O
HelixCore

P4Java APl User Guide

2017.2
October 2017

PERFORCE

Copyright © 2009-2018 Perforce Software.
Allrights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sellany documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or supportis provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
Allother brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 41.

https://www.perforce.com/

Howtouse thisgquide 4
Feedback ... L 4
Otherdocumentation 4
SYNtaX CONVENIIONS ., 4

P4Java Programming 5
System Requirements .. il 5
Installation 5
Documentation ... L 5
Sample PrOgramMS 6
Javapackage roadmap 6
Basic P4Javausage model 6
Typical usage patterns 8

The IServer and IClient interfaces and the ServerFactory class 8
Exception and error handling 10
Helix Serverfile operations 11
Summary vs. Full Objects .. . 12
Advanced usage NOteS ... 13
Helix Server addresses, URIs, and properties 14
SSL connection sUPPOrt ... 14

The IServerResource Interface 15
PAJdava Properties 15
Character Set SUPPOrt ... il 16
Error Message Localization 17
Logging and traCing ... 17
Standard implementation classesl 17

I/0 and file metadata issues 17
Threading ISSUES e 18
Authentication ... L 18
Other NOtES L 19
GlOSSaNY 23
License Statements 41

How to use this guide

How to use this guide

This guide provides information on installing and using P4Java, and assumes a basic knowledge of both
Java (JDK 5 or later) and Helix Server.

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

Titeral Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-f] The enclosed elements are optional. Omit the brackets when you compose
the command.

m Repeats as much as needed:

« alias-name[[$(argl)...
[$Cargn)]]=transformation

m Recursive for all directory levels:

. clone perforce:1666 //depot/main/p4...
~/1local-repos/main

« p4 repos -e //gra.../rep...

element1 | Either element1 or element2 is required.
element2

mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

P4Java Programming

Perforce Software’s P4Java is a Java API that enables applications to access Helix Server, the Perforce
enterprise version control system in a “Java natural” and Java-native way. P4Java presents Helix Server
services and managed resources and files as first-class Java interfaces, classes, methods, and objects,
rather than as simple strings or command-line-style functions. This approach makes it easier to integrate

the API into Java applications and tools, and is particularly useful for integrating Helix Server into model-

view-controller (MVC) contexts and workflows.

P4Java is aimed mostly at the following types of Java development:

m Standalone applications that need to access Helix Server services from within the application

m Plug-ins for Java tools such as Eclipse, ant, Mylyn, Cruise Control, and so on, that need to
communicate with Helix Server

m J2EE applications, where P4Java can be embedded within a servlet and/or presented as a web
service or an AJAX binding for client-side use

System Requirements

P4Java assumes the presence of a JDK 6 or later environment, but will work against a JDK 5 installation,
with some limitations.

Due to current US export control restrictions for some countries, the standard JDK package only comes
with 128 bit encryption level cyphers. In order to use P4Java to connect to an SSL-enabled Helix Server,
those living in eligible countries may download the unlimited strength JCE (Java Cryptography
Extension) package and replace the current default cryptography jar files with the unlimited strength files.

For details, refer to the P4Java release notes.

Installation

Download the P4Java ZIP file from the Perforce web site, extract the enclosed JARs and other files to a
temporary directory, then install the p4java. jar JAR file into a location that is suitable for use by
compilers, JVMs, and other development tools or applications.

Documentation

Included with the P4Java ZIP file is a directory of documentation that contains this document and a full
Javadoc document set for all public interfaces and classes.

The Javadoc document set can be found at:
P4Java API Javadoc

http://www.perforce.com/perforce/doc.current/manuals/p4java-javadoc/index.html

Sample programs

Sample programs

Sample P4Java applications are available in Helix Server's public depot.

To access the public depot, set P4PORT to pub1ic.perforce.com:1666 and add the depot
path //guest/perforce_software/p4java/samples/basic/. . . toyourclient
workspace view.

These samples are used throughout this document to illustrate common usage patterns and simple code
snippets, and can also be used as the basis for further user experiments with P4Java development.

