a script that runs:

220

Scripting efficiently

$ p4 diff2 pathA/src/... pathB/src/. ..
S p4 diff2 pathA/tests/... pathB/tests/...
$ p4 diff2 pathA/doc/... pathB/doc/. ..

You can make it more efficient by creating a branch view that looks like this:

Branch: pathA-pathB

View:
pathA/src/... pathB/src/...
pathA/tests/... pathB/tests/...
pathA/doc/. .. pathB/doc/. ..

...and replacing the three commands with one:

$ p4 diff2 -b pathA-pathB

Limiting label references

Repeated references to large labels can be particularly costly. Commands that refer to files using labels
as revisions will scan the whole label once for each file argument. To keep from hogging the Helix Core
Server, your script should get the labeled files from the server, and then scan the output for the files it
needs.

For example, this:

$ p4 files path/...Q@label | egrep "path/fl.h|path/f2.h|path/£f3.h"

imposes a lighter load on the Helix Core Server than either this:

$ p4 files path/fl.h@label path/fl.h@label path/f3.h@label
or this:

$ p4 files path/fl.h@Rlabel
$ p4 files path/f2.h@label
$ p4 files path/f3.h@label

The "temporary client workspace" trick described below can also reduce the number of times you have to
refer to files by label.

On large sites, consider unloading infrequently-referenced or obsolete labels from the database. See
"Unloading infrequently-used metadata" on page 218.

Using a temporary client workspace

Most Helix Server commands can process all the files in the current workspace view with a single
command-line argument. By making use of a temporary client workspace with a view that contains only
the files on which you want to work, you might be able to reduce the number of commands you have to
run, or to reduce the number of file arguments you need to give each command.

221

Using compression efficiently

Forinstance, suppose your script runs these commands:

$ p4 sync pathA/src/...Qlabel
$ p4 sync pathB/tests/...Qlabel
$ p4 sync pathC/doc/...Qlabel

You can combine the command invocations and reduce the three label scans to one by using a client
workspace specification that looks like this:

Client: XY-temp

View:
pathA/src/. .. //XY-temp/pathA/src/. ..
pathB/tests/... //XY-temp/pathB/tests/...
pathC/doc/. .. //XY-temp/pathC/doc/. ..

Using this workspace specification, you can then run:

S p4 -c XY-temp sync @label

Using compression efficiently

There are cases where compression is automatically handled:

m By default, revisions of files of type binary are compressed when stored on the Helix Core
Server. Some file formats (for example, .GIF and .JPG images, .MPG and .AVI media content,
files compressed with . gz compression) include compression as part of the file format.

Attempting to compress such files on the Helix Core Server results in the consumption of server
CPU resources with little or no savings in disk space. To disable server storage compression for
these file types, specify such files as type binary+F (binary, stored on the server in full,
without compression) either from the command line or from the p4 typemap table.

Formore about p4 typemap, including a sample typemap table, see "Defining filetypes with p4
typemap" on page 57.

m By default compression is enabled between the Helix Core Server and the proxy; if this
connection is going across a VPN that is already doing compression at a lower layer, you might
want to disable the compression for the proxy (-c¢ flag).

Other server configurables

The Helix Core Server has many configurables that may be changed for performance purposes.

A complete list of configurables may be found by runningp4 help configurables.

222

Checkpoints for database tree rebalancing

Checkpoints for database tree rebalancing

The internal database stores its data in structures called Bayer trees, more commonly referred to as B-
trees. While B-trees are a very common way to structure data for rapid access, over time, the process of
adding and deleting elements to and from the trees can eventually lead to imbalances in the data
structure.

Eventually, the tree can become sufficiently unbalanced that performance is degraded. The Helix Server
checkpoint and restore processes (see "Backup and recovery concepts" on page 148) re-create the trees
in a balanced manner, and consequently, you might see some improvement in server performance

following a backup, a removal of the db . * files, and the re-creation of the db . * files from a checkpoint.

Given the length of time required for the trees to become unbalanced during normal Helix Server use, we
expect that the majority of sites will never need to restore the database from a checkpoint (that is,
rebalance the trees) to improve performance.

(The changes to the B-trees between Helix Server 2013.2 and 2013.3 require that any upgrade that
crosses this release boundary must be performed by taking a checkpoint with the older release and
restoring that checkpoint with the newer release. See "Upgrading Helix Server - between 2013.2 and
2013.3" on page 49 for details.)

223

Customizing Helix Server: job specifications

The Helix Server jobs feature enables users to link changelists to enhancement requests, problem
reports, and other user-defined tasks. Helix Server also offers P4ADTG (Helix Defect Tracking Gateway)
as a means to integrate third-party defect tracking tools with Helix Server. See "Working with third-party
defect tracking systems" on page 232 for details.

The Helix Server user's use of p4 job is discussed in the Helix Core Server User Guide. This chapter
covers administrator modification of the jobs system.

The default jobs template has five fields for tracking jobs. These fields are sufficient for small-scale
operations, but as projects managed by Helix Server grow, the information stored in these fields might be
insufficient. To modify the job template, use the p4 jobspec command. You must be a Helix Server
administratortouse p4 jobspec.

This chapter discusses the mechanics of altering the Helix Server job template.

Warning

Improper modifications to the Helix Server job template can lead to corruption of your server's
database. Recommendations, caveats, and warnings about changes to job templates are
summarized at the end of this chapter.

The default Helix Server job template 224
The job template’s fields ... 226
The Fields: field ... L 226
The Values: fields 228
The Presets: field ... 228
The Comments: field ... L 229
Caveats, warnings, and recommendations ... 230
Example: acustom template 230
Working with third-party defect tracking systems_..... ... 232
P4DTG, the Helix Defect Tracking Gateway, 233
Building your ownintegration 233

The default Helix Server job template

To understand how Helix Server jobs are specified, consider the default Helix Server job template. The
examples that follow in this chapter are based on modifications to the this template.

A job created with the default Helix Server job template has this format:

A Perforce Job Specification.

#
Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed.

224

http://www.perforce.com/perforce/doc.current/manuals/p4guide/index.html

The default Helix Server job template

User: The user who created the job. Can be changed.
Date: The date this specification was last modified.
Description: Comments about the job. Required.
Job: new
Status: open
User: edk
Date: 2011/06/03 23:16:43
Description:
<enter description here>

The template from which this job was created can be viewed and edited withp4 jobspec. The default
job specification template looks like this:

A Perforce Job Specification.
#
Updating this form can be dangerous!
See 'p4d help jobspec' for proper directions.
Fields:

101 Job word 32 required

102 Status select 10 required

103 User word 32 required

104 Date date 20 always

105 Description text 0 required
Values:

Status open/suspended/closed
Presets:

Status open

User S$Suser

Date S$now

Description S$Sblank
Comments:

A Perforce Job Specification.

Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed.
User: The user who created the job. Can be changed.

Date: The date this specification was last modified.

R T

Description: Comments about the job. Required.

225

The job template’s fields

The job template’s fields

There are four fields inthe p4 jobspec form. These fields define the template for all Helix Server jobs
stored on your server. The following table shows the fields and field types.

Field / Field Meaning
Type

Fields: A list of fields to be included in each job.
Each field consists of an ID#, a name, a datatype, a length, and a setting.
Field names must not contain spaces.
Values: A list of fields whose datatype is select.
For each select field, you must add a line containing the field’s name, a space,
and its list of acceptable values, separated by slashes.
Presets: A list of fields and their default values.
Values can be either literal strings or variables supported by Helix Server.
Comments: The comments that appear at the top of the p4 job form. They are also used by
P4V, the Helix Visual Client, to display tooltips.
The Fields: field ... 226
The Values: fields 228
The Presets: field ... 228
The Comments: field 229

The Fields: field

Thep4 jobspecfield Fields: lists the fields to be tracked by your jobs and specifies the orderin
which they appearonthe p4 Jjob form.

The default Fields : field includes these fields:

Fields:
101
102
103
104
105

Job word 32 required
Status select 10 required
User word 32 required
Date date 20 always

Description text 0 required

226

The Fields: field

Warning

Do not attempt to change, rename, or redefine fields 101 through 105. Fields 101 through 105 are used
by Helix Server and should not be deleted or changed. Use p4 jobspec only to add new fields
(106 and above) to your jobs.

Each field must be listed on a separate line. A field is defined by a line containing each of the following
five field descriptors.

Field Meaning

descriptor

ID# A unique integer identifier by which this field is indexed. After a field has been
created and jobs entered into the system, the name of this field can change, but the
data becomes inaccessible if the ID number changes.

ID numbers must be between 106 and 199.

Name The name of the field as it should appear on the p4 job form. No spaces are
permitted.
Datatype One of six datatypes (word, text, line, select, date orbulk), as

described in the next table.

Length The recommended size of the field’s text box as displayed in P4V, the Helix Visual
Client. To display a text box with room for multiple lines of input, use alength of 0; to
display a single line, enter the Length as the maximum number of characters in the
line.

The value of this field has no effect on jobs edited from the Helix Server command
line, and it is not related to the actual length of the values stored by the server.

Field type Determines whether a field is read-only, contains default values, is required, and so
on. The valid values for this field are:

m optional: thefield cantake any value or can be deleted.

m default: adefault value is provided, but it can be changed or erased.

m required: adefaultis given; it can be changed but the field can’t be left
empty.

m once: read-only; the field is set once to a default value and is never
changed.

m always : read-only; the field value is reset to the default value when the job
is saved. Useful only with the $now variable to change job modification
dates, and with the $user variable to change the name of the user who last
modified the job.

Fields have the following six datatypes.

227

The Values: fields

Field Explanation Example

Type

word A single word (a string without spaces). A userid: edk

text A block of text that can span multiple lines. A job’s description.

line One line of text. A user's real name: Ed K.
select One of aset of user-defined values. A job’s status. One of:

Each field with datatype select must have a open/suspended/closed

corresponding line in the Values : field entered
into the job specification.

date A date value: The date and time of job creation:
year/month/day:hours:minutes:seconds 1998/07/15:13:21:46
bulk A block of text that can span multiple lines, but Alphanumeric data for which text
which is not indexed for searching withp4 jobs searches are not expected.
-e.

The Values: fields

You specify the set of possible values for any field of datatype select by entering lines in the
Values: field. Each line should contain the name of the field, a space, and the list of possible values,
separated by slashes.

In the default Helix Server job specification, the Status: fieldis the only select field, and its
possible values are defined as follows:
Values:

Status open/suspended/closed

The Presets: field

All fields with a field type of anything other than optional require default values. To assign a default
value to afield, create aline in the jobspec form under Presets, consisting of the field name to which
you're assigning the default value. Any single-line string can be used as a default value.

The following variables are available for use as default values.

Variable Value

Suser The Helix Server user creating the job, as specified by the PAUSER environment
variable, or as overridden withp4 -u username job.

Snow The date and time at the moment the job is saved.

228

The Comments: field

Variable Value

$blank Thetext<enter description here>.

When users enter jobs, any fields in your jobspec with a preset of $blank must be
filled in by the user before the job is added to the system.

The lines in the Presets: field for the standard jobs template are:

Presets:
Status open
User S$Suser
Date S$now

Description S$blank

Using Presets: to change default fix status

The Presets : entry for the job status field (field 102) has a special syntax for providing a default fix
status forp4 fix,p4 change -s,andp4 submit -s.

To change the default fix status from closed to some other fixStatus (assuming that your
preferred £ixStatus is already defined as a valid select setting in the Values : field), use the
following syntax:

Presets:

Status openStatus, fix/fixStatus

In order to change the default behavior of p4 fix, p4 change,andp4 submit toleave job status
unchanged after fixing a job or submitting a changelist, use the special fixStatus of same. For
example:

Presets:

Status open, fix/same

The Comments: field

The Comments : field supplies the comments that appear at the top of the p4 job form. Because p4
job does not automatically tell your users the valid values of select fields, which fields are required,
and so on, your comments must tell your users everything they need to know about each field.

Each line of the Comments : field must be indented by at least one tab stop from the left margin, and
must begin with the comment character #.

The comments for the default p4 job template appear as:

Comments:

A Perforce Job Specification.

229

Caveats, warnings, and recommendations

Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed

User: The user who created the job. Can be changed.

e

Date: The date this specification was last modified.

Description: Comments about the job. Required.

These fields are also used by P4V, the Helix Visual Client, to display tooltips.

Caveats, warnings, and recommendations

Although the material in this section has already been presented elsewhere in this chapter, it is important
enough to bear repeating. Please follow the guidelines presented here when editing job specifications
withp4 jobspec.

Warning
Please read and understand the material in this section before you attempt to edit a job specification.

m Do not attempt to change, rename, or redefine fields 101 through 105. These fields are used by
Helix Server and should not be deleted or changed. Use p4 jobspec only to add new fields
(106 and above) to your jobs.

Field 101 is required by Helix Server and cannot be renamed nor deleted.

Fields 102 through 105 are reserved for use by Helix Server applications. Although it is possible to
rename or delete these fields, it is highly undesirable to do so. Helix Server applications may
continue to set the value of field 102 (the Status : field) to closed (or some other value
defined in the Presets : forfield 102) upon changelist submission, even if the administrator has
redefined field 102 for use as a field that does not contain closed as a permissible value, leading
to unpredictable and confusing results.

m After afield has been created and jobs have been entered, do not change the field’s ID number.
Any data entered in that field through p4 job will be inaccessible.

m Field names can be changed at any time. When changing a field’s name, be sure to also change
the field name in otherp4 jobspec fields that reference this field name. For example, if you
create a new field 106 named severity and subsequently rename it tobug-severity,
then the corresponding line in the jobspec’s Presets : field must be changed to bug-
severity toreflect the change.

m The comments that you write in the Comments : field are the only way to let your users know the
requirements for each field. Make these comments understandable and complete. These
comments are also used to display tooltips in P4V, the Helix Visual Client.

Example: a custom template

The following example shows a more complicated jobspec and the resulting job form:

230

Example: a custom template

A Custom Job Specification.

Updating this form can be dangerous!

See 'p4d help jobspec' for proper directions.

101 Job word 32 required

102 Status select 10 required

103 User word 32 required
104 Date date 20 always

111 Type select 10 required

112 Priority select 10 required

113 Subsystem select 10 required

114 Owned by word 32 required

105 Description text 0 required

Values:

Status open/closed/suspended

Type bug/sir/problem/unknown

Priority A/B/C/unknown

Subsystem server/gui/doc/mac/misc/unknown

Presets:

Status open

User setme
Date S$now

Type setme

Priority unknown

Subsystem setme

Owned by Suser

Description $blank

Comments:

Job:

User:

Date:

S H % S 4 =

Type:

231

Status:

Custom Job fields:

The job name. 'new' generates a sequenced job number.
Either 'open', 'closed', or 'suspended'. Can be changed
The user who created the job. Can be changed.

The date this specification was last modified.

The type of the job. Acceptable values are

Working with third-party defect tracking systems

'bug', 'sir', 'problem' or 'unknown'

Priority: How soon should this job be fixed?

Values are 'a', 'b', 'c¢', or 'unknown'
Subsystem: One of server/gui/doc/mac/misc/unknown
Owned by: Who's fixing the bug

Description: Comments about the job. Required.

The order of the listing under Fields : inthe p4 jobspec form determines the orderin which the
fields appear to users in job forms; fields need not be ordered by numeric identifier.

Runningp4 job against the example custom jobspec displays the following job form:

Custom Job fields:

Job: The job name. 'new' generates a sequenced job number.
Status: Either 'open', 'closed', or 'suspended'. Can be changed
User: The user who created the job. Can be changed.

Date: The date this specification was last modified.

Type: The type of the job. Acceptable values are

'bug', 'sir', 'problem' or 'unknown'

Priority: How soon should this job be fixed?

Values are 'a', 'b', 'c', or 'unknown'

Subsystem: One of server/gui/doc/mac/misc/unknown

Owned by: Who's fixing the bug

Description: Comments about the job. Required.

Job: new

Status: open

User: setme

Type: setme

Priority: unknown

Subsystem: setme

Owned by: edk

Description:

<enter description here>

Working with third-party defect tracking systems

Perforce currently offers two independent platforms to integrate Helix Server with third-party defect
tracking systems. Both platforms allow information to be shared between Helix Server's job system and
external defect tracking systems.

232

P4ADTG, the Helix Defect Tracking Gateway

P4DTG, the Helix Defect Tracking Gateway 233
Building your own integration 233

P4DTG, the Helix Defect Tracking Gateway

P4DTG, the Helix Defect Tracking Gateway, is an integrated platform that includes both a graphical
configuration editor and a replication engine.

The PADTG includes a graphical configuration editor that you can use to control the relationship between
Helix Server jobs and the external system. Propagation of the data between the two systems is
coordinated by a replication engine. PADTG comes with plug-ins for HP Quality Center, JIRA, Redmine,
and Bugzilla.

For more information, see the product page at:
https://www.perforce.com/plugins-integrations/defect-tracking-gateway

Available from this page are an overview of PADTG’s capabilities, the download for PADTG itself, and a
link to the Helix Defect Tracking Gateway Guide, which describes how to install and configure the
gateway to replicate data between a Helix Core Server and a defect tracker.

Building your own integration

Even if you don’t use Helix Server integrations as your starting point, you can still use the job system as
the interface between Helix Server and your defect tracker. Depending on the application, the interface
you set up will consist of one or more of the following:

m A trigger or script on the defect tracking system side that adds, updates, or deletes ajob in Helix
Server every time a bug is added, updated, or deleted in the defect tracking system.

The third-party system should generate the data and pass it to a script that reformats the data to
resemble the form used by a manual (interactive) invocation of p4 job. The script can then pipe
the generated form to the standard input of ap4 job -i command.

The -i flagtop4 jobis used when youwantp4 job toread ajob form directly from the
standard input, rather than using the interactive "form-and-editor" approach typical of user
operations. Further information on automating Helix Server with the —i option is available in the
P4 Command Reference.

m A trigger on the Helix Server side that checks changelists being submitted for any necessary bug
fix information.

For more about triggers, including examples, see "Triggers" on page 234.

233

https://www.perforce.com/plugins-integrations/defect-tracking-gateway
http://www.perforce.com/perforce/doc.current/manuals/p4dtg/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Helix Server supports triggers, which are user-written programs or scripts that are called when certain
operations are performed. Examples of operations that might fire a trigger are changelist submits,
changes to forms, and attempts by users to log in or change passwords.

If the script returns a value of 0, the operation continues. If the script returns any other value, the
operation fails.

Triggers allow you to extend or customize functionality. Consider the following common uses:

m To validate changelist contents beyond the mechanisms afforded by the protections table. For
example, you can use a pre-submit trigger to ensure that whenever £ilel is submittedina
changelist, £ile2 is also submitted.

= To perform some action before or after the execution of a particular command.

m Tovalidate forms, or to provide customized versions of forms. For example, you can use form
triggers to generate a customized default workspace view when users runthe p4 client
command, or to ensure that users always enter a meaningful workspace description.

m To configure Helix Server to work with external authentication mechanisms, such as LDAP or
Active Directory.

You might prefer to enable LDAP authentication by using an LDAP specification. For more
information, see section "Authentication options" on page 107.

= Toretrieve content from data sources archived outside of the repository.

Important

Be aware that the client's settings might require adjustment. For example, to see the server's output,

you might need to enable logging on the P4V client. See the Knowledge Base article, "Debugging
Triggers".

Note

If the API level is 79 or greater, canonical filetypes are now displayed by default for all commands that

display filetypes. If the APl level is 78 or lower, filetype aliases are displayed instead. If your script
depends on the display of filetype aliases, you will need either to change the API level or to change
your script.

See also the "Triggers" topic in the "Commit-edge" chapter of the Multi-Site Deployment Guide.

Creating triggersl 236
SaAMIPIE GO L 237
Trigger Aefinition ..l 238
Execution environNmMent _ 240
THQQEr DS CS L 241

https://community.perforce.com/s/article/1249
https://community.perforce.com/s/article/1249
https://www.perforce.com/perforce/doc.current/manuals/p4dist/#P4Dist/distributed.managing.triggers.html

Triggers

235

Triggering on submits ... 249
Change-submit triggers L 251
Change-content triggers 252
Change-Commit trigQerS 254

Triggering on pushes and fetches 255
Similarity between p4 submit and p4 push 256
Differences between p4 submit and p4 push 258
Fields onapd push tigger 258
Push-sUbmMIit tiQQers .. 260
Push-content tiggers .. 261
Push-commit tigQers .. 262

Triggering before or aftercommands 264
Additional triggers for push and fetchcommands 265

Triggering on journal rotation 266

Triggering on shelving events 267
Shelve-submit triggers L 267
Shelve-commit triggers ... iiiiiiiiiii.. 268
Shelve-delete triggers L 269

Triggering on fiXes ... 269
Fix-add and fix-delete triggers L 270

Triggering on forms ... 271
FOrmM-SaVe trigQerS . . L 273
FOrmM-OUt trigQErS L 274
FOrm-iN tiQQerS . . 275
Form-delete tiggers 276
Form-Commit trigQerS .. L 277

Triggering to use external authentication 278
Auth-check and service-check triggers 280
Single sign-on and auth-check-sso triggers L 282
Triggering for external authentication 287

Triggering for multi-factor authentication (MFA) 288
The list-methods phase (auth-pre-2fa) 289
The init-auth phase (auth-init-2fa) 290
The check-auth phase (auth-check-2fa) 290
N aNADIS . . 291

Triggering to affect archiving 291

Triggering with depots of type graph 293
graph-push-start .. 294
graph-push-reference 294
graph-push-reference-complete 294
graph-push-complete 294

Triggers for external file transfer 295
Replica archive pull threads 295
Edge server submits ... 296

Trigger script variables 297

Creating triggers

Creating triggers

This section explains the basic workflow used to create a trigger, describes a sample trigger, discusses
the trigger definition, and examines a trigger's execution environment.

To create a trigger and have Helix Server execute it, you must do the following:

1.

Write the program or script. Triggers can be written in a shell script such as Perl, Python, or Ruby;
or they can be written in any programming language that can interface with Helix Server, including
UNIX shell and compiled languages like C/C+.

Triggers have access to trigger variables that can be used to get server state information,
execution context, client information, information about the parameters passed to the trigger, and
so on. For information about trigger variables, see "Trigger script variables" on page 297.

Triggers communicate with the server using trigger variables or by using a dictionary of key/value
pairs accessed via STDIN and STDOUT. For more information on these methods, see
"Communication between a trigger and the server" on page 242.

Triggers can also use the command-line client (p4 . exe) or the Helix Server scripting APIs
(P4Ruby, P4Python, P4PHP) when data is needed that cannot be accessed by trigger variables.
For more information, see APIs for Scripting.

Triggers can be located on the server’s file system or in the depot itself, for information on using a
trigger that is located in the depot, see "Storing triggers in the depot" on page 245.

Triggers can be written for portability across servers. For more information, see "Writing triggers to
support multiple Helix Servers" on page 248.

Usethep4 triggers command to create a trigger definition that determines when the trigger
will fire. Trigger definitions are composed of four fields: these specify the trigger name, the event
type that must occur, the location of the trigger and, in some cases, some file pattern that must be
matched in order to fire the trigger.

For more information, see "Trigger definition" on page 238.

Warning

When you use trigger scripts, remember that Helix Server commands that write data to the depot are
dangerous and should be avoided. In particular, do not run the p4 submit command from within a
trigger script.

It's also important to avoid recursion and to watch out for client workspace locks. A trigger running
commands as the requesting user could accidentally stall if it hits a lock.

Sample trigger il 237
Trigger definition ... 238
Execution environment ... 240

Trigger basics

236

http://www.perforce.com/perforce/doc.current/manuals/p4script/index.html

Sample trigger

Sample trigger

The following code sample is a bash auth-check type trigger that tries to authenticate a user (passed
to the script using the $user$ variable) using the Active Directory. If that fails, all users have the same
"secret" password, and special user bruno is able to authenticate without a password.

USERNAME=S$1
echo "USERNAME is SUSERNAME"

read user-supplied password from stdin

read USERPASS

echo Trying AD authentication for SUSERNAME

echo SUSERPASS | /home/perforce/p4auth ad 192.168.100.80 389
DC=ad, DC=foo, DC=com S$SUSERNAME

if [$2 == 0]

then
Successful AD
echo Active Directory login successful
exit O

fi

Compare user-supplied password with correct password, '"secret"
PASSWORD=secret

if ["SUSERPASS" = SPASSWORD]

then

Success

exit O
fi
if ["SUSERNAME" = "bruno"]
then
Always let user bruno in
exit O
fi

Failure
password SUSERPASS for SUSERNAME is incorrect;
exit 1

To define this trigger, use the p4 triggers command, and add a line like the following to the triggers
form:

237

Trigger definition

bypassad auth-check auth "/home/perforce/bypassad.sh %user%"

The auth-check trigger is fired, if it exists, after a user executes the p4 login command. For
authentication triggers, the password is sent on STDIN.

Note
Use an auth-check trigger rather than the service-check trigger for operator users.

Trigger definition

After you have written a trigger, you create the trigger definition by issuingthe p4 triggers
command and providing trigger information in the triggers form. You must be a Helix Server superuser to
run this command. The p4 triggers formlooks like this:

Triggers:
relnotecheck change-submit //depot/bld/... "/usr/bin/rcheck.pl %user$%"
verify jobs change-submit //depot/... "/usr/bin/job.py %$change%"

As with all Helix Server commands that use forms, field names (such as Triggers :) must be flush
left (not indented) and must end with a colon, and field values (that is, the set of lines you add, one for
each trigger) must be indented with spaces or tabs on the lines beneath the field name.

Each line in the trigger form you fill out when you use the p4 triggers command has four fields.
These are briefly described in the following table. Values for three of these fields vary with the trigger
type; these values are described in additional detail in the sections describing each type of trigger. The
name field uses the same format for all trigger types.

Field Meaning

name The user-defined name of the trigger.

To use the same trigger script with multiple file patterns, list the same trigger multiple
times on contiguous lines in the trigger table. Use exclusionary mappings to prevent
files from activating the trigger script; the order of the trigger entries matters, just as it
does when exclusionary mappings are used in views. In this case, only the command
of the first such trigger line that matches a path is used.

type Triggers are divided into ten categories: submit triggers, push triggers, command
triggers, journal-rotate triggers, shelve triggers, edge-server triggers, fix triggers, form
triggers, authentication triggers, and archive triggers. One or more types is defined for
each of these categories. For example, submit triggers include the change-
submit, change-content, change-commit, and change-failed
types.

Please consult the section describing the category of interest to determine which
types relate to that trigger.

238

Trigger definition

Field Meaning

path The use of this field varies with the trigger type. For example, for submit, edge server,
and shelve triggers, this field is a file pattern in depot syntax. When a user submits a
changelist that contains files that match this pattern, the trigger script executes.

Please consult the section describing the trigger of interest to determine which path is
appropriate for that trigger.

command The trigger for tHelix Server to run when the conditions implied by the trigger definition
is satisfied.

You must specify the name of the trigger script or executable in ASCII, even when the
server is running in Unicode mode and passes arguments to the trigger script in UTF8.

Specify the trigger in a way that allows Helix Server to locate and run the command.
The command (typically a call to a script) must be quoted, and can take as
arguments any argument that your command is capable of parsing, including any
applicable Helix Server trigger variables.

On those platforms where the operating system does not know how to run the trigger,
you will need to specify an interpreter in the command field. For example, Windows
does not know how to run . p1 files.

lo form-out label '"perl //myscripts/validate.pl"

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depotas //depot/scripts/myScript.pl, the comresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

Triggers are run in the order listed in the trigger table; if a trigger script fails for a specified type,
subsequent trigger scripts also associated with that type are not run.

Thep4 triggers command has avery simple syntax:
p4 triggers [-i | -o]

= With no flags, the user’s editor is invoked to specify the trigger definitions.
m The -1 flag reads the trigger table from standard input.

m The -o flag displays all the trigger definitions stored in the trigger table.

239

Execution environment

Execution environment

When testing and debugging triggers, remember that any p4 commands invoked from within the script
will run within a different environment (P4USER, PACLIENT, and so on)than that of the calling user.
You must therefore take care to initialize the environment you need from within the trigger script and not
inherit these values from the current environment. For example:

export P4USER=george

export P4PASSWD=abR)aCad”ab9ra

cd /home/perforce/my-database-triggers

p4 admin checkpoint

1ls -1 checkpoint.* journal*

where /home /perforce/my-database-triggers represents the location of your triggers.

We recommend the following guidelines:

Wherever possible, use the full path to executables.
For path names that contain spaces, use the short path name.

Forexample, C: \Program Files\Perforce\p4.exe is most likely located in
C:\PROGRA~1\Perforce\p4.exe.

Unicode settings affect trigger scripts that communicate with the server. You should check your
trigger’'s use of file names, directory names, Helix Server identifiers, and files that contain
Unicode characters, and make sure that these are consistent with the character set used by the
server.

Login tickets may not be located in the same place as they were during testing. For testing, you
canpassindatawithp4 login < input. txt.

If you are using LDAP authentication, or authentication triggers, you must authenticate using
tickets (as with security level 3). This prevents storing a plaintext password value in PAPASSWD.
Instead, set PAPASSWD to the ticket value thatp4 login -p retumns.

For troubleshooting, log output to a file. For example:

date /t >> trigger.log

p4 info >> trigger.log
C:\PROGRA~1\Perforce\p4d.exe -p myServer:1666 info

If a trigger fails to execute, the event is now logged in the Server log and an error is sent to the
user.

240

https://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html#P4SAG/DB5-49899.html

Trigger basics

m Helix Server commands in trigger scripts are always run by a specific Helix Server user. If no user

is specified, an extra Helix Server license for a user named SYSTEM (or on UNIX, the user that
owns the p4d process) is assumed. To prevent this from happening:

« Pass a $user$% argument to the trigger that calls each Helix Server command to ensure
that each command is called by that user. For example, if Joe submits a changelist that
activates trigger script trigger.pl, and trigger.pl callsthep4 changes
command, the script can runthe commandas p4 -u %user$% changes.

« Set PAUSER for the account that runs the trigger to the name of an existing user. (If your
Helix Core Server is installed as a service under Windows, note that Windows services
cannot have a P4USER value; on Windows, you must therefore pass a user value to each
command as described above.)

You can access the following environment variables from a trigger: PAUSER, PACLIENT,
P4HOST, PALANGUAGE, CWD, OS.

Timeouts associated with the trigger user might affect trigger execution. To prevent an unwanted
timeout, place the user running the trigger in a group that will not time out.

Timeout is the login ticket duration as defined by the group spec of the user the trigger is using to
run commands; the ticket is the one created for use with the trigger. For example, the default login
ticket duration is 8 hours, so if that is left unchanged for the trigger user, the trigger will have
stopped working by the next day. Consider disabling the timeout so the trigger is not concerned
about logins while it has access to the ticket file.

By default, the Perforce service runs under the Windows local System account. The System
account may have different environmental configurations (including not just Helix Server-related
variables, but PATH settings and file permissions) than the one in which you are using to test or
write your trigger.

Because Windows requires a real account name and password to access files on a network drive,
if the trigger script resides on a network drive, you must configure the service to use a real userid
and password to access the script.

On Windows, standard input does not default to binary mode. In text mode, line ending
translations are performed on standard input, which is inappropriate for binary files.

If you are using archive triggers against binary files on a Windows machine, you must prevent
unwanted line-ending translations by ensuring that standard input is changed to binary mode (O__
BINARY).

When using triggers on Windows, $formfile% and other variables that use a temp directory
should use the TMP and TEMP system variables in Windows, not the user's TEMP variables.

Trigger basics

This section contains information for working with triggers. Detailed information about implementing each
type of trigger is found in the sections that follow. The information in this section applies to all types of
triggers.

241

Trigger basics

m "Communication between a trigger and the server" below describes how to select the method
used for communication and how to parse dictionary input.

m "Storing triggers in the depot" on page 245 describes how to format depot paths if you want to run
a trigger from the depot.

m "Using multiple triggers" on page 247 explains how Helix Server interprets and processes the
trigger table when it includes multiple trigger definitions.

m "Writing triggers to support multiple Helix Servers" on page 248 describes how you can write a
trigger so that it is portable across Helix Servers .

m "Triggers and distributed architecture" on page 249 explains the issues you must address when
locating triggers on replicas.

For information about debugging triggers, see the Support Knowledgebase article, Debugging Triggers,

Communication between a trigger and the server

Triggers can communicate with the server in one of two ways: by using the variables described in
"Trigger script variables" on page 297 or by using a dictionary of key/value pairs accessed via STDIN
and STDOUT. The setting of the triggers . io configuration variable determines which method is
used. The method chosen determines the content of STDIN and STDOUT and also affects how trigger
failure is handled. The following table summarizes the effect of these settings. Client refers to the client
application (Swarm, P4V, P4, etc) that is connected to the server where the trigger executes.

242

https://community.perforce.com/s/article/1249

Trigger basics

triggers.io=0

triggers.io =1

Trigger The trigger communicates The trigger communicates with the server using STDIN
succeeds with the server using and STDOUT.
trigger variables. STDIN is atextual dictionary of name-value pairs of all
STDIN is only used by the trigger variables except for $clienthost$% and
archive or authentication %peerhost%.
triggers. Itis the f'l_e This setting does not affect STDIN values for archive
cqntent for gn.archwe and authentication triggers.
trigger, and it is the
password for an The trigger should exit with a zero value.
authentication trigger.
The trigger's STDOUT is
sent as an unadorned
message to the client for
all triggers except archive
triggers; for archive
triggers, the command’s
standard output is the file
content.
The trigger should exit
with a zero value.
Trigger The trigger's STDOUT STDOUT is a textual dictionary that contains error
fails and STDERR are sent to information. STDERR is merged with STDOUT.

the client as the text of a
trigger failure error
message.

The trigger should exit
with a non-zero value.

Failure indicates that the trigger script can’t be run, that
the output dictionary includes a failure message, or that
the output is mis-formatted. The execution error is
logged by the server, and the server sends the client the
information specified by STDOUT. If no dictionary is
provided, the server sends the client a generic message
that something has gone wrong.

The dictionary format is a sequence of lines containing key:value pairs. Any non-printable characters
must be percent-encoded. Data is expected to be UTF8-encoded on unicode-enabled servers. Here are
some examples of how the %client%, %clientprog%, %command%, and %user% variables would be
represented in the %dictionary:

client:jgibson-aaaatchoooo
clientprog:P4/LINUX45X86 128/2017.9.MAIN/1773263782 (2017/0CT/09) .

command:user—-dwim

user:jgibson

243

Trigger basics

The example above shows only a part of the dictionary. When variables are passed in this way, all the
variables described in "Trigger script variables" on page 297 are passed in STDIN, and the trigger script
must read all of STDIN even if the script only references some of these variables. If the script does not
read all of STDIN, the script will fail and the server will see errors like this:

write: yourTriggerScript: Broken pipe

The trigger must send back a dictionary to the server via STDOUT. The dictionary must at a minimum
contain an action with an optional message. The action is either pass or £ail. Non-printable
characters must be percent encoded. For example:

action:fail
message:too bad!

Malformed trigger response dictionaries and execution problems are reported to the client with a generic
error. A detailed message is recorded in the server log.

The introduction to this section suggested that the two ways of communicating with the server were
mutually exclusive. In general, they are. There is one case, however, in which you must specify variables
on the command line even if you set triggers. io to 1. This is when you want to reference the
$peerhost% or$clienthost$ variables. These variables are very expensive to pass. For their
values to be included in the dictionary, you must specify one or both on the command line.

The following is a sample Perl program that echoes its input dictionary to the user:

use strict;

use warnings FATAL=>"all";
use open qw/ :std :utf8 /;
use Data: :Dumper;

use URI: :Escape;

Il
(@)
~

SData: :Dumper: :Quotekeys
$Data: :Dumper: :Sortkeys = 1;

my %$keys = map { /(.*):(.*)/ } <STDIN>;

print "action:pass\nmessage:" . uri escape Dumper \ %keys;

244

Trigger basics

The listing begins with some code that sets Perl up for basic Unicode support and adds some error
handling. The gist of the program is in line 8. <STDIN> is a file handle that is applied to the map{ },
where the map takes one line of input at a time and runs the function between the map’s {}. The
expression (.*) : (.*) is aregularexpression with a pair of capture groups that are split by the colon.
No key the server sends has a colonin it, so the first . * will not match. Since most non-printable
characters (like newline) are percent-encoded in the dictionary, a trigger can expect every key/value pair
to be a single line; hence the single regular expression can extract both the key and the value. The return
values of the regular expression are treated as the return values for the map’s function, which is a list of
strings. When alist is assigned to a hash, Perl tries to make it into a list of key/value pairs. Because we
know it’s an even list, this works and we’ve gotten our data. The print command makes the result
dictionary and sends it to the server. Calling it a pass action tells the server to let the command continue
and that the message to send the user is the formated hash of the trigger’s input dictionary.

Exceptions

Setting triggers. io to 1 does not affect authentication and archive triggers; these behave as if
triggers. io were set to 0 no matter what the actual setting is.

Compatibility with old triggers

When you set the triggers . io variable to 1, it affects how the server runs all scripts, both old and
new. If you don’t want to rewrite your old trigger scripts, you can insert a shim between the trigger table
and the old trigger script, which collects trigger output and formats it as the server now expects it. That is,
the shim runs the old trigger, captures its output and return code, and then emits the appropriate
dictionary back to the server. The following Perl script illustrates such a shim:

t form-out label unset "perl shim.pl original trigger.exe orig args..."

The shim. pl program might look like this:

use strict;

use warnings FATAL => "all";
use open qw/ :std :utf8 /;
use URI: :Escape;

use IPC::Run3;
@ =<STDIN>;
run3 \@ARGV, undef, \$, \$;

print 'action:' . (? ? 'fail' : 'pass') . "\nmessage:" . uri escape $;

Storing triggers in the depot

You can store a trigger in the depot. This has two advantages:

245

Trigger basics

m [t allows you to version the trigger and be able to access prior versions if needed.

m |nadistributed architecture, it enables Helix Server to propagate the latest trigger script to every
replica without your having to manually update the file in the filesystem of each server.

Note
Triggers that run from the depot do not work on replicas that are metadata-only.

See Server options to control metadata and depot access and configurable that sets replication to
metadata only

When you store a trigger in the depot, you must specify the trigger name in a special way in the
command field of the trigger definition by enclosing the file path of the file containing the trigger in %
signs. If you need to pass additional variables to the trigger, add them in the command field as you
usually do. The server will create a temporary file that holds the contents of the file path name you have
specified for the command field. (Working with a temporary file is preferable for security reasons and
because depot files cannot generally be executed without some further processing.)

Multiple files can be loaded from the depot. In the next trigger definition, two depot paths are provided.
Multiple depot paths may be used to load multiple files out of the depot when the trigger executes. For
example, the triggers script might require a configuration file that is stored next to the script in the depot:

lo form-out label "perl %//admin/validate.pl% %//admin/validate.conf%"

The depot file must already exist to be used as a trigger. All file types are acceptable so long as the
content is available. For text types on unicode-enabled servers, the temporary file will be in UTF8.
Protections on the depot script file must be such that only trusted users can see or write the content.

If the file path name contains spaces or if you need to pass additional parameters, you must enclose the
command field in quotes.

In the next trigger definition, note that an interpreter is specified for the trigger. Specifying the interpreter
is needed for those platforms where the operating system does not know how to run the trigger. For
example, Windows does not know how to run .pl files.

lo form-out label "perl %//admin/validate.pl%"

In the next trigger definition, the depot path is quoted because of the revision number. The absence of an
interpreter value implies that the operating system knows how to run the script directly.

lo form-out branch "%//depot/scripts/validate.exe#123%"

Warnin

A depot fﬁe path name may not contain reserved characters. This is because the hex replacement
contains a percent sign, which is the terminator for a $var%. For example, no file named
@myScript can be used because it would be processed as $40myScript inside a var
$%40myScript%.

246

https://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html#P4Dist/replication.concepts.options.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.replication
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.replication

Trigger basics

Using multiple triggers

Submit and form triggers are run in the order in which they appear in the triggers table. If you have multiple
triggers of the same type that fire on the same path, each is run in the order in which it appears in the
triggers table.