Java package roadmap

The P4Java API contains the following main public packages:

com.perforce.p4java: the main P4Java package hierarchy root. Contains a small
handful of APl-wide definitions and classes for activities like logging, tracing, and package
metadata.

com.perforce.p4java.server: contains the server factory class and IServer server
interface, and associated classes and interfaces related to the IServer definition. This
package enables participating applications to connect to Helix Servers and start interacting with
Helix Server services through the IServer interface.

com.perforce.p4java.client: defines the IC11ent client interface and associated
classes and support definitions. Participating applications typically use the IClient interface to
access Helix Server client services such as syncing and adding, editing, or deleting files.

com.perforce.p4java.exception: defines the main publicly-visible exceptions likely
to be encountered in general use, and some specialized and rarely-encountered errors.

com.perforce.p4java.core: contains interface definitions for major Helix Server-
managed objects such as changelists, jobs, and clients.

com.perforce.p4java.core.file: contains the main IFileSpec interface for
accessing and defining the various types of files that Helix Server manages (for example,
depot, Tocal, and c11ient), along with associated definitions.

com.perforce.p4java.impl.generic: root package for “generic” or standard
implementations of many useful Helix Server client, changelist, job, and similar interfaces. These
implementations are available for use by participating applications, but are not mandatory.

Basic P4Java usage model

The following basic model for P4Java reflects typical Helix Server usage:

1.

A Java application uses the P4Java ServerFactory class to obtaina IServer interface
onto a specific Helix Server at a known network address and port, and connects to this Helix
Server through the IServer interface that is returned from the factory.

Basic P4Java usage model

2. The application optionally logs in to the Helix Server through the IServer's login and associated
methods.

3. The application obtains a suitable IC11 ent interface into a Helix Server client workspace
through the IServer interface’s “get client” method.

4. The application syncs the Helix Server client workspace through the IC11 ent interface’s sync
method.

5. The application gets and processes (Java java.util.L1ist)lists of depot, client, and local
files in (or associated with) the Helix Server client workspace, through the IServer and
ICl1ient interfaces.

6. The application adds, edits, or deletes files in the local Helix Server client workspace using the
ICT1ient interface. These files are added to the default or a numbered Helix Server changelist
represented by one or more IChangeLi st interfaces, which are obtained through the
IClient orIServer interfaces. (There are often several ways to obtain a specific type of
object depending on context, but these tend to be convenience methods rather than fundamental.)

7. The application submits a specific changelist using the associated IChangeLi st interface.
This submission can be linked with one or more Helix Server jobs, represented by the IJob
interface.

8. The application can switch between Helix Server workspaces, browse Helix Server jobs and
changelists, log in as a different user, and add, edit, or delete files, using the relevant IServer
orICT1ient interfaces.

9. Todisconnect from a Helix Server, the application calls the disconnect method on the
IServer interface.

This usage model relies heavily on representing all significant Helix Server objects — clients, servers,
changelists, jobs, files, revisions, labels, branches, and so on — as first-class Java interfaces, classes,
or enums, and, where appropriate, returning these objects as ordered Java lists so that the developer can
iterate across the results using typical Java iterator patterns. P4Java uses JDK 5 (and later)
parameterized types for these lists.

P4Java represents most recoverable usage errors and Helix Server errors as Java exceptions that are
subclassed out of the main P4JEXception class, and thrown from nearly every significant
IServer and ICT1ient interface method (and from subsidiary and associated class methods). Most
such errors are connection errors (caused by a network or connectivity issue), access errors (caused by
permissions or authentication issues), or request errors (caused by the Helix Server detecting a badly-
constructed request or non-existent file spec). P4Java applications catch and recover from these errors
in standard ways, as discussed in "Exception and error handling" on page 10.

Exceptions are not used in methods that return multiple files in lists, because the server typically
interpolates errors, informational messages, and valid file specs in the same returns. P4Java provides a
single method call as a standard way of identifying individual returns in the (often very long) list of returns,
discussed in detail in "Helix Server file operations" on page 11.

In general, the methods and options available on the various P4Java APl interfaces map to the basic
Helix Server commands (or the familiar p4 command line equivalent), but there are exceptions. Not all
Helix Server commands are available through the P4Java API.

Typical usage patterns

Unlike the Helix C/C++ API or the p4 command-line client, P4Java is not intended for direct end-user
interaction. Rather, P4Java is intended to be embedded in GUI or command-line applications to provide
Helix Server client/server communications, and P4Java assumes that the surrounding context supplies
the results of user interaction directly to P4Java methods as Java objects. Consequently, many of the
environment variables used by command-line client users (such as P4PORT or P4USER) are
deliberately ignored by P4Java. The values they usually represent must be explicitly set by appropriate
IServer methods or other methods.

The standard default P4Java server and client implementations are basically thread-safe. To avoid
deadlock and blocking, refer to "Threading issues" on page 18.

Typical usage patterns

This section briefly describes typical usage patterns and provides a starting point for developers using
P4Java for the first time. Many examples below are snippets from (or refer to) the P4Java sample
programs available in the Helix Server public depot.

To access the public depot, set P4PORT to pubT1ic.perforce.com: 1666 and add the depot
path //guest/perforce_software/p4java/samples/basic/. .. toyourclient
workspace view.

The IServer and IClient interfaces and the ServerFactory class

The com.perforce.p4java.server.IServer interface represents a specific Helix Serverin
the P4Java API, with methods to access typical Helix Server services. Each instance of a IServer
interface is associated with a Helix Server running at a specified location (network address and port), and
each IServer instance is obtained from the P4Java server factory,
com.perforce.p4java.server.ServerFactory, by passing it a suitable server URI and
optional Java properties.

The snippet below is from the ServerFactorybDemo class in the sample package, and shows a very
simple way to prompt the user for a Helix Server URI, connect to the server at the URI, and get basic
information about that server. This is the basic “Hello World!” P4Java application, and works like the p4
info command (with suitable attention being paid to formatting details with the formatInfo method
below).
BufferedReader 1lineReader = new BufferedReader(
new InputStreamReader(System.in));
try {
for ;) {
System.out.print(PROMPT) ;
String serveruUriString = lineReader.readLine();
if ((serveruristring == null) ||
serveruriString.equalsIgnoreCase("quit™)) {
break;

The IServer and IClient interfaces and the ServerFactory class

} else {
IServer server = ServerFactory.getServer(serverUriString, null);
server.connect(Q);

IServerInfo info = server.getServerInfo();
if (info != null) {
System.out.printin(
"Info from Perforce server at URI

T

+ serveruriString + "':");
System.out.printin(formatInfo(info));
3
if (server != null) {
server.disconnect();
}
3

}

} catch (RequestException rexc) {
System.err.printin(rexc.getbDisplayString());
rexc.printStackTrace();

} catch (P4JavaException exc) {
exc.printStackTrace();

} catch (TOException ioexc) {
ioexc.printStackTrace();

} catch (URISyntaxException e) {
e.printStackTrace();

}

Multiple IServer objects can represent the same physical Helix Server, and this approach is
recommended for heavyweight usage and for multi-threaded applications.

The Java properties parameter passed to the factory in the first example is null, but you can pass in a
variety of generic and implementation-specific values as described in "Character Set Support" on
page 16.

Helix Server client workspaces are represented by the
com.perforce.p4java.client.ICl1ient interface, which can be used toissue Helix Server
client workspace-related commands such as sync commands, file add /delete / edit commands, and so
on. AICT1ient interface is typically obtained from an IServer interface using the getClient)
method, and is associated with the IServer using the setCurrentClient() method as
illustrated in the C11 entUsageDemo snippet below:

Exception and error handling

IServer server = null;
try {

server = getServer(null);

server.setUserName (userName) ;

server.login(password);

IClient client = server.getClient(clientName);

if (client !'= null) {
server.setCurrentClient(client);
// use the client in whatever way needed...

ks
} catch (Exception exc) {
// handle errors...

}

Note also the use of the setUserName and 10g1n methods on the server to establish the current
user and log them in, respectively.

Note also, that unlike the p4 command line client, there are no defaults for user and workspace. Your
application must explicitly associate a workspace (an IC11 ent client object) and user with the server
using the IServer.getClient and IServer.setCurrentClient methods.

Exception and error handling

P4Java uses a small set of Java exceptions to signal errors that have occurred in either the Helix Server
as a result of issuing a specific command to the server, or in the P4Java plumbing in response to things
like TCP/IP connection errors or system configuration issues. (These exceptions are not used to signal
file operation problems at the individual file level — see "Helix Server file operations" on the facing page
for details about individual file error handling.)

In general, P4Java exceptions are rooted in two different classes: the P4JavaException classes
are intended for “normal’” (that is, recoverable) errors that occur as the result of things like missing client
files, a broken server connection, or an inappropriate command option; the P4JavaError classes are
intended for more serious errors that are unlikely to be recoverable, including unintended null pointers or
P4Java-internal errors. The P4JavaExXception class hierarchy is rooted in the normal
java.lang.Exception tree, and any such exception is always declared in relevant method
“‘throws” clauses; the P4JavaError classes, however, are rooted in java. lang.Error, and
consequently do not need to be declared or explicitly caught. This allows a developer to catch all such
‘P4JavaError's, for example, in an outer loop, but to process “normal” ‘P4JavaException’s in inner blocks
and loops as they occur.