Example Multiple triggers on the same file
All * . ¢ files must pass through the scripts checkl . sh, check2. sh, and check3. sh:

Triggers:
checkl change-submit //depot/src/*.c "/usr/bin/checkl.sh %change%"
check2 change-submit //depot/src/*.c "/usr/bin/check2.sh %change%"
check3 change-submit //depot/src/*.c "/usr/bin/check3.sh %change%"

If any trigger fails (for instance, check1l . sh), the submit fails immediately, and none of the
subsequent triggers (that is, check2 . sh and check3. sh) are called. Each time a trigger
succeeds, the next matching trigger is run.

To link multiple file specifications to the same trigger (and trigger type), list the trigger multiple times in
the trigger table.

Example Activating the same trigger for multiple filespecs

Triggers:
bugcheck change-submit //depot/*.c "/usr/bin/check4.sh %change%"
bugcheck change-submit //depot/*.h "/usr/bin/check4.sh %change%"
bugcheck change-submit //depot/*.cpp "/usr/bin/check4.sh %change%"

In this case, the bugcheck trigger runs on the * . c files, the * . h files, and the * . cpp files.

Multiple submit triggers of different types that fire on the same path fire in the following order:

1. change-submi t (fired on changelist submission, before file transmission)

2. change-content triggers (after changelist submission and file transmission)

3. change-commi t triggers (on any automatic changelist renumbering by the server)
Similarly, form triggers of different types are fired in the following order:

1. form-out (form generation)

2. form-in (changed form is transmitted to the server)

3. form-save (validated form is ready for storage in the Helix Server database)

4

form-delete (validated form is already stored in the Helix Server database)

247

Trigger basics

Exclusionary mappings for triggers

Example

trigl change-submit //depot/... "trig.pl %changelist%"
trigl change-submit -//depot/products/doc/... "trig.pl %changelist%"

Submitting a change in / /depot/products/doc/ . . . resultsinthe /usr/bin/trig.pl
script NOT running.

Submitting a change in any other directory runs the first instance of a trigl script, that is, the script on
the first trigl line and ignores the second instance of usr/bin/trig.pl.

Rules for exclusionary mappings

1. Exclusions must be LAST.

2. The same script or action must be associated with each different line of the same named trigger.
When the path or file check falls through to a triggerable path or file, the script or action runs that is
associated with the FIRST trigger line.

3. If you want a submit to fail, associate an exit(1) return code with the successful match of the path
orfile.

Writing triggers to support multiple Helix Servers

To call the same trigger script from more than one Helix Core Server, use the $serverhost$,
%serverip%, and $serverport% variables to make your trigger script more portable.

Forinstance, if you have a script that uses hardcoded port numbers and addresses...
#!/bin/sh

Usage: Jjobcheck.sh changelist

CHANGE=S1

P4CMD="/usr/local/bin/p4 -p 192.168.0.12:1666"

SP4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

and you call it with the following line in the trigger table...

jcl change-submit //depot/ga/... "jobcheck.sh %change%"

you can improve portability by changing the script:

#!/bin/sh

Usage: jobcheck.sh changelist server:port

CHANGE=51

P4PORT=52

PACMD="/usr/local/bin/p4 -p S$PA4PORT"

SP4CMD describe -s $1 | grep "Jobs fixed...\n\n\t" > /dev/null

248

Triggering on submits

and passing the server-specific data as an argument to the trigger script:

jc2 change-submit //depot/ga/... "jobcheck.sh %change% $serverport%"
Note that the $serverport% variable can contain a transport prefix: ss1, tcp6, orss16.

For a complete list of variables that apply for each trigger type, see "Trigger script variables" on page 297.

Triggers and distributed architecture

Triggers installed on the master server must also exist on its replicas.

m The trigger definition is automatically propagated to all replicas.

m |tis your responsibility to make sure that the program file that implements the trigger exists on
every replica where the trigger might be activated. Its location on every replica must correspond to
the location provided in the command field of the trigger definition.

You can do this either by placing the trigger script in the same location in the file system on every

server, or by storing the trigger script in the depot on the master or commit server and using depot

syntax to specify the file name. In this case, the file is automatically propagated to all the replicas.
See "Storing triggers in the depot" on page 245.

Triggers installed on the replicas must have the same execution environment for the triggers and the
trigger bodies. This typically include trigger login tickets or trigger script runtimes, such as Perl or Python.

Note
Edge servers have triggers that fire between client and edge server, and between edge server and

commit server. See Helix Core Server Administrator Guide: Multi-Site Deployment.

Triggering on submits

To configure Helix Server to run trigger scripts when users submit changelists, use submit triggers: these
are triggers of type change-submit, change-content, and change-commit. You can also
use change-failed triggers forthe p4 submit orthep4 populate command.

You might want to take into consideration file locking behavior associated with submits: Before
committing a changelist, p4 submi t briefly locks all files being submitted. If any file cannot be locked
or submitted, the files are left open in a numbered pending changelist. By default, the files in a failed
submit operation are left locked unless the submit . unlocklocked configurable is set. Files are
unlocked even if they were manually locked prior to submit if submit fails when
submit.unlocklockedis set.

The following table describes the fields of a submit trigger. For sample definitions, see the subsequent
sections, describing each trigger subtype.

249

http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html

Triggering on submits

Field Meaning

type

m change-submit: Execute a submit trigger after changelist creation, but
before file transfer. Trigger may not access file contents.

= change-content: Execute a submit trigger after changelist creation and
file transfer, but before file commit.

To obtain file contents, use the revision specifier @=change (where change
is the changelist number of the pending changelist as passed to the script in the

%$changelist$% variable) withcommands suchas p4 diff2, p4
files,p4 fstat,andp4 print.

m change-commi t: Execute a submit trigger after changelist creation, file
transfer, and changelist commit.

s change-failed: Execute a submit triggerif thep4 submit orthe p4
populate command fails. This trigger only fires on errors that occur after a
commit process has started. It does not fire for early usage errors, or due to

errors from the submit form. That is, if an edge or change trigger could have run,

then the change-£failed trigger will fire if that commit fails.
When usingp4 dif£2 inachange-content trigger:

m The first file argument can be either fileRchange or file#headrev,
but NOT file@=change.

m The second file argument (typically the change being submitted) must use the
file@=change syntax to report differences successfully. (Using
file@Rchange without the equals sign reports the file revisions as identical
which is wrong.)

For example, to submit a file / /depot/£oo as change 1001, and the previously
submitted change was 1000, with a head revision of 25, both these revision specifier
formats should work correctly if generated and called in the trigger script:

p4 diff2 //depot/fooR1000 file@=1001

p4 diff2 //depot/foo#25 file@=1001

path

A file pattern in depot syntax.

When a user submits a changelist that contains any files that match this file pattern,
the trigger specified in the command field is run. Use exclusionary mappings to
prevent triggers from running on specified files.

250

Change-submit triggers

Field Meaning

command The trigger for Helix Server to run when a user submits a changelist that contains any
file patterns specified by pa th. Specify the command in a way that allows the Helix
Server account to locate and run the command. The command (typically a call to a
script) must be quoted, and can take as arguments anything that your command is
capable of parsing, including any applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%". See "Storing triggers in the depot" on
page 245 for more information.

For change-submi t and change-content triggers (and their corresponding
edge server triggers), changelist submission does not continue if the trigger fails. For
change-commi t triggers, changelist submission succeeds regardless of trigger
success or failure, but subsequent change-commi t triggers do not fire if the script
fails.

Evenwhen a change-submi t or change-content trigger script succeeds, the submit can fail
because of subsequent trigger failures, or for other reasons. Use change-submit and change-
content triggers only for validation, and use change-commi t triggers for operations that are
contingent on the successful completion of the submit.

Be aware of edge cases: for example, if a client workspace has the revertunchanged option set,
and auserruns p4 submit on a changelist with no changed files, a changelist has been submitted
with files contents, but no changes are actually committed. (That is, a change-submi t trigger fires, a
change-content triggerfires, but a change-commi t trigger does not.)

Change-submit triggers 251
Change-content triggers 252
Change-commit triggers 254

Change-submit triggers

Use the change-submi t trigger type to create triggers that fire after changelist creation, but before
files are transferred to the server. Because change-submit triggers fire before files are transferred to the
server, these triggers cannot access file contents. Change-submit triggers are useful for integration with
reporting tools or systems that do not require access to file contents.

In addition to the p4 submit command, thep4 populate command, which does an implicit
submit as part of its branching action, fires a change-submit trigger to allow for validation before
submission.

251

Change-content triggers

Example

The following change-submit trigger is an MS-DOS batch file that rejects a changelist if the submitter
has not assigned a job to the changelist. This trigger fires only on changelist submission attempts that
affect at least one file in the //depot/ga branch.

@echo off

rem REMINDERS

rem - If necessary, set Perforce environment vars or use config file
rem — Set PATH or use full paths (C:\PROGRA~1\Perforce\p4.exe)

rem - Use short pathnames for paths with spaces, or quotes

rem - For troubleshooting, log output to file, for instance:

rem - C:\PROGRA~1\Perforce\p4 info >> trigger.log

if not x%1==x goto doit

echo Usage is %0 [change#]

:doit
p4 describe -s %1|findstr "Jobs fixed..." > nul
if errorlevel 1 echo No jobs found for changelist %1

p4 describe -s %1|findstr "Jobs fixed..." > nul

To use the trigger, add the following line to your triggers table:

samplel change-submit //depot/ga/... "jobcheck.bat %changelist&"

Every time a changelist is submitted that affects any files under / /depot/qga, the

jobcheck .bat fileis called. If the string “Jobs fixed...” (followed by two newlines and a tab
character) is detected, the script assumes that a job has been attached to the changelist and permits
changelist submission to continue. Otherwise, the submit is rejected.

The second £indstr command ensures that the final error level of the trigger script is the same as
the error level that determines whether to output the error message.

Change-content triggers

Use the change-content trigger type to create triggers that fire after changelist creation and file
transfer, but prior to committing the submit to the database. Change-content triggers can access file
contents by usingthep4 diff2,p4 files,p4 fstat,andp4 printcommands withthe
@=change revision specifier, where change is the number of the pending changelist as passed to the
trigger script in the $changelist$% variable.

252

Change-content triggers

Use change-content triggers to validate file contents as part of changelist submission and to abort
changelist submission if the validation fails.

Evenwhen a change-submi t or change-content trigger script succeeds, the submit can fail
because of subsequent trigger failures, or for other reasons. Use change-submit and change-
content triggers only for validation, and use change-commi t triggers for operations that are
contingent on the successful completion of the submit.

Example

The following change-content trigger is a Bourne shell script that ensures that every file in every
changelist contains a copyright notice for the current year.

The script assumes the existence of a client workspace called copychecker that includes all of
//depot/src. This workspace does not have to be synced.
#!/bin/sh
Set target string, files to search, location of p4 executable...
TARGET="Copyright 'date +%Y' Example Company"
DEPOT PATH="//depot/src/..."
CHANGE=$1
P4ACMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""
For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"$%$" to obtain single arguments for "for"
for FILE in '$P4CMD files $DEPOT_PATH@=$CHANGE |\
sed —e 's/\(.*\)\#[0-9]* - .*S/\1/' -e 's/ /%/g""
do
Undo the replacement to obtain filename...
FILE="'echo $FILE | sed -e 's/%/ /g''"
...and use @= specifier to access file contents:
p4 print -q //depot/src/file.c@=12345

if $PACMD print -g "SFILE@=S$SCHANGE" | grep "STARGET" > /dev/null
then echo ""

else

echo "Submit fails: 'STARGET' not found in $FILE"

XIT=1
fi
done
exit SXIT

253

Change-commit triggers

To use the trigger, add the following line to your triggers table:

sample?2 change-content //depot/src/... "copydate.sh %change%"

The trigger fires when any changelist with at least one file in / /depot/szrc is submitted. The
corresponding DEPOT _PATH defined in the script ensures that of all the files in the triggering
changelist, only those files actually under / /depot/src are checked.

Change-commit triggers

Use the change-commi t trigger type to create triggers that fire after changelist creation, file transfer,
and changelist commission to the database. Use change-commit triggers for processes that assume (or
require) the successful submission of a changelist.

Warning
When a change-commi t trigger fires, any file in the committed changelist has already been

submitted and could be changed by a user while the change-commi t trigger executes.

Example
Here is a change-commit trigger that sends emails to other users who have files open in the submitted
changelist.

#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist="51

workspace="$2"

user="353"
p4 fstat -e "Schangelist" //... | while read -r line
do

Parse out the name/value pair.
name=$ (echo "$line" | sed 's/[\. I\+\(["~ 1\+\) .\+/\1/")
value=$ (echo "$1line" | sed 's/[\. I\+[" 1\+ \(.\+\)/\1/")

if ["Sname" = "depotFile"]
then
Line is "... depotFile <depotFile>". Parse to get depotFile.
depotfile="Svalue"
elif ["$S(echo "$name" | cut -b-9)" = "otherOpen"] && \
["$Sname" != "otherOpen"]
then

254

Triggering on pushes and fetches

Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".
Parse to get otherUser and otherWorkspace.

otheruser=$ (echo "S$value" | sed 's/\(.\+\)@.\+/\1/")
otherworkspace=$ (echo "Svalue" | sed 's/.\+@\ (.\+\)/\1/")

Get email address of the other user from p4 user -o.
othermail=$ (p4 user -o "Sotheruser" | grep "Email:" | \

grep -v \# | cut -b8-)

Mail other user that a file they have open has been updated

mail -s "Sdepotfile was just submitted" "Sothermail' <<EOM
The Perforce file: Sdepotfile
was just submitted in changelist $changelist by Perforce user Suser
from the Sworkspace workspace. You have been sent this message
because you have this file open in the S$otherworkspace workspace.
EOM

fi

done
exit 0

To use the trigger, add the following line to your triggers table:

sample3 change-commit //... "mailopens.sh %change% %client% %user%"

Whenever a user submits a changelist, any users with open files affected by that changelist receive
an email notification.

Triggering on pushes and fetches

Note
p4 push and p4 fetch are commands specific to the Perforce proprietary distributed version control
system (DVCS). See Using Helix Server for Distributed Versioning.

There is no requirement that any triggers be run at any point in the submission or push process.

To configure Helix Server to run trigger scripts whenthe p4 push, p4 unzip,orp4 fetch
commands are invoked, use push triggers: these include triggers of type push-submi t, push-
content, and push-commit.

This section describes the triggers that can be used when initiating a push or fetch for Perforce DVCS.

255

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_push.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_fetch.html
https://www.perforce.com/perforce/doc.current/manuals/dvcs/

Similarity between p4 submit and p4 push

For a description of the triggers that can be used by the server receiving the pushed items or responding
to the fetch request, see "Additional triggers for push and fetch commands" on page 265.

Similarity between p4 submit and p4 push

During a push, the local server acts as the client of the shared server. Therefore, there are similarities
between submits and pushes:

m Push actions are atomic: either everything is pushed or nothing is pushed.

m Pushes occur in three distinct phases and different types of push triggers are appropriate for each
phase.

The following figure:

m illustrates the similarities between submits and pushes

m illustrates the path of submitted files, via a changelist, from the client, to the local server, and
finally, to the shared server

m includes all possible types of triggers and shows the types of triggers that can be run during each
phase of these processes.

Figure 14-1 Change and push triggers

256

Similarity between p4 submit and p4 push

Client

submit

v

—

~—

Local Server

ab 2, ©

Send metadata Send files Commit
change-submit trigger change-content trigger change-commuit trigger
push unzip fetch

Shared Server

o (2] ©

Send metadata Send files Commit
push-submit trigger push-content trigger push-commit trigger

Figure 14-2

The three phases of submits and pushes include the following:

1. Send metadata causes metadata to be sent.

Following this phase, a change-submit or push-submit trigger may test to see whether the user is
allowed to perform the action, whether the file type is acceptable, and so on. Anything one can
query about the metadata is actionable.

257

Differences between p4 submit and p4 push

2.

Send files. The Files are sent but changes are not yet committed.

Following this phase, a content-submit or push-submi t trigger may parse the contents
of the files and take appropriate action depending on what it discovers. During this phase, one
might look to see whether the submitted files adhere to coding conventions or other policies.

Commit. The changes are committed.

Following this phase, the commit is irrevocable, but the trigger may take some action: send a
notification, do some clean up, and so on.

Differences between p4 submit and p4 push

Turning to look at the differences between submits and pushes, we discover the following:

While both submits and pushes are atomic, a submit encompasses a single changelist; a push
may contain multiple changelists. Thus the failure of a push is more costly.

Submits are unidirectional; pushes (which might happen as the result of ap4 push, p4
fetch, orp4 unzip)are bidirectional; depending on the command that causes the trigger to
execute, either the local server or the shared server might play the role of client.

During the first phase of a push, metadata is read into memory, which limits the data that the
push-commi t trigger (which is a separate process with its own per-instance memory) can
access. See "Push-submit triggers" on page 260 for more information.

If a submit fails, you're left with work in progress that you can change and retry. Having a push
operation fail requires that you retrace your steps prior to the submit to the local server. For this
reason, you might want to run triggers during the submit operation rather than the push operation if
possible.

Change triggers are involved in the processing of p4 submit commands only. Push triggers
are invoked in the context of three somewhat different scenarios: the execution of p4 push, p4
fetch, orp4 unzip commands.

You should keep these differences in mind when you decide how to define your triggers and at what stage
to run them.

Fields on a p4 push trigger

The following table describes the fields of a push trigger. For sample definitions, see the subsequent
sections, describing each push trigger type.

258

Fields on a p4 push trigger

Field Meaning

type m push-submi t: Execute this trigger after changelist creation, but before file
transfer. Trigger may not access file contents.

= push-content: Execute this trigger after changelist creation and file
transfer, but before file commit.

To obtain file contents, use the revision specifier @=change (where change
is the changelist number of the pending changelist as passed to the script in the
%$changelist$% variable) withcommands suchas p4 diff2, p4
files,p4 fstat,andp4 print.

m push-commi t: Execute this trigger after changelist creation, file transfer,
and changelist commit.

path A file pattern in depot syntax.

When a useruses thep4 push,p4 unzip,orp4 fetch commands to submit
a changelist that contains any files that match this file pattern, the trigger specified in
the command field is run. Use exclusionary mappings to prevent triggers from
running on specified files.

command The trigger for the Helix Server to run when a userinvokes the p4 push, p4
unzip, orp4 fetch commands to submit a changelist that contains any file
patterns specified by pa th. Specify the command in a way that allows the Helix
Server account to locate and run the command. The command (typically a call to a
script) must be quoted, and can take as arguments anything that your command is
capable of parsing, including any applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

Forpush-submi t and push-content triggers, changelist submission does not
continue if the trigger fails. For push-commi t triggers, changelist submission
succeeds regardless of trigger success or failure, but subsequent push-commit
triggers do not fire if the script fails.

Evenwhen a push-submit orpush-content trigger script succeeds, the submission that
caused the trigger to run can fail because of subsequent trigger failures, or for other reasons. Use push-
submi t and push-content triggers only for validation, and use push-commi t triggers for
operations that are contingent on the successful completion of the push or fetch.

259

Push-submit triggers

Push-submit triggers

Use the push-submi t trigger type to create triggers that fire after changelist creation, but before files
are transferred to the shared server. Because push-submit triggers fire before files are transferred to the
server, these triggers cannot access file contents. Push-submit triggers are useful for integration with
reporting tools or systems that do not require access to file contents.

As mentioned in the previous section where submit and push processing was described, push
processing limits the commands you can run in a push-submit trigger. Please use the following
commands only:

p4 change -o %changelist%

p4 describe -s %changelist$%

p4 files //path/...@=%changelist%

p4 fstat //path/...@=%changelist%

Example

The following push-submit trigger is an MS-DOS batch file that rejects a changelist being pushed if the
changelist description does not contain a line of the form Reviewed and approved ("signed off") by:
XXXXXXXX .

@echo off

if not x%1==x goto doit

echo Usage is %0 [change#]

exit 1

:doit

p4 describe -s %1 | findstr "Reviewed and signed off" > nul

if errorlevel 1 echo "Changelist %1 missing review information."

To use the trigger, add the following line to your triggers table:

samplel push-submit //depot/ga/... "reviewcheck.bat %changelist%"

Every time a changelist is pushed that affects any files under //depot/qga, the
reviewcheck.bat/ ileis called. If the string "Reviewed and signed off"is detected, the

script assumes that the required review has happened and permits the changelist push to continue.
Otherwise the push is rejected.

Note
Thep4 change andp4 describe commands do not display associated fixes when run from

the push-submit or push-content triggers, even if the changes being pushed have associated fixes
that are added as part of the push.

260

Push-content triggers

Push-content triggers

Use the push-content trigger type to create triggers that fire after changelist creation and file
transfer, but prior to committing the push to the database. Push-content triggers can access file contents
by usingthep4 diff2,p4 files,p4 fstat,andp4 printcommands withthe @=change
revision specifier, where change is the number of the pending changelist as passed to the trigger script
inthe $changelist$ variable.

Use push-content triggers to validate file contents as part of changelist submission and to abort
changelist submission if the validation fails.

Evenwhen apush-submi t orpush-content trigger script succeeds, the push can fail because
of subsequent trigger failures, or for other reasons. Use push-submi t and push-content triggers
only for validation, and use push-commi t triggers for operations that are contingent on the successful
completion of the push.

Example
The following push-content trigger is a Bourne shell script that ensures that every file in every
changelist contains a copyright notice for the current year. The script assumes the existence of a
client workspace called copychecker that includes all of //depot/src. This workspace does
not have to be synced.
#!/bin/sh
Set target string, files to search, location of p4 executable...
TARGET="Copyright 'date +%Y' Example Company"
DEPOT PATH="//depot/src/..."
CHANGE=S$1
P4CMD="/usr/local/bin/p4 -p 1666 -c copychecker"
XIT=0
echo ""
For each file, strip off #version and other non-filename info
Use sed to swap spaces w/"$" to obtain single arguments for "for"
for FILE in 'SP4CMD files $DEPOT_PATH@:$CHANGE |\
sed -e "s/\(.*\)\#[0-9]* - .*$/\1/' -e 's/ /%/g""’
do
Undo the replacement to obtain filename...
FILE="'echo SFILE | sed -e 's/%/ /g''"
...and use @= specifier to access file contents:
p4 print -gq //depot/src/file.c@=12345
if $PACMD print -g "$FILE@=S$CHANGE" | grep "STARGET" > /dev/null

then echo ""

261

Push-commit triggers

else

echo "Submit fails: 'STARGET' not found in $FILE"

XIT=1
fi
done
exit SXIT

To use the trigger, add the following line to your triggers table:

sample?2 push-content //depot/src/... "copydate.sh %change%"

The trigger fires when any changelist with at least one file in / /depot/src is pushed. The
corresponding DEPOT _PATH defined in the script ensures that of all the files in the triggering
changelist, only those files actually under / /depot/src are checked.

Note
Thep4 change andp4 describe commands do not display associated fixes when run from

the push-submit or push-content triggers, even if the changes being pushed have associated fixes
that are added as part of the push.

Push-commit triggers

Use the push-commi t trigger type to create triggers that fire after changelist creation, file transfer,
and changelist commission to the database. Use push-commit triggers for processes that assume (or
require) the successful push of a changelist.

Example
Following is a push-commit trigger that sends emails to other users who have files open in the pushed
changelist.
#!/bin/sh
mailopens.sh - Notify users when open files are updated
changelist=$1
workspace=5$2
user=53
p4 fstat @Schangelist,@Schangelist | while read line
do
Parse out the name/value pair.
name="'"echo $line | sed 's/[\. I\+\([" I\+\) .\+/\1/"'
value='echo $line | sed 's/[\. I\+[" I\+ \(.\+\)/\1/"'

262

Push-commit triggers

if ["Sname" = "depotFile"]
then
Line is "... depotFile <depotFile>". Parse to get depotFile.
depotfile=Svalue
elif ["'echo S$name | cut -b-9'" = "otherOpen" -a \
"Sname" != "otherOpen"]
then
Line is "... ... otherOpen[0-9]+ <otherUser@otherWorkspace>".

Parse to get otherUser and otherWorkspace.
otheruser="echo S$value | sed 's/\(.\+\)@.\+/\1/""'
otherworkspace="echo $value | sed 's/.\+@\ (.\+\)/\1/""
Get email address of the other user from p4 user -o.
othermail='p4 user -o Sotheruser | grep Email: \

| grep -v \# | cut -b8-"'

Mail other user that a file they have open has been updated

mail -s "Sdepotfile was just submitted" $othermail <<EOM
The Perforce file: S$depotfile
was just pushed in changelist $changelist by Perforce user Suser
from the Sworkspace workspace. You have been sent this message
because you have this file open in the Sotherworkspace workspace.
EOM

fi

done
exit OFo

To use the trigger, add the following line to your triggers table:

on

sample3 push-commit //... "mailopens.sh %change% %client% %user$

Whenever a user pushes a changelist, any users with open files affected by that changelist receive an
email notification.

The section "Triggering before or after commands" on the facing page describes some additional
options you have for triggers with push and fetch actions.

263

Triggering before or after commands

Triggering before or after commands

Triggers of type command allow you to configure Helix Server to run a trigger before or after a given
command executes. Generally, you might want to execute a script before a command runs to prevent
that command from running; you might want to run a script after a command if you want to connect its
action with that of another tool or process.

Note

You may use command type triggers withp4 push andp4 fetch commands.

The following table describes the fields of the command trigger.

Field Meaning

type command

The command to execute is specified in the pa th field.

path The pre-user-command value specifies the command before which the trigger
should execute. The post-user-command value specifies the command after
which the trigger should execute. command can be a regular expression. For
additional information about the grammar of regular expressions, see p4 help
grep.

Here are examples of possible path values:

pre-user-login \\ before the login command
post-user- (add|edit) \\ after the add or edit command
pre-user-obliterate \\ before the obliterate command
(pre|post) —user-sync \\ before or after the sync
command

If you want to match a command name that’s a substring of another valid command,
you should use the end-of-line meta-character to terminate matching. For example,
use change$ so you don't also match changes.

For additional information about path values withp4 push andp4 change
commands, see "Additional triggers for push and fetch commands" on the next page.

You cannot create apre-user-info trigger.

264

Additional triggers for push and fetch commands

Field Meaning

comman The trigger for Helix Server to run when the condition implied by pa th is satisfied.

d Specify the command in a way that allows Helix Server to locate and run the

command. The command (typically a call to a script) must be quoted, and can take as
arguments anything that your command is capable of parsing, including any
applicable Helix Server trigger variable.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

Additional triggers for push and fetch commands

Additional triggers for push and fetch commands

The section "Triggering on pushes and fetches" on page 255 describes the triggers that you can run
during the various phases of thep4 push andp4 fetch commands. These are triggers that are run
by the server initiating the push or the fetch. However, for every initiator, there is a responder:

m Forevery push by server A to server B, there is a server B receiving the items pushed by A.

m Forevery fetch by server A from server B, there is a sever B that is being fetched from.

This creates additional trigger opportunities for the server receiving the push and the server responding to
the fetch request. You can use command type triggers to take advantage of these opportunities. Within
this context, pre-user and post-user actions refer to the server initiating the push or fetch; pre-
rmt and post-rmt actions refer to the responding server. The following table lists the triggers that can
be used by the responding, or remote, server.

Trigger Meaning

pre-rmt-Push Run this trigger on the remote server before it receives pushed content.

post-rmt-Push Run this trigger on the remote server after it receives pushed content.

Two special variables are available for use with post remote push triggers:

m $$firstPushedChange%$% specifies the first new changelist
number

= %¥%lastPushedChange%% specifies the last new changelist
number

pre-rmt-Fetch Run this trigger on the remote server before it responds to a fetch request.

post-rmt-Fetch Runthis trigger on the remote server after it responds to a fetch request.

265

Triggering on journal rotation

Triggering on journal rotation

To configure Helix Server to run trigger scripts when journals are rotated, use the journal-rotate
and journal-rotate-1lock type triggers. Journal-rotate triggers are executed after the journal is
rotated on a running server, but only if journals are rotated withthe p4 admin journal orp4
admin checkpoint commands. Journal rotate triggers will not execute when journals are rotated
withthep4d -jcorp4d --3jjcommands.

Journal-rotate triggers allow you to run maintenance routines on servers after the journal has been
rotated, either while the database tables are still locked or after the locks have been released. These
triggers are intended to be used on replicas or edge servers where journal rotation is triggered by journal
records. The server must be running for these triggers to be invoked.

The following table describes the fields of a journal-rotate trigger:

Field Meaning

type m journal-rotate-lock: Execute the trigger after the journal is rotated
but while the database files are still locked.

= journal-rotate: Execute the trigger after the journal is rotated and data
base file locks are released.

path The server on which the triggers should be run. One of the following:
= any

m serverid-runon the specified server

command The trigger for Helix Server to run when the server matching pa th is found for the
trigger type. Specify the command in a way that allows Helix Server account to locate
and run the command. The command (typically a call to a script) must be quoted, and
can take as arguments anything that your command is capable of parsing, including
any applicable Helix Server trigger variables.

Journal-rotate triggers can process two variables: $journal$% and
%checkpoint%. These specify the names of the rotated journal and the new
checkpoint if a checkpoint was taken. If no checkpoint was taken, $checkpoint$%
is an empty string.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depotas //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%". See "Storing triggers in the depot" on
page 245 for more information.

266

Triggering on shelving events

Triggering on shelving events

To configure Helix Server to run trigger scripts when users work with shelved files, use shelve triggers:
these are triggers of type shelve-submit, shelve-commit, and shelve-delete.

The following table describes the fields of a shelving type trigger:

Field Meaning

type

m shelve-submit: Execute a pre-shelve trigger after changelist has been
created and files locked, but prior to file transfer.

m shelve-commit: Execute a post-shelve trigger after files are shelved.

m shelve-delete: Execute a shelve trigger prior to discarding shelved files.

path

A file pattern in depot syntax.

If a shelve contains any files in the specified path, the trigger fires. To prevent some
shelving operations from firing these triggers, use an exclusionary mapping in the
path.

command

The trigger for Helix Server to run when a matching pa th applies for the trigger type.
Specify the command in a way that allows Helix Server account to locate and run the
command. The command (typically a call to a script) must be quoted, and can take
as arguments anything that your command is capable of parsing, including any
applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%". See "Storing triggers in the depot" on
page 245 for more information.

Shelve-submit triggers L 267
Shelve-commit triggers 268

Shelve-delete triggers

Shelve-submit triggers

The shelve-submit trigger works like the change-submi t trigger; it fires after the shelved changelist
is created, but before before files are transferred to the server. Shelve-submit triggers are useful for
integration with reporting tools or systems that do not require access to file contents.

Example

A site administrator wants to prohibit the shelving of large disk images; the following shelve-submit
trigger rejects a shelving operation if the changelist contains .iso files.

267

Shelve-commit triggers

#!/bin/sh
shelvel.sh - Disallow shelving of certain file types

This trigger always fails: when used as a shelve-submit trigger
with a specified path field, guarantees that files matching that
path are not shelved

echo "shelvel.sh: Shelving operation disabled by trigger script."

exit 1

To use the trigger, add the following line to your triggers table, specifying the path for which shelving is
to be prohibited in the appropriate field, for example:

shelvingl shelve-submit //....1s0 shelvel.sh

Every time a changelist is submitted that affects any . iso files in the depot, the shelvel. sh
script runs, and rejects the request to shelve the disk image files.

Shelve-commit triggers

Use the shelve-commi t trigger to create triggers that fire after shelving and file transfer. Use shelve-
commit triggers for processes that assume (or require) the successful submission of a shelving
operation.

Example
Here is an example of a shelve-commit trigger that notifies users (in this case, reviewers) about a
shelved changelist.

#!/bin/sh
shelve2.sh - Send email to reviewers when open files are shelved
changelist=$1
workspace=52

user=3$3

mail -s "shelve2.sh: Files available for review" reviewers << EOM
Suser has created shelf from Sworkspace in S$changelist"

EOM

268

Shelve-delete triggers

exit O

To use the trigger, add the following line to your triggers table:

on

shelving2 shelve-commit //... "shelve2.sh %change% %client% %user$

Whenever a user shelves a changelist, reviewers receive an email notification.

Shelve-delete triggers

Usethe shelve-delete trigger to create triggers that fire after users discard shelved files.

Example
Here is an example of a shelve-delete trigger that notifies reviewers that shelved files have been

abandoned.

#!/bin/sh

shelve3.sh - Send email to reviewers when files deleted from shelf
changelist=$1

workspace=$2

user=3$3

mail -s "shelve3.sh: Shelf Schangelist deleted" reviewers << EOM
Suser has deleted shelved changelist $changelist"
EOM

exit O

To use the trigger, add the following line to your triggers table:

on

shelving3 shelve-delete //... "shelve3.sh %change% %client% %user$

Whenever a user deletes files from the shelf, reviewers receive an email notification. A more realistic
example might check an external (or internal) data source to verify that code review was complete
complete before permitting the user to delete the shelved files.

Triggering on fixes

To configure Helix Server to run trigger scripts when users add or delete fixes from changelists, use fix
triggers: these are triggers of type £ix-add and £ix-delete.

269

Fix-add and fix-delete triggers

The special variable $jobs$% is available for expansion with fix triggers; it expands to one argument for
every job listed onthe p4 f£ix command line (orinthe Jobs: fieldofap4 change orp4 submit
form), and must therefore be the last argument supplied to the trigger script.

Note

Fix-add triggers might be also be run following the submission of a changelist if the job associated
with the changelist exists both on the personal and the shared servers. For more information on push
triggers, see "Triggering on pushes and fetches" on page 255.

The following table describes the fields used for a fix trigger definition.

Field Meaning

type m fix-add: Execute fix trigger prior to adding a fix.

m fix-delete: Execute fix trigger prior to deleting a fix.

path Use £ix as the path value.

command The trigger for Helix Server to run when a user adds or deletes a fix. Specify the
command in a way that allows Helix Server account to locate and run the command.
The command (typically a call to a script) must be quoted, and can take as
arguments any argument that your command is capable of parsing, including any
applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

For fix-add and fix-delete triggers, fix addition or deletion continues whether
the script succeeds or fails.

Fix-add and fix-delete triggers 270

Fix-add and fix-delete triggers

Example

The following script, when copied to fixadd.sh and fixdel.sh, fires when users attempt to add or
remove fix records, whether by using the p4 fix command, or by modifying the Jobs: field of the forms
presented by the p4 change and p4 submit commands.

#!/bin/bash

fixadd.sh, fixdel.sh - illustrate fix-add and fix-delete triggers

270

Triggering on forms

COMMAND=S$0
CHANGE=S1
NUMJOBS=S ((S# - 1))

echo SCOMMAND: fired against $CHANGE with S$SNUMJOBS job arguments.
echo $SCOMMAND: Arguments were: S$*

These £ix-add and £ix-delete triggers fire whenever users attempt to add (or delete) fix
records from changelists. To use the trigger, add the following lines to the trigger table:

sampled fix-add fix "fixadd.sh %change% $jobs$%"
sampleb fix-delete fix "fixdel.sh %change% $jobs%"

Using both copies of the script, observe that £ixadd. shis triggered by p4 £ix, the

fixdel. shscriptistriggeredby p4 £ix -d, and either script may be triggered by manually
adding (or deleting) job numbers from within the Jobs : field in a changelist form - either by means of
P4 changeoras partofthep4 submit process.

Because the $jobs$% variable is expanded to one argument for every job listed onthe p4 fix
command line (orinthe Jobs : fieldof ap4 change orp4 submit form), it must be the last
argument supplied to any £ix-add or fix-delete trigger script.

Triggering on forms

To configure Helix Server to run trigger scripts when users edit forms, use form triggers: these are
triggers of type form-save, form-in, form-out, form-delete, and form-commit.

Use form triggers to generate customized field values for users, to validate data provided on forms, to
notify other users of attempted changes to form data, and to otherwise interact with process control and
management tools.

The $specde£% variable is defined for form triggers: it is expanded to the spec string of the form in
question. This allows derived APIs to parse forms as part of triggers by loading the spec string as an
argument.

If you write a trigger that fires on trigger forms, and the trigger fails in such a way that the p4
triggers command no longer works, the only recourse is to remove the db . triggers file in the
server root directory.

The following table describes the fields of a form trigger definition:

271

Triggering on forms

Field Meaning

type

m form-save: Execute a form trigger after the form contents are parsed, but
before the contents are stored in the Helix Server database. The trigger cannot
modify the form specified in $formfile% variable.

m form-out: Execute form trigger upon generation of form to end user. The
trigger can modify the form.

m form-in: Execute form trigger on edited form before contents are parsed and
validated by Helix Server. The trigger can modify the form.

m form-delete: Execute form trigger after the form contents are parsed, but
before the form is deleted from the Helix Server database. The trigger cannot
modify the form.

s form-commi t: Execute form trigger after the form has been committed for
access to automatically-generated fields such as jobname, dates, etc.

path

The name of the type of form, (branch, change, client, depot, group,
job, label, protect, server, spec, stream, triggers, typemap, or
user).

command

The trigger for Helix Server to run when the type of form specified in the pa th field is
processed.

Specify the command in a way that allows Helix Server account to locate and run the
command. The command (typically a call to a script) must be quoted, and can take
as arguments any argument that your command is capable of parsing, including any
applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

For form-in, form-out, form-save, and form-delete triggers, the data
in the specification becomes part of the Helix Server database if the script succeeds.
Otherwise, the database is not updated.

Form-save triggers 273
Form-out triggers .. . 274
Form-in trigQers 275
Form-delete triggers il 276
Form-commit triggers 277

272

Form-save triggers

Form-save triggers

Use the form-save trigger type to create triggers that fire when users send changed forms to the
server. Form-save triggers are called after the form has been parsed by the server but before the changed
form is stored in the Helix Server metadata.

Example

To prohibit certain users from modifying their client workspaces, add the users to a group called
lockedws and use the following form-save trigger.

This trigger denies attempts to change client workspace specifications for users in the lockedws
group, outputs an error message containing the user name, |P address of the user's workstation, and
the name of the workspace on which a modification was attempted, and notifies an administrator.
#!/bin/bash

NOAUTH=lockedws

USERNAME=S$1

WSNAME=S2

IPADDR=$3

GROUPS='"p4 groups "S$1"'

if echo "SGROUPS" | grep —-gs SNOAUTH
then
echo "SUSERNAME (SIPADDR) in $SNOAUTH may not change SWSNAME"
mail -s "User $1 workspace mod denial" admin@l127.0.0.1
exit 1
else
exit O
fi

This form-save trigger fires on client forms only. To use the trigger, add the following line to the
trigger table:

sample6 form-save client "ws lock.sh %user% %client% %clientip%"

Users whose names appear in the output of p4 groups lockedws have changes to their client
workspaces parsed by the server, and even if those changes are syntactically correct, the attempted
change to the workspace is denied, and an administrator is notified of the attempt.

273

Form-out triggers

Form-out triggers

Use the form-out trigger type to create triggers that fire whenever the Helix Core Server generates a
form for display to the user.

Warning
Never use a Helix Server command in a form-out trigger that fires the same form-out trigger,

or infinite recursion will result. For example, neverrunp4 job -o from within a form-out trigger
script that fires on job forms.

Example

The default Perforce client workspace view maps the entire depot //depot/... to the user's client
workspace. To prevent novice users from attempting to sync the entire depot, this Perl script changes
a default workspace view of //depot/... in the p4 client form to map only the current release codeline of
/Idepot/releases/main/...

#!/usr/bin/perl
default ws.pl - Customize the default client workspace view.

Spd = "p4 -p localhost:1666";

Sformname = $SARGV[0]; # from %formname$% in trigger table
Sformfile = SARGV[1]; # from $formfile% in trigger table

Default server-generated workspace view and modified view
(Note: this script assumes that //depot is the only depot defined)
Sdefaultin = "\t//depot/... //$formname/...\n";
Sdefaultout = "\t//depot/releases/main/... //$formname/...\n";
Check "p4 clients": if workspace exists, exit w/o changing view.
(This example is inefficient if there are millions of workspaces)
open CLIENTS, "$p4 clients |" or die "Couldn't get workspace list";
while (<CLIENTS>)
{

if (/"Client Sformname .*/) { exit 0; }
}
Build a modified workspace spec based on contents of $formfile%
Smodifiedform = "";
open FORM, S$formfile or die "Trigger couldn't read form tempfile";
while (<FORM>)
{ ## Do the substitution as appropriate.

if (m:Sdefaultin:) { $ = "Sdefaultout"; }

274

Form-in triggers

$modifiedform .= $;

}
Write the modified spec back to the $formfile$%,

open MODFORM, ">S$formfile" or die "Couldn't write form tempfile";
print MODFORM S$modifiedform;

exit 0;
This form-out trigger fires on c1lient workspace forms only. To use the trigger, add the following
line to the trigger table:

sample? form-out client "default ws.pl %formname% %formfile%"

New users creating client workspaces are presented with your customized default view.