10

Helix Server file operations

Typically, application code should report a P4JavaError exception and then terminate either itself or
whatever it was doing as soon as possible, as this exception indicates a serious error within P4Java.
P4JavaException handling is more fine-grained and nuanced: A P4JavaException aimost
always signals a recoverable (or potentially-recoverable) error, and should be caught individually or at the
class level. The following snippet represents a common pattern for P4 Java error and exception handling
around major functional blocks or processing loops:

try {
// issue one or more server or client commands...
} catch (P43Javakrror err) {
panic(err); // causes app to exit after printing message to stderr...
} catch (RequestException rexc) {
// process server-side Perforce error...
} catch (ConnectionException cexc) {
// process Perforce connection exception...
} catch (P4Javaexception exc) {
// catchall...
} catch (Exception exc) {
// Other-exception catchall...
}

Note the way RequestException and ConnectionException events are handled
separately: RequestEXception exceptions are aimost always thrown in response to a Helix Server
error message and therefore include a severity and generic code that can be used or displayed (other
P4JavaExceptions do not usually contain these), and ConnectionExceptions should
normally result in the enclosing app explicitly closing or at least re-trying the associated connection, as
processing can no longer continue on the current Helix Server connection.

Helix Server file operations

To define common Helix Server-managed file attributes and options, P4Java uses the
com.perforce.p4java.core.file.IFileSpecinterface. Attributes like revisions, dates,
actions, and so on, are also defined in the core. fi1e package, along with some key helper classes
and methods. In general, most Helix Server file-related methods are available on the IServer and
IC11ient interfaces, and might also be available on other interfaces such as the IChangeList
interface.

Because Helix Server file operations can typically run to a conclusion even with errors or warnings
caused by incoming arguments, and because the server usually interpolates error and informational
messages in the list of file action results being returned, most file-related methods do not throw
exceptions when a request error is encountered. Instead, the file-related methods return a Java list of
results, which can be scanned for errors, warnings, informational messages, and the successful file
specs normally returned by the server. P4Java provides helper classes and methods to detect these
errors.

11

Summary vs. Full Objects

P4Java file methods are also designed to be composable: the valid output of one file method (for
instance, IServer.getDepotFileL1ist)can usually be passed directly to another file method
(suchas IClient.editFiles)as aparameter. This approach can be very convenient in complex
contexts such as ant or Eclipse plug-ins, which perform extensive file list processing.

The snippet below, from the sample L1 StFi1lesDemo class, illustrates a very common pattern used
when retrieving a list of files (in this case from the getDepotFiles method):

List<IFileSpec> fileList = server.getDepotFiles(
FileSpecBuilder.makeFileSpecList(new String[] {"//..."}), false);
if (fileList != null) {
for (IFileSpec fileSpec : fileList) {
if (filespec != null) {
if (fileSpec.getopStatus() == FileSpecOpStatus.VALID) {
System.out.printin(formatFileSpec(fileSpec));
} else {
System.err.printin(fileSpec.getStatusMessage());

}

Note in particular the use of the FileSpecBuilder.makeFileSpecList helper method that
converts a String array to a list of IFi 1eSpec objects; note also the formatFileSpec method
referenced above; this simply prints the depot path of the returned IFi1eSpec object if it’s valid.

Summary vs. Full Objects

The 2009.2 release of P4Java introduced the notion of “summary” and “full” representations of objects on
a Helix Server. In many cases, the Helix Server only returns summaries of objects that it's been asked to
list. For example, if you issue a p4 c11ents command to a server, what comes back is a list of client
metadata for known client workspaces, but not the associated workspace views. For things like
changelists, jobs, branches, and so on, to obtain the full version of the Helix Server object (such as a
specific client workspace), you typically doap4 client -0 withthe workspace’s name.

Similarly, P4Java distinguishes between the summary objects returned from the main list methods (such
as IServer.getClients())and the full objects returned from individual retrieval methods (such
as IServer.getClient()).