Form-in triggers

Use the form-1in trigger type to create triggers that fire when a user attempts to send a form to the
server, but before the form is parsed by the Helix Core Server.

Example

All users permitted to edit jobs have been placed in a designated group called jobbers. The
following Python script runs p4 group —o jobbers with the =G (Python marshaled objects) flag to
determine if the user who triggered the script is in the jobbers group.

import sys, os, marshal

Configure for your environment
tuser = "triggerman" # trigger username

job group = "jobbers" # Perforce group of users who may edit jobs

Get trigger input args

user = sys.argv[l]

Get user list
Use global -G flag to get output as marshaled Python dictionary

CMD = "p4 -G -u %s -p 1666 group -o %s" $ \
(tuser, job group)

{}
marshal.load (os.popen(CMD, 'r'))

result

result

275

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_group.html

Form-delete triggers

job users = []
for k in result.keys() :
if k[:4] == 'User': # user key format: User(O, Userl,

result[k]

u

job users.append (u)

Compare current user to job-editing users.
if not user in job users:
print "\n\t>>> You don't have permission to edit jobs."
print "\n\t>>> You must be a member of '$s'.\n" % job group
sys.exit (1)
else: # user is in job group -- OK to create/edit jobs
sys.exit (0)
This form-in trigger fires on job forms only. To use the trigger, add the following line to the trigger
table:

on

sample8 form-in Jjob "python jobgroup.py %user%

If the useris in the jobbers group, the form-1in trigger succeeds, and the changed job is passed
to the Helix Core Server for parsing. Otherwise, an error message is displayed, and changes to the job
are rejected.

Tip
For detailed guidance for using the flag for Python marshaled objects, see the Support
Knowledgebase article, "Using p4 -G".

Form-delete triggers

Usethe form-delete trigger type to create triggers that fire when users attempt to delete a form,
after the form is parsed by the Helix Server, but before the form is deleted from the Helix Server
database.

Example

An administrator wants to enforce a policy that users are not to delete jobs from the system, but must
instead mark such jobs as closed.

#!/bin/sh

276

https://community.perforce.com/s/article/3518

Form-commit triggers

echo "Jobs may not be deleted. Please mark jobs as closed instead."

exit 1
This form-delete trigger fires on job forms only. To use the trigger, add the following line to the
trigger table:

sample9 form-delete Jjob "nodeljob.sh"

Whenever a user attempts to delete a job, the request to delete the job is rejected, and the user is
shown an error message.

Form-commit triggers

Unlike the other form triggers, the form-commi t trigger fires after a form is committed to the
database. Use these triggers for processes that assume (or require) the successful submission of a form.
In the case of job forms, the job’s name is not set until after the job has been committed to the database;

the form-commi t trigger is the only way to obtain the name of a new job as part of the process of job

creation.

Example
The following script, when copied to newjob.sh, shows how to get a job name during the process of job
creation, and also reports the status of changelists associated with job fixes.

#!/bin/sh

newjob.sh - illustrate form-commit trigger

COMMAND=$0
USER=$1
FORM=52
ACTION=$3

echo SCOMMAND: User SUSER, formname $FORM, action SACTION >> log.txt

To use the trigger, add the following line to the trigger table:

samplel0 form-commit Jjob "newjob.sh %user% $formname% %action%"

Use the $action% variable to distinguish whether or not a change to a job was prompted by a user
directly working with a job by means of p4 Jjob, orindirectly by means of fixing the job within the
context of p4 f£ix orthe Jobs: field of a changelist.

The simplest case is the creation of a new job (or a change to an existing job) with the p4 job
command; the trigger fires, and the script reports the user, the name of the newly-created (or edited)
job. Inthese cases, the $action$% variable is null.

277

Triggering to use external authentication

The trigger also fires when users add or delete jobs to changelists, and it does so regardless of
whether the changed jobs are being manipulated by means of p4 fix,p4 £ix -d, orby editing
the Jobs : field of the changelist form provided by p4 change orp4 submit form). Inthese
cases, the $action% variable holds the status of the changelist (pending or submi tted)to
which the jobs are being added or deleted. The form-commai t trigger does not run if zero jobs are
attached to the changelist.

Because the $action$ variable is not always set, it must be the last argument supplied to any
form-commi t trigger script.

Triggering to use external authentication

To configure Helix Server to work with an external authentication manager (such as LDAP or Active
Directory), use authentication triggers (auth-check, auth-check-sso, service-check, and
auth-set). These triggers fire on the p4 loginand p4 passwd commands.

Note
The Helix SAML authentication feature is described at "Helix SAML " on page 124.

Note

You might prefer to enable LDAP authentication by using an LDAP specification. This option is
recommended: it is easier to use, no external scripts are required, it provides greater flexibility in
defining bind methods, it allows users who are not in the LDAP directory to be authenticated against
Helix Server's internal user database, and it is more secure. For more information, see
"Authentication options" on page 107.

That being said, you also have the option of using auth-check-sso triggers when LDAP
authentication is enabled. In this case, users authenticated by LDAP can define a client-side SSO
script instead of being prompted for a password. If the trigger succeeds, the active LDAP
configurations are used to confirm that the user exists in at least one LDAP server. The user must
also pass the group authorization check if it is configured. Triggers of type auth-check-sso will
not be called for users who do not authenticate against LDAP.

Authentication triggers differ from changelist and form triggers in that passwords typed by the user as
part of the authentication process are supplied to authentication scripts as standard input; never on the
command line. (The only arguments passed on the command line are those common to all trigger types,
such as $user$%, $clientip$%, andsoon.)

Warning

Be sure to spell the trigger name correctly when you add the trigger to the trigger table because a
misspelling can result in all users being locked out of Helix Server.

278

https://doc-ondemand.bnr.perforce.com//cmdref/p18.2/latest/Content/CmdRef/p4_login.html
https://doc-ondemand.bnr.perforce.com//cmdref/p18.2/latest/Content/CmdRef/p4_passwd.html

Triggering to use external authentication

Be sure to fully test your trigger and trigger table invocation prior to deployment in a production
environment.

Contact Perforce Technical Support if you need assistance with restoring access to your server.

The examples in this book are for illustrative purposes only. For a more detailed discussion, including
links to sample code for an LDAP environment, see the Support Knowledgebase article, "Authenticating
with LDAP".

You must restart the Helix Core Server after adding an auth-check (or service-check) triggerin
order for it to take effect. You can, however, change an existing auth-check trigger table entry (or
trigger script) without restarting the server.

Afteran auth-check triggeris in place and the server restarted, the Helix Serversecurity
configurable is ignored. Because authentication is now under the control of the trigger script, the server’s
default mechanism for password strength requirements is redundant.

The following table describes the fields of an authentication trigger definition.

Field Meaning

type m auth-check: Execute an authentication check trigger to verify a user’s
password against an external password manager during login, or when setting
anew password. If an auth-check trigger is present, the
Perforcesecuri ty configurable (and any associated password strength
requirement) is ignored, as authentication is now controlled by the trigger script.

You must restart the Helix Core Server after adding an auth-check trigger.
= auth-check-sso: Facilitate a single sign-on user authentication.

= auth-set: Execute an authentication set trigger to send a new password to
an external password manager.

m service-check: Execute a trigger to verify the password of a service
user, rather than a standard user. Service check triggers work in the same way
that auth-check triggers do. Do not use this type of trigger for an operator
user; use the auth-check type trigger instead.

You must restart the Helix Core Server after adding a service-check
trigger.

path Use auth as the path value.

279

https://community.perforce.com/s/article/2590
https://community.perforce.com/s/article/2590

Auth-check and service-check triggers

Field Meaning

command The trigger for the Helix Core Server to run. See the following sections about specific
authentication trigger types for more information on when the trigger is fired. In most
cases, itis whenthe p4 login command executes.

Specify the command in a way that allows the Helix Core Server account to locate
and run the command. The command (typically a call to a script) must be quoted, and
can take as arguments any argument that your command is capable of parsing,
including any applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the
command field might be " /usr/bin/perl
%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on
page 245 for more information.

Forauth-check and service-check triggers (fired by p4 login from
standard/operator users and service users respectively), the user’s typed password is
supplied to the trigger command as standard input. If the trigger executes
successfully, the Helix Server ticket is issued. The user name is available as
%user$ to be passed on the command line.

Forauth-check-sso triggers, (fired by p4 login forall users) the output of the
client-side script (specified by PALOGINSSO) is sent to the server-side script in
cleartext.

Forauth-set triggers, (fired by p4 passwd, but only after also passing an
auth-check trigger check) the user’s old password and new password are passed
to the trigger as standard input. The user name is available as $user% to be passed
on the command line.

Auth-check and service-check triggers 280
Single sign-on and auth-check-sso triggers ... 282
Triggering for external authentication 287

Auth-check and service-check triggers

Triggers of type auth-check fire when standard or operator users runthe p4 login command.
Similarly, service-check triggers fire when service users users runthe p4 login command. If
the script returns 0, login is successful, and a ticket file is created for the user.

The service-check trigger works exactly like an auth-check trigger, but applies only to users
whose Type : has been set to service. The service-check trigger type is used by Helix Server
administrators who want to use LDAP to authenticate other Helix Server s in replicated and other multi-
server environments.

280

Auth-check and service-check triggers

Warning
If you are using auth-check triggers, the Helix Server superuser must also be able to authenticate

against the remote authentication database. (If you, as the Helix Server superuser, cannot use the
trigger, you may find yourself locked out of your own server, and will have to (temporarily) overwrite
your auth-check trigger with a script that always passes in order to resolve the situation.)

Example A trivial authentication-checking script
All users must enter the password "secret" before being granted login tickets. Passwords supplied by

the user are sent to the script on STDIN.
#!/bin/bash

checkpass.sh - a trivial authentication-checking script

in this trivial example, all users have the same "secret" password
USERNAME=S$1
PASSWORD=secret

read user-supplied password from stdin

read USERPASS

compare user-supplied password with correct password
if ["SUSERPASS" = SPASSWORD]
then
Success
exit 0
fi

Failure

echo checkpass.sh: password SUSERPASS for S$USERNAME is incorrect
exit 1

This auth-check trigger fires whenever users runp4 login. To use the trigger, add the
following line to the trigger table:

samplell auth-check auth "checkpass.sh %user%"

Users who enter the "secret" password are granted login tickets.

281

Single sign-on and auth-check-sso triggers

Single sign-on and auth-check-sso triggers

Client script and server script

Triggers of type auth-check-sso fire when standard users runthe p4 1ogin command. Two
scripts are run: a client-side script is run on the user's workstation, and its output is passed (in plaintext)
to the Helix Core Server, where the server-side script runs.

282

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_login.html

Single sign-on and auth-check-sso triggers

Client-side script

Server-side

On the user’s client workstation, a script (whose location is specified by the
P4TLOGINSSO environment variable) is run to obtain the user’s credentials or
other information verifiable by the Helix Server. PALOGINSSO contains:

m the name of the client-side script

m zero or more of the following trigger variables, passed as parameters to
the script:

¢ %user%
+ %$serverAddress%

¢ $P4PORTS
For example,

$ export P4ALOGINSSO="/path/to/sso-client.sh
%user% %$serverAddress% %P4PORTS"

Where $user$ is the Helix Server client user, $serverAddress$ is the
address of the target Helix Server, and $P4PORT% is an intermediary between
the client and the server.

script

On the server, the
output of the client-
side script is
passed to the
server-side script
as standard input.
The server-side
script specified in
the trigger table
runs, and the
server returns an
exit status of O if
successful.

With a distributed
configuration in
which a proxy or
broker acts as an
intermediary
between the client
and the server:

m the
$server
Addres
s% variable
holds the
address/por
t of the
server

m the
$P4POR
T$% variable
holds the
port of the
intermediar

y.

The script decides
what to do with this
information.

See also: "Helix SAML " on page 124.

283

https://www.perforce.com/perforce/doc.current/manuals/p4sag/

Single sign-on and auth-check-sso triggers

p4 login behavior with auth-check-sso trigger

The table below describes the behavior of p4 login when a trigger of type auth-check-ssoisin
place.

Depending on the configuration and environment:

m The PALOGINSSO client-side script is executed, performing customizable SSO operations,
potentially without user interaction.

m The useris prompted to authenticate by password. This is a fallback if no client-side
P4LOGINSSO script is configured.

m The user's login attempt is rejected until a valid PALOGINSSO script is configured in the user's
environment.

Version 2018.2 introduced two configurables that change the default behavior:

m auth.sso.allow.passwd allows a user whose password is stored in the database (db . user)to
fall back to password authentication if PALOGINSSO is not configured.

m auth.sso.nonldap allows a user whose AuthMethod is set to perforce on an LDAP-enabled
server to make use of PALOGINSSO

If PALOGINSSO is set:

Not LDAP-

Enabled LDAP-Enabled

'perforce’ | 'ldap’ +
auth.sso.allow.pa | auth.sso.nonl + LDAP LDAP

sswd dap

enabled enabled

Password
requested

Password
requested

If PALOGINSSO is not set:

284

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_login.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#auth.sso.allow.passwd
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#auth.sso.nonldap
https://www.perforce.com/perforce/doc.current/manuals/p4sag/Content/P4SAG/auth.users.html

Single sign-on and auth-check-sso triggers

Not LDAP-

Enabled LDAP-Enabled

'Idap’ +

auth-
LDAP
check enable

trigger d

auth.sso.allow.pas | auth.sso.nonl
swd dap

Passwo Passwor Passwo
rd d rd

request requeste request
ed d ed
1
1 0 Passwo Passwo Passwor Passwo
rd rd d rd
1 request request requeste request
ed ed d ed
Example Interaction between client-side and server-side scripts

An auth-check-sso trigger fires whenever users runp4 1ogin. The system administrator
might add the following line to the trigger table to specify the script that should run on the server side:

on

samplel3 auth-check-sso auth "serverside.sh %user$%

and each end user sets the following environment variable on the client side:

export PA4LOGINSSO=/usr/local/bin/clientside.sh %$serverAddress$%

When the user attempts to log on, the PATOGINSSO script runs on the user's workstation:

##!/bin/bash

clientside.sh - a client-side authentication script

if we use %serverAddress% in the command-line like this:
p4 -E P4LOGINSSO=clientside.sh $%$serverAddress$

then this script receives the serverAddress as $1, and the user

#
#
#
#
#
can use it for multiple connections to different Helix Servers.
#
In this example, we simulate a client-side authentication process
based on whether the user is connecting to the same Helix Server
as is already configured in his or her environment.

#

(We also output debugging information to a local file.)

285

https://www.perforce.com/perforce/doc.current/manuals/cmdref/
https://www.perforce.com/perforce/doc.current/manuals/cmdref/

Single sign-on and auth-check-sso triggers

input saddr=$1

env_saddr="p4 info | grep "Server address" | awk '{printf "%s", $3}'"
if test "S$input saddr" == "S$env saddr"
then

User is connected to the server specified by P4PORT - pass
echo "sso pass"; echo pass "$input saddr" >> debug.txt; exit 0
else

User is attempting to connect to another server - fail

echo "no pass"; echo fail "Sinput saddr" >> debug.txt; exit 1
fi
If the user is connected to the same Helix Core Server as specified by P4PORT (that is, if the server
address passed from the Server to this script matches the server that appears in the output of a plain
p4 info command), client-side authentication succeeds. If the useris connected to another Helix
Core Server (for example, by runningp4 -p host:port login against a different Helix Core

Server), client-side authentication fails.

The server-side script is as follows:

#!/bin/bash
#

serverside.sh - a server-side authentication script

#

if test $# -eq O
then
echo "No user name passed in.";
exit 1;

fi
read msg </dev/stdin
if test "S$msg" == ""

then

echo "1, no stdin"

286

Triggering for external authentication

exit 1

fi

if test "S$msg" == "sso pass"
then
exit 0
else
exit 1
fi
In a more realistic example, the end user's PAL.OGINSSO script pointstoaclientside.sh
script that contacts an authentication service to obtain a token of some sort. The client-side script then

passes this token to Helix Core Server’s trigger script, and serverside. sh uses the single-
signon service to validate the token.

In this example, clientside. sh merely checks whether the user is using the same connection
as specified by P4PORT, and the output of clientside. shis trivially checked for the string
"sso pass";if the string is present, the user is permitted to log on.

Triggering for external authentication

Triggers of type auth-set fire when users (standard users or service users) runthe p4 passwd
command and successfully validate their old password with an auth-check (or service-check)
trigger. The process is as follows:

1. Auserinvokes p4 passwd.

2. The Helix Core Server prompts the user to enter his or her old password.

3. The Helix Core Server fires an auth-check trigger to validate the old password against the
external authentication service.

4. The script associated with the auth-check trigger runs. If the auth-check trigger fails, the
process ends immediately: the user is not prompted for a new password, and the auth-set
trigger never fires.

5. Ifthe auth-check trigger succeeds, the server prompts the user for a new password.

6. The Helix Core Server fires an auth-set trigger and supplies the trigger script with both the old
password and the new password on the standard input, separated by a newline.

Note
In most cases, users in an external authentication environment will continue to set their

passwords without use of Helix Server. The auth-set trigger type is included mainly for
completeness.

287

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4LOGINSSO.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html

Triggering for multi-factor authentication (MFA)

Because the Helix Core Server must validate the user’s current password, you must have a properly
functioning auth-check trigger before attempting to write an auth-set trigger. A trivial
authentication-setting script

Example A trivial authentication-setting script

#!/bin/bash

setpass.sh - a trivial authentication-setting script

USERNAME=$1

read OLDPASS
read NEWPASS

echo setpass.sh: SUSERNAME attempted to change SOLDPASS to SNEWPASS

This auth-set trigger fires after users runp4 passwd and successfully pass the external
authentication required by the auth-check trigger. To use the trigger, add the following two lines to
the trigger table:

samplell auth-check auth "checkpass.sh Suser%"

samplel?2 auth-set auth "setpass.sh %users"

This trivial example doesn’t actually change any passwords; it merely reports back what the user
attempted to do.

Triggering for multi-factor authentication (MFA)

Tip
To get command-line help for MFA, type p4 help mfa to see the topic "MFA - Multi-Factor
Authentication”.

Support for multi-factor authentication is provided by installing three triggers of the following types:
m auth-pre-2£fa, which presents the user a list of authentication methods
m auth-init-2£fa, which begins the flow for the chosen authentication method
m auth-check-2£fa, which checks whether passwords are valid

Only one trigger of each type can be defined and all three triggers must be present.

These triggers return JSON results to the server. Once installed, and the server has been restarted, the
security level is set to 3 implicity, and can be explicitly set higher.

288

The list-methods phase (auth-pre-2fa)

To configure a user to require MFA, the AuthMe thod field in the user spec for that user must be
modified to either perforce+2£fa or 1dap+2£a. This will require that this user run the p4 login2
command to perform the second authentication steps. If automatic login prompting is enabled, users will
automatically perform this after their normal password based authentication. Seethe p4 help
login2 command-line help.

There are three phases to MFA, each based on the execution of that phase's trigger:

The list-methods phase (auth-pre-2fa)

This phase presents the user with a list of available MFA methods. For example, users might be
configured to use either SMS or a mobile authentication application. In interactive mode, if the user only
has one method, this is chosen automatically. These methods are returned by the auth-pre-2£fa
trigger. The trigger can also indicate that this user doesn't require additional authentication in this
instance, or that this user is not permitted access. This trigger is expected to return 0 on success and
return a JSON string to the server via STDOUT.

The JSON response should be in the following format:

{
"status" : O,
"methodlist" : [
["methodl" , "method descriptionl"],
["method2" , "method description2"]
1,
"message" : "Error message"
}

The status field is required, and should be be 0 on success with the method1list populated with a
dictionary of authentication, where the key is the method name and the value is the method description.

If the status is set to 2, MFA is not required for this user on this host at this time. Any other status value
is considered to be a rejection of the authentication attempt. In these cases, the methodlist is not needed
and instead a message can be provided to be relayed to the user.

For example:

{
"status" : 2,

"message" : "Second factor authentication not required"

289

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_login2.html

The init-auth phase (auth-init-2fa)

The init-auth phase (auth-init-2fa)

This phase begins the second authentication flow for the chosen method. It calls the auth-init-2fa
trigger, returning the status (0 for success) and the scheme. In the case of an error, the status would be
non-zero and the scheme is not required. In addition, a message might be reported to the user in either
case.

An optional challenge can be set to be presented to the user. For authentication flows that require state
between init and check, a token can be set. This token is stored in the server but never reported to the
user. The token is available to the next trigger via a trigger variable.

Here is an example JSON response:

{

"status" : O,

"scheme" : "challenge",

"message" : "Please enter your response",
"challenge" : "ABBACD",

"token" : "REQID:20003339189"

}
There are four possible values for scheme:

m otp-generated - A One-Time-Password generated by a user device
m otp-requested - A One-Time-Password sent to the user
m challenge -A challenge/response based on atoken displayed to the user

m external -Arequesttoa 3rd-party prompting method, like an app-based push notification

The check-auth phase (auth-check-2fa)

This phase performs the verification step for the authentication flow initialized by init-auth. If the
scheme is "external", the auth-2fa-check triggeris called to query the status of the prompt from
the authentication provider. Otherwise the user is prompted for her or his One-Time-Password or
challenge response, which is passed to the auth-2fa-check trigger via STDIN and is validated
against the second factor authentication provider. The response of this trigger is represented in JSON as
a status field and an option message to the user. The status values are 0 for success and non-zero for
failure (authentication rejected).

If the scheme is "external", it is possible that the authentication provider might still be waiting for the
user's response. Returning a status value of 2 instructs the server to neither accept or reject the
authentication attempt. For example:

{

"status" : 2,

290

Variables

"message" : "A token was sent to your phone"

Variables

All three trigger's specific variables are:

%users% - the user's username

%$fullname$% - the user's fullname

%email$% - the user's email address

%host% - the user's host's IP address

$method$% - the authentication method from list-methods (can be set to "unknown")
%$scheme$% - the authentication scheme set by init-auth (can be set to "unknown")
$token$ - the stashed token from the last init-auth (can be empty)

Given that the $fullname$% and $email$ fields are populated from fields in the user spec which are
modifiable by default, if these are used, we recommend that you set
dm.user.allowselfupdate=0 to prevent users from modifying those fields.

Triggering to affect archiving

The archive trigger type is used in conjunction with the +X filetype modifier in order to replace the
mechanism by which the Helix Core Server archives files within the repository. They are used for storing,
managing, or generating content archived outside of the Helix Server repository. See "Execution
environment" on page 240 for platform-specific considerations.

The following table describes the fields of an archive trigger definition:

Field Meaning

type archive: Execute the script when a user accesses any file with a filetype
containing the +X filetype modifier. The script can read, write, or delete files in the
archive.

The script is run once per file requested.

For read operations, scripts should deliver the file to the user on standard output. For
write operations, scripts receive the file on standard input.

path A file pattern to match the name of the file being accessed in the archive.

291

Triggering to affect archiving

Field Meaning

command The trigger for the Helix Core Server to run when a file matching pa th is found in the

archive.

Specify the command in a way that allows the Helix Core Server account to locate
and run the command. The command (typically a call to a script) must be quoted, and
can take as arguments any argument that your command is capable of parsing,

including any applicable Helix Server trigger variables.

When your trigger script is stored in the depot, its path must be specified in depot
syntax, delimited by percent characters. For example, if your script is stored in the
depot as //depot/scripts/myScript.pl, the corresponding value for the

command field might be " /usr/bin/perl

%//depot/scripts/myScript.pl%" . See "Storing triggers in the depot" on

page 245 for more information.

If the command succeeds, the command’s standard output is the file content. If the
command fails, the command standard output is sent to the client as the text of a

trigger failure error message.

Example

This archiwve trigger fires when users access files that have the +X (archive) modifier set.

#!/bin/sh

archive.sh - illustrate archive trigger

OP=$§1
FILE=S$2
REV=$3

if ["sOP"
then

= read]

cat $S{FILE}S${REV}

= delete]

rm $S{FILE}S${REV}

fi

if ["sop"
then

fi

if ["sop"

= write]

292

Triggering with depots of type graph

then
Create new file from user's submission via stdin
while read LINE; do
echo S{LINE} >> S{FILE}S$S{REV}
done
1ls -t S{FILE}* |
{
read first; read second;
cmp -s Sfirst $second
if [$? -eq 0]
then
Files identical, remove file, replace with symlink.
rm ${FILE}S{REV}
In -s S$second $first
fi

fi
To use the trigger, add the following line to the trigger table:

arch archive path "archive.sh %op% %$file% Srevd"

When the user attempts to submit (write) a file of type +X in the specified pa th, if there are no
changes between the current revision and the previous revision, the current revision is replaced with a
symlink pointing to the previous revision.

Triggering with depots of type graph
To associate the trigger with a single repo named / /graphDepotl/repo8, specify the path as
//graphDepotl/repo8/.. with /.. at the end.

To associate the trigger with multiple repos, such as //graphDepotl/repoA and
//graphDepot2/repoB, use asterisks (*)to specify //graphDepot*/repo*/.. as the path.

For information about depots of type graph, see Helix4Git Administrator Guide and P4 Command
Reference.

Four variables apply:

= $depotNames$ - The depot the repo resides in

m $repoNames$ - The name of the repo

293

http://www.perforce.com/perforce/doc.current/manuals/helix-for-git/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

graph-push-start

m ¥repo% - The repo, which has . git as a suffix, but otherwise is identical to $repoName$%

m $pushers$ - The user credited with the push

The following four types of graph triggers are described in the order they would normally execute:

graph-push-start

m Fires prior to any data being transferred as part of agit push operation through the connector

m Can enforce your workflow rules

graph-push-reference

m Fires for each reference that is being created or updated
m Can have logic to block the update, according to your workflow rules

m [f the trigger fails on any reference, the entire push is canceled

A graph-push-reference trigger passes the original reference value in the $ol1dValue$% variable, the
new value in the $newValue$% variable, and the reference name in $reference%.

When such a trigger is fired from a push to the Git Connector:

m the reference type is passed in the $refType% variable.

m the $refFlags$ variable is populated with a list of actions that are being applied to the
reference.

graph-push-reference-complete

m Fires after a reference has been created or updated as part of agit push operation through the
connector
m Same variables as graph-push-reference

= Any trigger failures are ignored

graph-push-complete

= Fires when a git push of a specified repo has successfully completed

m You can use this trigger to signal that all the files are present and ready for a build, testing, or
diagnostic tool.

294

Triggers for external file transfer

Triggers for external file transfer

Helix Core Server can be integrated with third party WAN acceleration software to provide extremely fast
transfer of archive files in a high latency network using Helix Core Server federated architecture. This
feature supports external archive transfer with two approaches:

m "Replica archive pull threads" below

m "Edge server submits" on the facing page

Replica archive pull threads

To use external transfer with replica archive pull threads:

1. Set the following server configurables:

p4 configure set replica#pull.trigger.dir=/tmp/trigger
p4 configure set replica#lbr.replica.notransfer=1
p4 configure set lbr.autocompress=1

Thepull. trigger.dir configurable specifies the location where the pull thread writes the
temporary file to pass as $archiveList$% to the pull-archive trigger.

Note
To disable inline transfers on the replica, set 1br . replica.notransfer=1.

To make files of type text candidates for external archive transfer, set 1br . autocompress=1.

2. Define a pull-archive trigger in the trigger table:
externalPull pull-archive pull "pull.sh %archiveList%"

to specify the trigger script that performs the archive transfers, where $archiveList$% represents the
name of a temporary file containing the list of files to transfer.

3. Configure replica archive pull threads with the -—trigger option:
p4 configure set replicaf#startup.2="pull -u -i 1 --trigger --
batch=10"

Note
The optional --min-size and --max-size options enable you to partition archive pull threads
for files of different sizes. For example,

p4 configure set replicafstartup.3="pull -u -i 1 --trigger --
batch=5 --min-size=8192"

specifies that the trigger ignores small files.

The size unit is bytes, but K, M, G, and T modifiers can also be used.

295

Edge server submits

Important

To have small files handled by the standard archive pull threads and larger files handled by extermnal
file transfer, configure standard archive pull threads along with archive pull threads that use external
transfer. For example,

p4 configure set replicaffstartup.4="pull -u -i 1 --batch=1000 -
-min-size=1 --max-size=8K"

specifies that small file transfers occur without using external software.

Tip
For high-latency configurations, a larger ——batch value might improve archive transfer speed for
large numbers of small files.

Edge server submits
To use external transfer for submits from an edge server to a commit server:
1. Setrpl.submit.nocopy=1 todisable default submit archive copy:
p4 configure set rpl.submit.nocopy=1
2. Define a edge-content trigger:

edgeTransfer edge-content //... "submit.sh %changelist%

$serverroot%"

3. If the edge-content trigger needs to write temporary files, setthe pull. trigger.dir

configurable for the edge server:
p4 configure set edge#fpull.trigger.dir=/tmp/edge-trigger
and update the trigger table entry for the edge-content trigger with $triggerdir% to pass the
configured temporary location to the trigger:
edgeTransfer edge-content //... "submit.sh %changelist$%
%serverroot% %triggerdir%"

Tip

For sample triggers and additional details, see the Support Knowledgebase article, "External Archive

Transfer using pull-archive and edge-content triggers".

296

https://community.perforce.com/s/article/15337
https://community.perforce.com/s/article/15337

Trigger script variables

Trigger script variables

You can use trigger script variables to pass data to a trigger script. All data is passed as a string; it is up
to the trigger to interpret and use these appropriately.

It is also possible to have the server and trigger communicate using STDIN and STDOUT. For more
information, see "Communication between a trigger and the server" on page 242.

The maxError.. variables refer to circumstances that prevented the server from completing a
command; for example, an operating system resource issue. Note also that client-side errors are not
always visible to the server and might not be included in the maxError count.

The terminated and termType variables indicate whether the command exited early and why.

Note

The processing of unknown variables has changed. Previously, unknown variables were removed
from the trigger invocation. Currently they are left as is. This preserves the trigger argument ordering,
and might be a clue to authors that data they assumed to be available is not.

Argument Description Available for type

%action% Either null or a string form-commit
reflecting an action taken
to a changelist or job.

Forexample,"pending
change 123 added"
or"submitted
change 124
deleted" are possible
%action$% values on
change forms, and
"Job000123
created"or
"job000123 edited"
are possible $action%
values for job forms.

%$archiveList$% Filename containing pull-archive
files to be pulled

%argc$ Command argument all except archive
count.

%args$ Command argument all except archive
string.

297

Trigger script variables

Argument Description Available for type

%argsQuoted% Command argument string all except archive
that contains the
command arguments as a
percent-encoded comma-
separated list.

%changelist¥, The number of the change-submit
%change% changelist being push-submit
submitted. The change-content
abbreviated form push-content
%change$ is equivalent change-commit
to ¥changelist%. push-commit
fix-add

A change-submit
trigger is passed the
pending changelist
number; a change-
commi t trigger receives
the committed changelist
number.

fix-delete
form-commit
shelve-commit
shelve-delete

A shelve-commit or
shelve-delete
trigger receives the
changelist number of the

shelf.
%changeroot$% The root path of files change-commit
submitted. push-commit
%client$% Triggering user’s client all

workspace name.

%clientcwd$ Client’s current working all except archive
directory.
%clienthost% Hostname of the user’s all

workstation (even if
connected through a
proxy, broker, replica, or
an edge server.)

298

Trigger script variables

Argument Description Available for type
%clientip% The IP address of the all
user’'s workstation (even if
connected through a
proxy, broker, replica, or
an edge server.)
%clientprog$ The name of the user’s all
client application. For
example, P4V, P4Win
%clientversion$% The version of the user’s all
client application.
$command$ Command name. all except archive
$depotName$% The graph depot in graph-push-start
which the repo resides. graph-push-reference
graph-push-reference-
complete
graph-push-complete
%email% The user's email auth-pre-2fa
address. See auth-init-2fa
"Triggering for multi- auth-check-2fa
factor authentication
(MFA)" on page 288.
$file% Path of archive file based archive
on depot’s Map : field. If
the Map : fieldis relative
to PAROOT, the $file%
is a server-side path
relative to PAROOT. If the
Map : field is an absolute
path, the $£ile% is an
absolute server-side path.
$firstPushedChang First new changelist command
e% number.

299

See "Additional triggers for

push and fetch
commands" on page 265 .

Trigger script variables

Argument Description Available for type
$formfile% Path to temporary form form-commit
specification file. To form-save
modify the form from an form-in
in orout trigger, form-out
overwrite this file. The file form-delete
is read-only for triggers of
type save anddelete.
$formname$% Name of form (for form-commit,
instance, abranchnameor form-save
a changelist number). form-in
form-out
form-delete
$formtype% Type of form (for instance, form-commit,
branch, change, and form-save
soon). form-in
form-out
form-delete
%$fullname$% The user's fullname. auth-pre-2fa
See "Triggering for auth-init-2fa
multi-factor auth-check-2fa
authentication (MFA)"
on page 288.
¥groups$ List of groups to which the all except archive
user belongs, space-
separated.
%host% The IP address of the auth-pre-2fa

host of the user. See
"Triggering for multi-
factor authentication
(MFA)" on page 288.

auth-init-2fa
auth-check-2fa

%$intermediateServ

ice%

A broker or proxy is
present.

all except archive

300

Trigger script variables

Argument Description Available for type

%jobs% A string of job numbers, fix-add,
expanded to one argument fix-delete
for each job number
specifiedonap4 fix
command or for each job
number added to (or
removed from) the Jobs :
fieldinap4 submit, or
P4 change form.

%$lastPushedChang Last new changelist command
e% number.

See "Additional triggers for
push and fetch
commands" on page 265 .

$maxErrorSeverit One of empty, error, all except archive
VA orwarning.

$maxErrorText$ Error number and text. all except archive
$maxLockTime% A user-specified value that ~ all except archive

specifies the number of
milliseconds for the
longest permissible
database lock. If this
variable is set, it means
the user has overridden the
group setting for this value.

$maxResults% A user-specified value that all except archive

specifies the amount of

data buffered during

command execution. If

this variable is set, it

means the user has

overridden the group

setting for this value.

301

Trigger script variables

Argument

$maxScanRows$%

Description

A user-specified value that

Available for type

all except archive

specifies the maximum
number of rows scanned in
a single operation. If this
variable is set, it means
the user has overridden the
group setting for this value.

$method% The authentication
method from list-
methods (may be set to
"unknown"). See
"Triggering for multi-
factor authentication

(MFA)" on page 288.

$newValue% See "Triggering with
depots of type graph” on

page 293.

graph-push-reference

%oldchangelist% If a changelist is
renumbered on submit,
this variable contains the

old changelist number.

change-commit
push-commit

$oldvValue% See "Triggering with graph-push-reference
depots of type graph" on

page 293.

op% Operation: read, archive

write,ordelete.

If the command was sent all

through a proxy, broker,

replica, or edge server, the
hostname of the proxy,

broker, replica, or edge

server. (If the command

was sent directly,
$peerhost% matches
%$clienthost$%)

%peerhost%

302

Trigger script variables

Argument Description Available for type

speerip% If the command was sent all
through a proxy, broker,
replica, or edge server, the
IP address of the proxy,
broker, replica, or edge
server. (If the command
was sent directly,
$peerip% matches

%clientip%)
$P4PORT$% The host port to which the auth-check-sso (client-side
client connects. If the script only)

client connects to the
server through an
intermediary, this will hold
the port number of the
intermediary. If there’s no
intermediary, this will hold
the same value as the

$serverAddress$%
variable.
$pushers$ The user credited with graph-push-start
the push. See graph-push-reference
"Triggering with depots graph-push-reference-
of type graph" on complete
page 293. graph-push-complete
squote$ A double quote character. all
%reference% See "Triggering with graph-push-reference
depots of type graph" on
$refFlags$% page 293,
srefType%
¥repo% Therepo, whichhas .git graph-push-start
as a suffix, but otherwise graph-push-reference
is identical to graph-push-reference-
¥repoNames5. complete
graph-push-complete
$repoName$% The name of the repo. See
"Triggering with depots of
type graph" on page 293.
srevs Revision of archive file archive

303

Trigger script variables

Argument

$scheme%

Description

The authentication
scheme set by init-auth
(canbe setto
"unknown"). See See
"Triggering for multi-
factor authentication
(MFA)" on page 288.

Available for type
auth-init-2fa

$serverAddress$%

The IP address and port of
the Helix Core Server,
passable only in the
context of a client-side
script specified by
P4LOGINSSO.

auth-check-sso (client-side
script only)

%$serverhost%

Hostname of the Helix
Core Server.

all

$serverid$%

The value of the Helix
Core Server's
server.id. Seep4
serveridinthe P4
Command Reference for
details.

all

%serverip%

The IP address of the
server.

all

$servername$

The value of the Helix
Core Server's PANAME.

all

304

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Trigger script variables

Argument Description Available for type

%serverport$% The transport, IP address all
and port of the Helix Core
Server, in the format
prefix:ip
address:port.

prefixcanbe one of
ssl, tcp6,orsslé6.
This means that the
commandp4 -p
%$serverport$% canbe
used to connect to the
server no matter which
type of connection the
server uses.

$serverroot$ The P4ROOT directory of all
the Helix Core Server.

$serverservices$ A string specifying therole all except archive
of the server. One of the
following:

= standard
m replica
m broker

E proxy

= commit-
server

m edge-server

s forwarding-
replica

m build-server
m P4AUTH
m PACHANGE

%¥serverVersion% Version string for the all except archive
server that terminated if
the command exited early.
Reason for termination is
givenin $termType%.

305

Trigger script variables

Argument Description Available for type
%specdef$ Expanded to the spec form
string of the form in
question.
%submitserverid$% If this is not a distributed change-submit
installation, change-content
%submitserverid$% change-commit

is al ty.
IS always emply Not available for push-* triggers.

In a distributed installation,
for any change trigger:

m if the submit was
run on the commit
server,
$submitserve
rid$% equals

$serverid$%.

m if the submit was
run on the edge
server,
$submitserve
rid$% does not
equal
$serverid%. In
this case,
$submitserve
rid$% holds the
edge server’s
serverid.

If there is a forwarding
replica between the
commit server and the
edge server, then
$submitserverid$%
actually holds the
forwarding replica’s server
id.

Seep4 serveridin
the P4 Command
Reference .

306

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Trigger script variables

Argument

$terminated%

Description

The value of 0 indicates
that the command
completed. A value of 1
indicates that the
command did not
complete.

Available for type

StermTypeS%

The reason for early
termination. This might be
one of the following:

'p4 monitor
terminate'’

client
disconnect

maxScanRows
maxLockTime

maxResults

See also
%$serverVersion%.

all except archive

$token$%

The stashed token from
the last init-auth (can be
empty). See See
"Triggering for multi-
factor authentication
(MFA)" on page 288.

auth-init-2fa

%triggerdir$

Pull.trigger.dir used for

tmp files for "Triggers for

external file transfer" on
page 295

edge-content

$triggerMeta _
action%

307

Command to execute
when trigger is fired. Last
field of trigger definition.
Set only whenyouruna
script from the depot.

all except archive

Trigger script variables

Argument Description Available for type
$triggerMeta Third field in trigger all except archive
depotFile% definition. Its meaning

varies with the trigger type.
For a change-submit
trigger, it is the path for
which the trigger is
expected to match. Fora
form-out trigger, it might be
the form type to which the
trigger is expected to
apply. See the description
of the trigger types for
more information on the
meaning of this field.

$triggerMeta Trigger name: first field all except archive
name$ from trigger definition. Set

only when you run a script

from the depot.
$triggerMeta Trigger type: second field all except archive
trigger$% in trigger definition. Set

only when you run a script
from the depot.

%$user% Helix Server username of all
the triggering user.

308

Helix Core Server (p4d) Reference

Start the Perforce service or perform checkpoint/journaling (system administration) tasks.

Syntax

p4d [options]
p4d.exe [options]
pé4s.exe [options]

p4d -3 [-z | -2] [args ... |

Description

The first three forms of the command invoke the background process that manages the Helix Server
versioning service.

The fourth form is for system administration tasks involving checkpointing and journaling.

On UNIX and Mac OS X, the executable is p4d.

On Windows, the executable is p4d . exe (running as a server) or p4s . exe (running as a service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the following startup message:

Perforce server starting...
and runs in the background.
On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the =3 checkpointing or journaling options, p4d exits with a nonzero error
code if any error occurs.

Options

Server options Meaning

-d Run as a daemon (in the background).

—f Run as a single-threaded (non-forking) process.

309

Options

Server options Meaning

il Run from inetd on UNIX.
-q Run quietly (no startup messages).
--pid-file[=file] Write the PID of the server to a file named

server.pid in the directory specified by
P4ROOT, or write the PID to the file specified
by f£ile. This makes it easier to identify a
server instance among many.

The £ile parameter can be a complete path
specification. The file does not have to reside in
P4ROOT.

--daemonsafe Is like —d and forks the p4d into the
background, but also closes the stdio (standard
input output) files.

-xi Irreversibly reconfigure the Helix Core Server
(and its metadata) to operate in Unicode mode.
Do not use this option unless you know you
require Unicode mode. For details, see the
Release Notes and the Internationalization
Notes.

-xXu Run database upgrades and exit.

Upgrades must be run manually unless the
serveris a DVCS personal server, which runs
upgrade steps automatically.

-XVv Run low-level database validation and quit.

-xvU Run fast verification. Do not lock database
tables, and verify only that the unlock count for
each table is zero.

-xD [serverID] Display (or set) the server's serverID
(storedinthe server. id file) and exit.

General options Meaning

-h, -7 Print help message.
-V Print version number.
-A auditlog Specify an audit log file. Overrides PAAUDIT setting. Default is null.

310

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
http://www.perforce.com/perforce/r18.2/user/relnotes.txt
http://www.perforce.com/perforce/r18.2/user/i18nnotes.txt
http://www.perforce.com/perforce/r18.2/user/i18nnotes.txt
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4AUDIT.html

Options

General options Meaning

-Id description A serverdescriptionforusewithp4 server. Overrides

P4DESCRIPTION setting.

-In name A server name foruse withp4 configure. Overrides PANAME
setting.

-J journal Specify ajournal file. Overrides P4 JOURNAL setting. Default is
journal. (Use -J off todisablejournaling.)

-L log Specify alog file. Overrides P4 1L.OG setting. Default is STDERR.

-p port Specify a port to listen to. Overrides PAPORT. Default 1666.

-r root Specify the server root directory. Overrides PAROOT. Default is current
working directory.

-v Set trace options. Overrides value P4 DEBUG setting. Default is null.

subsystem=level

-C1 Force the service to operate in case-insensitive mode on a normally case-
sensitive platform.

--pid-file Write the server's PID to the specified file.

[=name] Default name for the file is server . pid.

Checkpointing Meaning
options

-c command Lock database tables, run command, unlock the tables, and exit.
-jc [Journal-create; create checkpoint and . md5 file, and save/truncate journal.
prefix]

In this case, your checkpoint and journal files are named prefix.ckp.n
and prefix.jnl . nrespectively, where prefixis as specified on the
command line and n is a sequence number. If no prefixis specified, the
default filenames checkpoint. nand journal. nare used. You can
store checkpoints and journals in the directory of your choice by specifying the
directory as part of the prefix.

Warning
If you use this option, it must be the last option on the command line.

-jd file Journal-checkpoint; create checkpoint and . md5 file without
saving/truncating journal.

=33 I Journal-only; save and truncate journal without checkpointing.
prefix]

311

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_server.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4DESCRIPTION.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4JOURNAL.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4LOG.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4PORT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4ROOT.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4DEBUG.html

Options

Checkpointing Meaning
options

-jr file

Journal-restore; restore metadata from a checkpoint and/or journal file.

If you specify the —r $P4ROOT option on the command line, the —xr option
must precede the —3j r option.

-jv file

Verify the integrity of the checkpoint or journal specified by £ile as follows:

m Can the checkpoint or journal be read from start to finish?
m [fitis zipped, can it be successfully unzipped?
m Ifit has an MD5 file with its MD5, does it match?

m Does it have the expected header and trailer?

This command does not replay the journal.

Use the -z option with the —jwv option to verify the integrity of compressed
journals or compressed checkpoints.

Compress (in gz ip format) checkpoints and journals.

When you use this option with the - jd option, Helix Server automatically
adds the . gz extension to the checkpoint file. So, the command:

p4d -jd -z myCheckpoint

creates two files: myCheckpoint . gz andmyCheckpoint .md5.

Compress (in gzip format) checkpoint, but leave journal uncompressed for
use by replica servers. That is, it applies to —=jc, not —jd.

Journal restore options Meaning

-jrc file Journal-restore with integrity-checking. Because
this option locks the database, this option is
intended only for use by replica servers started
withthep4 replicate command.

-jrF file Allow replaying a checkpoint over an existing

312

database. (Bypass the check done by the —=jr
option to see if a checkpoint is being replayed
into an existing database directory by mistake.)

Options

Journal restore options Meaning

-b bunch -jr file Read bunch lines of journal records, sorting
and removing duplicates before updating the
database. The defaultis 5000, but can be set
to 1 to force serial processing. This combination
of options is intended for use with replica
servers startedwiththep4 replicate
command.

-f -jr file Ignore failures to delete records. This meaning
of — £ applies only when —jr is present. This
combination of options is intended for use with
replica servers started with the p4
replicate command. By default, journal
restoration halts if record deletion fails.

As with all journal-restore commands, if you
specify the -xr $P4ROOT option on the
command line, the —r option must precede the
-jr option.

-m -jr file Schedule new revisions for replica network
transfer. Required only in environments that use
p4 pull -uforarchivedfiles, but p4
replicate for metadata. Not required in
replicated environments based solely on p4
pull.

-s —-jr file Record restored journal records into regular
journal, so that the records can be propagated
from the server’s journal to any replicas
downstream of the server. This combination of
options is intended for use in conjunction with
Perforce Support.

Replication Meaning

and multi-
server options

-a host:port Inmulti-server environments, specify an authentication server for licensing
and protections data. Overrides P4AUTH setting. Default is null.

-g host:port Inmulti-server environments, specify a changelist server from which to obtain
changelist numbers. Overrides P4CHANGE setting. Default is null.

-t host:port Forreplicas, specify the target (master) server from which to pull data.
Overrides PATARGET setting. Default is null.

313

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_replicate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_pull.html
https://www.perforce.com/support
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4AUTH.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4CHANGE.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4TARGET.html

Options

Replication Meaning

and multi-

server options

-u For replicas, authenticate as the specified serviceuser when
serviceuser communicating with the master. The service user must have a valid ticket

before replica operations will succeed.

Journal Meaning

dump/restore

filtering

-jd file Dump db. table by creating a checkpoint £i1e that contains only the
db. table datastoredindb. table.

This command can also be used with non-journaled tables.

-k Dump a set of named tables to a single dump file.
db.

tablel

,db.

table2,... -

jd file

-K Dump all tables except the named tables to the dump file.
db.

tablel

,db.

table2, ... -

jd file

-P serverid - Specify filter patterns forp4d -3jd by specifying a serverid from
jd file which toread filters (seep4 help server, oruse the older syntax
describedinp4 help export).

This option is useful for seeding a filtered replica.

-k Restore from £ile, including only journal records for the tables named in
db. the list specified by the —k option.

tablel

,db.

table2,... -

jr file

314

Options

Journal Meaning

dump/restore
filtering

-K Restore from £1i1e, excluding all journal records for the tables named in
db. the list specified by the —K option.

tablel

,db.

table2,... -

jr file

Certificate Meaning

Handling

-Gc Generate SSL credentials files for the server: create a private key and certificate file
in P4SSLDIR, and then exit.

Requires that PASSLDIR be set to a directory that is owned by the user invoking
the command, and that is readable only by that user. If config. txt is presentin
P4SSLDIR, generate a self-signed certificate with specified characteristics.

-Gf Display the fingerprint of the server’s public key, and exit.

Administrators can communicate this fingerprint to end users, who can then use the
p4 trust command to determine whether or not the fingerprint (of the server to
which they happen to be connecting) is accurate.

Configuration Meaning

options

-cshow Display the contents of db . con£fig without starting the service. (That is, run
p4 configure show allservers, but without arunning service.)

-cset Set a Helix Server configurable without starting the service, optionally
server specifying the server for which the configurable is to apply. For example,
#var=val
p4d -r . "-cset replica#P4JOURNAL=off"
pd4d -r . "-cset replica#P4JOURNAL=0ff replica#server=3"
It is best to include the entire variable=value expression in quotation
marks.
-cunset Unset the specified configurable.

serverfvar

315

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4SSLDIR.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_trust.html

Usage Notes

Usage Notes

On all systems, journaling is enabled by default. If PAJOURNAL is unset when p4d starts, the
default location for the journal is $P4ROOT. If you want to manually disable journaling, you must
explicitly set PAJOURNAL to of £.

Take checkpoints and truncate the journal often, preferably as part of your nightly backup process.

Checkpointing and journaling preserve only your Helix Server metadata (data about your stored
files). The stored files themselves (the files containing your source code) reside under PAROOT
and must be also be backed up as part of your regular backup procedure.

It is best to keep journal files and checkpoints on a different hard drive or network location than the
Helix Server database.

If your users use triggers, don’t use the — £ (non-forking mode) option. To run trigger scripts, the
Perforce service needs to be able to "fork" (spawn copies of itself).

After a hardware failure, the options required for restoring your metadata from your checkpoint and
journal files can vary, depending on whether data was corrupted.

Because restorations from backups involving loss of files under PAROOT often require the journal
file, we strongly recommend that the journal file reside on a separate filesystem from P4ROOT.
This way, in the event of corruption of the filesystem containing PAROOT, the journal is likely to
remain accessible.

The database upgrade option (-xu) can require considerable disk space. For details, see the
Release Notes.

Related Commands

To start the service, listening to port 1999, with journaling p4d -d -p 1999 -J
enabled and writtento journalfile. /opt/p4d/journalfile
To checkpoint a server with a non-default journal file, the =J Checkpoint with:

option (or the environment variable P4 JOURNAL) must match
the journal file specified when the server was started.

p4d -J /p4d/jfile -
jc
or

P4JOURNAL=/pdd/jfile
; export P4JOURNAL;

p4d -jc
To create a compressed checkpoint from a server with files in p4d -r $P4ROOT -z -
directory PAROOT. jc
To create a compressed checkpoint with a user-specified prefix p4d -r $P4ROOT -z -
of “ckp” from a server with files in directory PAROOT. jc ckp

316

http://www.perforce.com/perforce/r18.2/user/relnotes.txt

Related Commands

To restore metadata from a checkpoint named checkpoint. 3
for a server with root directory PAROOT.

p4d -r $P4ROOT -jr
checkpoint.3

(The —x option must precede
the —j r option.)

To restore metadata from a compressed checkpoint named
checkpoint. 3. gz foraserver with root directory PAROOT.

p4d -r $P4ROOT -z -
jr checkpoint.3.gz

(The —x option must precede
the —jx option.)

317

Moving a Helix Core Server to a new machine

How you move an existing Helix Core Server from one machine to another depends on the following
factors:

m whether the machines use the same byte order
m whether the machines use different byte ordering, but the same text file (CR/LF) format

m whether the machines use different byte order and a different text file format.

Additional considerations apply if the new machine has a different IP address/hostname.

The Helix Core Server stores two types of data under the Helix Server root directory: versioned files and
a database containing metadata describing those files. Your versioned files are the ones created and
maintained by your users, and your database is a set of Helix Server-maintained binary files holding the
history and present state of the versioned files. In order to move a Helix Core Server to a new machine,
both the versioned files and the database must be successfully migrated from the old machine to the new
machine.

For more information about the distinction between versioned files and database, as well as for an
overview of backup and restore procedures in general, see "Backup and recovery" on page 148.

Also see the Support Knowledgebase article, "Moving a Helix Server".

Moving between machines of the same byteorder ... 318
Moving between different byte orders that use the same text format 319
Moving between Windows and UNIX 320
Changing the IP address of your server 320
Changing the hostname of your server 320

Moving between machines of the same byte order

If the architecture of the two machines uses the same byte order (for example, SPARC/SPARC,
x86/x86, or even 32-bit Windows to 64-bit Windows), the versioned files and database can be copied
directly between the machines, and you only need to move the server root directory tree to the new
machine. You can use tar, cp, xcopy . exe, or any other method. Copy everything in and under the
P4ROOT directory -the db . * files (your database) as well as the depot subdirectories (your versioned
files).

1. Back up your server (includingap4 verify before the backup) and take a checkpoint.
2. Onthe old machine, stop p4d.

3. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the old machine
into the new server root directory on the new machine.

4. Start p4d on the new machine with the desired flags.

318

https://community.perforce.com/s/article/2558

Moving between different byte orders that use the same text format

5. Runp4 wverify onthe new machine to ensure that the database and your versioned files were
transferred correctly to the new machine.

(Although the backup, checkpoint, and subsequent p4 wverify are not strictly necessary, it's always
good practice to verify, checkpoint, and back up your system before any migration and to perform a
subsequent verification after the migration.)

Moving between different byte orders that use the same text
format

If the internal data representation (big-endian vs. little-endian) convention differs between the two
machines (for example, Linux-on-x86/SPARC), but their operating systems use the same CR/LF text file
conventions, you can still simply move the server root directory tree to the new machine.

Although the versioned files are portable across architectures, the database, as stored inthe db . * files,
is not. To transfer the database, you will need to create a checkpoint of your Helix Core Server on the old
machine and use that checkpoint to re-create the database on the new machine. The checkpoint is a text
file that can be read by a Helix Core Server on any architecture. For more details, see "Creating a
checkpoint" on page 150.

After you create the checkpoint, you can use tar, cp, xcopy . exe, or any other method to copy the
checkpoint file and the depot directories to the new machine. (You don’t need to copy the db . * files,
because they will be re-created from the checkpoint you took.)

1. Onthe old machine, use p4 verify toensure that the database is in a consistent state.

2. Onthe old machine, stop p4d.

3. Onthe old machine, create a checkpoint:
p4d -jc checkpointfile

4. Copy the contents of your old server root (P4ROOT) and all its subdirectories on the old machine
into the new server root directory on the new machine.

(To be precise, you don't need to copy the db . * files, just the checkpoint and the depot
subdirectories. The db . * files will be re-created from the checkpoint. If it's more convenient to
copy everything, then copy everything.)

5. Onthe new machine, if you copied the db . * files, be sure to remove them from the new
P4ROOT before continuing.

6. Re-create anew set of db . * files suitable for your new machine’s architecture from the
checkpoint you created:

p4d -jr checkpointfile

7. Start p4d on the new machine with the desired flags.

Runp4 verify onthe new machine to ensure that the database and your versioned files were
transferred correctly to the new machine.

319

Moving between Windows and UNIX

Moving between Windows and UNIX

In this case, both the architecture of the system and the CR/LF text file convention may be different. You
still have to create a checkpoint, copy it, and re-create the database on the new platform, but when you
move the depot subdirectories containing your versioned files, you also have to address the issue of the
differing linefeed convention between the two platforms.

Depot subdirectories can contain both text and binary files. The text files (in RCS format, ending with

", v")and binary files (directories of individual binary files, each directory ending with ", d") need to be
transferred in different ways in order to translate the line endings on the text files while leaving the binary
files unchanged.

As with all other migrations, be suretorunp4 verif£y after your migration.

Warning

Windows is a case-insensitive operating system. Files that differ by case only on a UNIX server will
occupy the same namespace when transferred to a Windows machine. For instance, files
Makefile andfilemakefile ona UNIX serverwill appear to be the same file on a Windows
machine.

Due to the risk of data loss due to case collision, migrations from UNIX servers to Windows are not
supported.

Contact Perforce Technical Support for assistance when migrating a Helix Core Server from Windows to
UNIX.

Changing the IP address of your server

If the IP address of the new machine is not the same as that of the old machine, you will need to update
any IP-address-based protections in your protections table. See "Authorizing access" on page 126 for
information on setting protections for Helix Server.

If you are a licensed Helix Server customer, you will also need a new license file to reflect the server's
new IP address. Contact Perforce Technical Support to obtain an updated license.

Changing the hostname of your server

If the hostname of the new machine serving Helix Server is different from that of its predecessor, your
users must change their PAPORT settings. If the old machine is being retired or renamed, consider
setting an alias for the new machine to match that of the old machine, so that your users won'’t have to
change their P4PORT settings.

320

Helix Core Server Control (p4dctl)

The Helix Core Server Service Control (p4dctl) utility allows you to manage Perforce services running
on the local host. Non-root users can administer the services they own, while root can administer all
services, but cannot own any.

Note
p4dctl can only be obtained as part of the UNIX package installation. It is not supported on

Windows.

You use the p4dctl utility to configure the environment in which services run and to manage the
services themselves. The basic workflow for an administrator using the p4dctl utility is as follows:
1. Edit a configuration file that defines the environment for the services you want to control.

2. Execute pddctl commands to start and stop services, to get information about services, and to
checkpoint services.

You can use a single p4dctl command to manage all services or an arbitrary group of services by
assigning them a common name in the p4dct1 configuration file.

p4dctl introduces no new environment variables. It enforces strict control of the environment of any
service it starts according to the directives in the p4dctl configuration file, p4ddctl . conf. This
prevents failures that stem from the differences between the user’'s environment and that of root.

Warning
Helix environment variables:

= must be defined in the PADCTL configuration file

= will NOT take effect if they are defined from the pexrforce user's shell environment, such as
the .bashrcfile

Installation .. 322
Configuration file format 322
Environment bloCK ... 323
Server blOCK . 323
Service types and required settings ... 325
Configuration file examples 326
Using multiple configuration files 327
padctl commands ... 328

321

Installation

Installation

p4dctl is installed as part of the UNIX package installation. The installation process automatically
creates a master configuration file located at /etc/perforce/p4dctl.conf.

As part of the package install, p4dctl is installed as a setuid root executable because it uses root
privileges to maintain process identifier (pid) files for compatibility with systems that use them. For all
other operations, p4dctl runs with the privileges of the executing user. This allows non-root users to
start and stop the services they own while having the pid file remain up to date.

Configuration file format
p4dctl uses a configuration file, p4dctl . conf, to control the following:

= service settings for the services started with the p4dctl command.

m settings forthe p4dctl utility itself

m service processes managed by p4dctl, for example checkpointing and journal rotation
m the environment in which managed services are running

The environment is configured using environment variables that may be defined globally or for a
specific service. The service type determines which variables must be defined. See "Service
types and required settings" on page 325.

A p4dctl configuration file is made up of an environment block and one or more server type
blocks. The following sections describe each type in detail.

The configuration file may also contain comments. A comment is designated by starting the comment
line with the # sign.

Settings specified outside of a server block are global and are merged into the settings of all services.
They take the following form:

setting_name = value

For example:

PATH = /bin:/user/bin

Environment block ... il 323
Server bloCK ... 323
Service types and required settings 325
Configuration file examples 326
Using multiple configuration files 327

322

https://en.wikipedia.org/wiki/Process_identifier

Environment block

Environment block

An environment block defines environment variables that are applied to one or more services. You can
have more than one environment block. Server-specific environment blocks settings override
corresponding settings in global environment blocks.

An environment block is defined using the following syntax:

Environment

{

variable = value

}
An environment block might be inside or outside of a server block.

m [f the block is outside a server block, the variables it contains are applied to the environment of all
processes created by p4dctl.

m [f the block is inside a server block, the variables it defines are set only in the environment of that
server’'s processes, but they do override corresponding settings at the environment level.

For example, the following settings outside a server block ensure that the owner is set to perforce,
logging is enabled, and the correct PACONF IG files are used.

Environment

{
P4DEBRUG = ‘"server=1" # Embedded = requires quotes
P4L0OG = log
P4CONFIG = .p4dconfig

}

Server block

A server block defines settings and variables that apply only to the specified type of service:

Type Meaning

p4d Helix Core Server, also called Helix Server
p4p Helix Proxy

p4broker P4Broker

p4ftp P4FTP plugin

p4web Helix Server web client

other Any other service

323

Server block

A server block is defined using the following syntax:

server type name

{
setting = value
Environment

{

variable = value

}

The specified name name must refer to services of a given type, but the name can include different
types of servers. This allows you to control or query groups of heterogeneous servers that share the
same name.

For example, a configuration that defines p4d, proxy, and p4ftp services all using the name main can
use a single command to stop p4d, proxy, and p4ftp services without affecting any other services:
$ p4dctl stop main

You can define the following variables within server blocks. Owner and Execute are required for all
server types.

Setting Meaning

Owner The owner of the service.

The service is started under the owner’s account and with their privileges. The user
can also use p4dctl to manage the server they own.

Required.

Execute The path to the binary to execute when starting this server.
Required.

Args A string containing the arguments to be passed to the binary specified with
Execute.

The string must be quoted. For example:

Args = "-C1"
or
Args = "-u us_proxy -v lbr.stat.interval=300 -v

proxy.monitor.level=3 -v proxy.monitor.interval=300"

324

Service types and required settings

Setting Meaning

Enabled Set to FALSE to disable the service and not start it with the pddctl start
command.

Default: TRUE

Umask An octal value specifying the umask to be applied to the child processes for this
service. The default umask on most Linux/Unix systems is 022, which means all
new files are readable by all users.

Setting this variable to 077 ensures that the files created by this service are only
accessible to the owner of the service.

Prefix A string containing a prefix to apply when checkpointing the server or rotating the
journal. This prefix is passed down to the relevant p4d command if needed.

Default: none

PrettyNa Set to true to have p4dctl format the names of the server processes it starts,
mes in an informative way.

In the following example, the p4d process is qualified with its host and port name
when PrettyNames is set to true.
PrettyNames=true

perforce callto:21397%201%200%2010[21397 1 0 10]:48 ?
00:00:00 p4d

[blacksphere/1666]
PrettyNames=false

perforce callto:21725%201%200%2010[21725 1 0 10]:50 ?
00:00:00

/usr/sbin/p4d

Default: true

Service types and required settings

Each service type requires that you define the owner of the server (which cannot be root) and the
execute path where its binary can be found. For example, for the p4d type, you specify the path to the
p4d binary, for the broker, you must provide the path to the p4dbroker binary, and so on.

For each service type, you must define the environment variables:

325

Configuration file examples

Type VELEL Setting

p4d P4PORT Port to use for this service
P4ROOT Path to the server’s root directory
PATH Search path to be used for this service

p4p PORT Port to use for this service
PATARGET Address of the target Perforce service
P4ROOT Path to the server’s root directory
PATH Search path to be used for this service

p4broker P4BROKEROPTIONS

Command line options to pass to this broker

p4ftp PORT Address of the target Perforce service
P4FTPPORT Port to use for serving FTP requests

p4web PORT Address of the target Helix Server
PAWEBPORT Port to use for serving HTTP requests
P4ROOT Path to the server’s root directory
PATH Search path to be used for this service

Configuration file examples

The following example shows a basic Helix Core Server (p4d) configuration file.

pr4d minimum

{

Owner = perforce
Execute = /usr/bin/p4d
Environment
{
P4ROOT =
P4PORT = 1666
PATH =

}

326

/home/perforce/p4-main

/bin:/usr/bin:/usr/local/bin

Using multiple configuration files

In the following example, the PATH environment variable is defined once, globally for both the service

and its proxy. Note how the name test is used to refer to both.

Environment
{
PATH = /bin:/usr/bin:/usr/local/bin
}
p4d test
{
Owner = perforce
Execute = /usr/bin/p4d
Environment
{
P4ROOT = /home/perforce/p4-main
P4PORT = "localhost:1667"
1
}
pd4p test
{
Owner = perforce
Execute = /usr/bin/pdp
Environment
{
P4ROOT = /home/perforce/proxy-main
P4PORT = 1666
P4ATARGET = "localhost:1667"

}

Using multiple configuration files

You can modularize your configuration by creating multiple configuration files and directories and

including these in your configuration.

327

pddctl commands

m Toinclude a specific file, use the following syntax:
include pathToFile
m Toinclude directories, use the following syntax:

include directoryPath

When including directories, p4dct1 requires that names for files included end with the . conf
extension.

The following example shows a multiple file configuration.

Environment

{
PATH = /bin:/usr/bin:/usr/local/bin

include /etc/perforce/p4dctl.conf.d

p4dctl commands

p4dctl commands can be divided into three categories: commands that stop and start services,
commands that checkpoint services, and commands that return information about services.

Thepd4dctl checkpoint commandis similartothe p4d -jc command.

The following table presents a summary of command syntax for each category. The parameter —a
specifies all servers.

Category Syntax

Control services p4dctl [options] start [-t type] -a
p4dctl [options] start [-t type] name
p4dctl [options] stop [-t type] -a
p4dctl [options] stop [-t type] name
p4dctl [options] restart [-t type] -a
p4dctl [options] restart [-t type] name

Checkpoints and p4dctl [options] checkpoint -a

journals p4dctl [options] checkpoint name

328

p4dctl commands

Category Syntax

Query services p4dctl [options] status [-t type] -a
p4dctl [options] status [-t type] name
p4dctl [options] list [-t type]
p4dctl [options] list [-t type] name
p4dctl [options] env [-t type] -a var
[var..]
p4dctl [options] status [-t type] name var
[var..]

Options to p4dctl commands are described in the following table. The meaning of variable names
other than option names is explained in "Configuration file format" on page 322.

Options Meaning

=@ Path to the configuration file

configFile p.¢ - /etc/perforce/p4dctl.conf

-p pidDir Path to the pid file directory.

Default: /var/run

-q Send output to syslog instead of STDOUT or STDERR

-v level Set debug level (0-9)

For more information, see the description of the P4DEBUG environment variable
in P4 Command Reference.

-V Display version and exit.

329

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4DEBUG.html

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvement in
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

The file revision, in conjunction with the source revision, used to help determine what integration
changes should be applied to the target revision.

330

Glossary

binary file type

A Helix Server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix Server and is able to run scripts
on the commands before sending them to the Helix Server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

331

Glossary

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix Server. The changes specified in the
changelist are not stored in the depot until the changelistis submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix Server depot.

check out

To designate one or more files for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix Server files that is not streams-based. The default depot name is depot. See
also default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

332

Glossary

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix Server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

333

Glossary

copy up

A Helix Server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix Server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix Server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core Server. It contains all versions of all files ever submitted to
the depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

334

Glossary

depot syntax

Helix Server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/
diff
(noun) A set of lines that do not match when two files are compared. A conflict is a pair of unequal

diffs between each of two files and a base. (verb) To compare the contents of files or file revisions.
See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

F

file conflict
In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix Server command line syntax that enables you to specify files using wildcards.

335

Glossary

file repository

The master copy of all files, which is shared by all users. In Helix Server, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix Server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix Server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix Server users to collaborate on the same
projects using their preferred tools.

336

Glossary

graph depot

A depot of type graph thatis used to store Git repos in the Helix Server. See also Helix4Git.

Gravatar

gravatar.com is a third party service that you can subscribe to, gravatar enables you to upload an
image that you can use in Swarm. When configured, Swarm will attempt to fetch your avatar from
gravatar.com and use it within Swarm. If your avatar is not found on gravatar.com, Swarm will use
one of its own default avatars to represent your activity. See also the "avatar” entry in this glossary.

group

A feature in Helix Server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix Server

The Helix Server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core Server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4 Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix Server depots.

337

Glossary

iconv

iconv is a PHP extension that performs character set conversion, and is an interface to the GNU
libiconv library.

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix Server. The job template determines what information is
tracked. The template can be modified by the Helix Server system administrator. A job describes

work to be done, such as a bug fix. Associating a job with a changelist records which changes fixed
the bug.

job daemon

A job daemon is a program that checks the Helix Server machine daily to determine if any jobs are
open. If so, the daemon sends an email message to interested users, informing them the number of
jobs in each category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix Server machine.

job view

A syntax used for searching Helix Server jobs.

journal

A file containing a record of every change made to the Helix Server's metadata since the time of the
last checkpoint. This file grows as each Helix Server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

338

Glossary

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix Server's metadata.

L
label
A named list of user-specified file revisions.
label view
The view that specifies which filenames in the depot can be stored in a particular label.
lazy copy
A method used by Helix Server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.
license file
A file that ensures that the number of Helix Server users on your site does not exceed the number for
which you have paid.
list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.
local depot
Any depot located on the currently specified Helix Server.
local syntax

The syntax for specifying a filename that is specific to an operating system.

339

Glossary

lock

1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

Error output from the Helix Server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix Server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix Server from two conflicting file revisions.

metadata

The data stored by the Helix Server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata includes all the data stored in the
Perforce service except for the actual contents of the files.

modification time or modtime

The time a file was last changed.

340

Glossary

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix Server has assigned a number.

o

opened file
A file that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix Server user who created a particular client, branch, or label.

P

p4
1. The Helix Core Server command line program. 2. The command you issue to execute commands
from the operating system command line.

pad
The program that runs the Helix Server; p4d manages depot files and metadata.

P4PHP

The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
Server machine.

341

Glossary

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.

project

In Helix Swarm, a group of Helix Server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix Server’s protections table.

proxy server

A Helix Server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix Server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix Server uses RCS format to store text
files. See also reverse delta storage.

read access
A protection level that enables you to read the contents of files managed by Helix Server but not

make any changes.

remote depot

A depot located on another Helix Server accessed by the current Helix Server.

342

Glossary

replica

A Helix Server that contains a full or partial copy of metadata from a master Helix Server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.

resolve

The process you use to manage the differences between two revisions of a file. You can choose to
resolve conflicts by selecting the source or target file to be submitted, by merging the contents of
conflicting files, or by making additional changes.

reverse delta storage

The method that Helix Server uses to store revisions of text files. Helix Server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A review daemon is a program that periodically checks the Helix Server machine to determine if any
changelists have been submitted. If so, the daemon sends an email message to users who have
subscribed to any of the files included in those changelists, informing them of changes in files they
are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

343

Glossary

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager is a tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

S

server data
The combination of server metadata (the Helix Server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4AROOT environment variable or use the p4d -r
flag.

service
In the Helix Core Server, the shared versioning service that responds to requests from Helix Server
client applications. The Helix Server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix Server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job

344

Glossary

statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix Server depot for processing.

super access

An access level that gives the user permission to run every Helix Server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix Server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix Server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix Server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

345

Glossary

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script automatically invoked by Helix Server when various conditions are met. (See Helix Core
Server Administrator Guide: Fundamentals on "Using triggers to customize behavior".)

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix Server in which you assign file types to files.

U

user

The identifier that Helix Server uses to determine who is performing an operation.

Vv

versioned file

Source files stored in the Helix Server depot, including one or more revisions. Also known as a depot
file or source file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

346

Glossary

w

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix Server: * matches anything except a slash; ... matches anything including slashes; %%0
through % %39 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

347

License Statements

To get alisting of the third-party software licenses that Helix Core Server uses, at the command line,
typethep4 help legal command.

To get alisting of the third-party software licenses that the local client (such as P4V) uses, at the
command line, typethep4 help -1 legal command.

348

	How to use this guide
	Syntax conventions
	Feedback
	Other documentation

	What’s new in this guide
	2018.2
	2018.1 patch
	 2018.1 release
	2017.2 release
	Triggers for external file transfer on page 1
	Server background tasks
	Parallel threads

	Overview
	Basic architecture
	Basic workflow
	Administrative access
	Naming Helix Server objects

	Installing and upgrading the server
	Planning the installation
	Network
	CPU
	Memory
	Disk space allocation
	Filesystem
	Protections and passwords

	Linux package-based installation
	Prerequisites
	Installation
	Post-installation configuration
	Updating

	Linux non-package installation
	Linux non-package installation: quick example
	General considerations for Linux non-package installation
	Creating a Helix Server root directory
	Telling Helix Server applications which port to connect to
	Communicating port information
	IPv6 support and mixed networks
	Running the Helix Server (p4d) as an unprivileged user
	Running from inetd
	Starting the Perforce service
	Stopping the Perforce service
	Restarting a running Perforce service

	Windows installation
	Windows installation: quick example
	Windows services and servers
	Installing the Perforce service on a network drive
	Starting and stopping the Perforce service
	Multiple Perforce services under Windows
	Windows configuration parameter precedence
	Starting and stopping the Helix Server
	Support for long file names

	Installed files
	Upgrading the Perforce service
	Using old Helix Server applications after an upgrade
	Upgrading Helix Server
	Upgrading Helix Server - between 2013.2 and 2013.3
	Verifying files by signature

	Release and license information
	Adding or updating the license file
	License file in the P4ROOT directory
	p4 license command
	Helix Visual Client (P4V) Administration tool

	Configuring the server
	Enabling distributed versioning
	Defining filetypes with p4 typemap
	Implementing site-wide exclusive locking with p4 typemap
	Defining depots
	Managing client requests
	Using P4PORT to control access to the server
	Requiring minimum client revisions
	Rejecting client connection requests
	Disabling user metrics collection prompt

	Case sensitivity and multi-platform development
	Helix Server on Linux
	Helix Server on Windows

	Setting up and managing Unicode installations
	Overview
	Setting up a server for Unicode
	Configuring clients for Unicode
	Troubleshooting user workstations in Unicode installations

	Configuring logging
	Logging errors
	Logging file access

	Configuring P4V settings
	Viewing effective P4V properties
	Precedence of P4V settings
	Performance-related P4V properties
	Feature-related P4V properties
	Miscellaneous P4V properties
	Swarm integration properties
	Staging P4V help files locally
	Troubleshooting P4V properties

	Windows configuration parameter precedence

	Working with depots
	Overview
	Naming depots
	Listing depots
	Deleting depots
	Moving depots in a production environment

	Standard depots
	Stream depots
	Spec depot
	Creating the spec depot
	Populating the spec depot with current forms
	Controlling which specs are versioned
	Large sites and old filesystems

	Archive depots
	Unload depot
	Remote depots and distributed development
	How remote depots work
	Using remote depots for code drops

	Securing the server
	Securing the server: workflow
	Using SSL to encrypt connections to a Helix Server
	Server and client setup
	Key and certificate management
	Key and certificate generation
	Secondary cipher suite
	Using SSL in a mixed environment

	Using firewalls
	Authentication options
	Overview
	Server security levels
	Defining authentication for users

	Authenticating using passwords and tickets
	Password-based authentication
	Password strength requirements
	Managing and resetting user passwords
	Ticket-based authentication
	Login process for the user
	Login process for the server
	Logging out of Helix Server
	Determining ticket status
	Invalidating a user’s ticket

	LDAP authentication
	Authenticating against Active Directory and LDAP servers
	Creating an LDAP configuration
	Defining LDAP-related configurables
	Authorization using LDAP groups
	Testing and enabling LDAP configurations
	Getting information about LDAP servers
	Using LDAP with single sign-on triggers

	Multi-factor authentication
	Helix SAML
	Prerequisites
	System Requirements

	Authorizing access
	When should protections be set?
	Setting protections with p4 protect
	Granting access to groups of users
	Comments in protection tables
	How protections are implemented
	Access levels required by Helix Server commands

	Backup and recovery
	Backup and recovery concepts
	Checkpoint files
	Journal files
	Versioned files

	Backup procedures
	Recovery procedures
	Database corruption, versioned files unaffected
	Both database and versioned files lost or damaged
	Ensuring system integrity after any restoration

	Failover
	High Availability and Disaster Recovery
	Potential data loss
	Failover process
	Prerequisites
	Configurables affected

	Monitoring the server
	Monitoring disk space usage
	Specifying values for filesys configurables
	Determining available disk space

	Monitoring processes
	Enabling process monitoring
	Enabling idle processes monitoring
	Listing running processes

	Diagnostic flags for monitoring the server
	Performance Tracking
	Command Tracing
	Setting the diagnostic flags

	Showing information about locked files
	Auditing user file access
	Logging and structured log files
	Examples of possible log entries
	Logging commands
	Enabling structured logging
	Structured logfile rotation

	Managing the server and its resources
	Forcing operations with the -f flag
	Managing the sharing of code
	Managing distributed development
	Distributed development using Fetch and Push
	Code drops without connectivity

	Managing users
	User types
	Preventing automatic creation of users
	Renaming users
	Deleting obsolete users
	Reverting files left open by obsolete users

	Deleting changelists and editing changelist descriptions
	Managing shelves
	Backing up a workspace
	Managing disk space
	Diskspace Requirements
	Saving disk space
	Reclaiming disk space by archiving files
	Reclaiming disk space by obliterating files

	Managing processes
	Pausing, resuming, and terminating processes
	Clearing entries in the process table
	Terminating blocked processes

	Managing the database tables
	Scripted client deployment on Windows
	Troubleshooting Windows installations
	Resolving Windows-related instabilities
	Resolving issues with P4EDITOR or P4DIFF

	Tuning Helix Server for performance
	Tuning for performance
	Operating systems
	Disk subsystem
	File systems
	CPU
	Memory
	Network
	Journal and archive location
	Use patterns
	Using read-only clients in automated builds
	Using parallel processing for submits and syncs

	Improving concurrency with lockless reads
	Commands implementing lockless reads
	Overriding the default locking behavior
	Observing the effect of lockless reads
	Side-track servers must have the same db.peeking level

	Diagnosing slow response times
	Hostname vs. IP address
	Windows wildcards
	DNS lookups and the hosts file
	Location of the p4 executable
	Working over unreliable networks

	Preventing server swamp
	Using tight views
	Assigning protections
	Limiting database queries
	Limiting simultaneous connections
	Unloading infrequently-used metadata
	Scripting efficiently
	Using compression efficiently
	Other server configurables

	Checkpoints for database tree rebalancing

	Customizing Helix Server: job specifications
	The default Helix Server job template
	The job template’s fields
	The Fields: field
	The Values: fields
	The Presets: field
	The Comments: field

	Caveats, warnings, and recommendations
	Example: a custom template
	Working with third-party defect tracking systems
	P4DTG, the Helix Defect Tracking Gateway
	Building your own integration

	Triggers
	Creating triggers
	Sample trigger
	Trigger definition
	Execution environment
	Trigger basics

	Triggering on submits
	Change-submit triggers
	Change-content triggers
	Change-commit triggers

	Triggering on pushes and fetches
	Similarity between p4 submit and p4 push
	Differences between p4 submit and p4 push
	Fields on a p4 push trigger
	Push-submit triggers
	Push-content triggers
	Push-commit triggers

	Triggering before or after commands
	Additional triggers for push and fetch commands

	Triggering on journal rotation
	Triggering on shelving events
	Shelve-submit triggers
	Shelve-commit triggers
	Shelve-delete triggers

	Triggering on fixes
	Fix-add and fix-delete triggers

	Triggering on forms
	Form-save triggers
	Form-out triggers
	Form-in triggers
	Form-delete triggers
	Form-commit triggers

	Triggering to use external authentication
	Auth-check and service-check triggers
	Single sign-on and auth-check-sso triggers
	Triggering for external authentication

	Triggering for multi-factor authentication (MFA)
	The list-methods phase (auth-pre-2fa)
	The init-auth phase (auth-init-2fa)
	The check-auth phase (auth-check-2fa)
	Variables

	Triggering to affect archiving
	Triggering with depots of type graph
	graph-push-start
	graph-push-reference
	graph-push-reference-complete
	graph-push-complete

	Triggers for external file transfer
	Replica archive pull threads
	Edge server submits

	Trigger script variables

	Helix Core Server (p4d) Reference
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Moving a Helix Core Server to a new machine
	Moving between machines of the same byte order
	Moving between different byte orders that use the same text format
	Moving between Windows and UNIX
	Changing the IP address of your server
	Changing the hostname of your server

	Helix Core Server Control (p4dctl)
	Installation
	Configuration file format
	Environment block
	Server block
	Service types and required settings
	Configuration file examples
	Using multiple configuration files

	p4dctl commands

	Glossary
	License Statements