The snippet below, edited from the L stC11entDemo sample app, illustrates a typical usage pattern
for summary and full object retrieval:

try {
IServer server = getServer(null);
server.setUserName(userName) ;

12

Advanced usage notes

server.login(password);
List<IClientSummary> clientList = server.getClients(
userName, null, 0);
if (clientList != null) {
for (IClientSummary clientSummary : clientList) {

// NOTE: 1list returns client summaries only; need to get
// the full client to get the view:
IClient client = server.getClient(clientSummary);

System.out.printin(client.getName() +
+ client.getbDescription(Q).trim(Q) + " "
+ client.getRoot());
Clientview clientview = client.getClientview();
if (clientview != null) {
for (IClientviewMapping viewMapping : clientview) {

System.out.printIn("\t\t" + viewMapping);

}

} catch (RequestException rexc) {
System.err.printin(rexc.getbDisplayString());
rexc.printStackTrace();

} catch (P4JavaException exc) {
exc.printStackTrace();

} catch (URISyntaxException e) {
e.printStackTrace();

}

Note that only clients owned by username are returned, and that in order to print the associated client
workspace view for each retrieved summary client workspace, we get the full client object. This is more
common in cases where a user might iterate across a list of all workspaces known to the Helix Serverin
order to find a specific client workspace, then retrieve that client (and only that client) workspace in full.

Advanced usage notes

The following notes provide guidelines for developers using features beyond the basic usage model.

13

Helix Server addresses, URIs, and properties

Helix Server addresses, URIs, and properties

P4Java uses a URI string format to specify the network location of target Helix Servers. This URI string
format is described in detail in the server factory documentation, but it always includes at least the
server's hostname and port number, and a scheme part that indicates a P4Java connection (for example,
p4java://localhost:1666). Note that:

m P4Java does not obtain default values from the execution environment or other sources for any
part of the URI string. All non-optional parts of the URI must be filled in. (For example, P4Java
does not attempt to retrieve the value of P4PORT from a Unix or Linux environment to complete a
URL with a missing port number.)

m P4Java’s factory methods allow you to pass properties into the IServer object in the server’s
URI string as query parts that override any properties that are passed in through the normal
properties parameter in the server factory getServer method. This feature is somewhat limited
in that it doesn’t currently implement URI escape sequence parsing in the query string, but it can
be very convenient for properties passing. See "P4Java properties" on the facing page for an
explanation.

SSL connection support

Helix Server at release 2012.1 or higher supports 256-bit SSL connections and trust establishment by
accepting the fingerprint of the SSL certificate’s public key.

Due to current US export control restrictions for some countries, the standard JDK package only comes
with 128 bit encryption level cyphers. In order to use P4Java to connect to an SSL-enabled Helix Server,
those living in eligible countries may download the unlimited strength JCE (Java Cryptography
Extension) package and replace the current default cryptography jar files with the unlimited strength files.

To make a secure connection using P4Java, append SS1 to the end of the P4Java protocol (for example,
p4javassl://localhost:1667). Foranew connection or a key change, you must also
(re)establish trust using the IOptionsServer's addTrust method. For example:

// Create a P4Java SSL connection to a secure Perforce server

try {
String serveruri

"p4javassl://localhost:1667";

Properties props = null;

IOptionsServer server = ServerFactory.getOptionsServer(serveruri,
props) ;

// assume a new first time connection
server.addTrust(new TrustOptions().setAutoAccept(true));

// if all goes well...

14

The IServerResource Interface

IServerInfo serverInfo = server.getServerinfo();
} catch (P4Javaexception e) {

// process P4Java exception
} catch (Exception e) {

// process other exception

The IServerResource Interface

P4Java represents Helix Server objects (such as changelists, branch mappings, job specs, and so on) to
the end user through associated interfaces (such as IChangeList, IBranchSpec, and so on)onto
objects within P4Java that mirror or proxy the server-side originals. This means that over time, the
P4Java-internal versions of the objects may get out of date with the server originals, or the server
originals may need to be updated with corresponding changes made to the P4Java versions.

P4Java’'s IServerRrResource interface is designed to support such proxying and to allow refreshes
from the server or updates to the server as necessary. Virtually all useful P4Java objects or interfaces
that proxy or represent Helix Server-side objects extend the IServerrResource interface, and
unless otherwise noted in the individual Javadoc comments, the interface methods can be used to
update server- and client-side versions accordingly.

P4Java properties

P4Java uses Java properties to set various operational values for specific IServer instances and/or
for P4Java as a whole. These properties are typically used for things like preferred temporary file
directory locations, application version and name information for Helix Server usage, and the location of a
suitable Helix Server authentication tickets file (see "Authentication" on page 18 for details). A full list of
publicly-visible properties (with default values) is given in the PropertyDefs Javadoc.

Properties intended for P4Java use can have “long form” or “short form” names. Long form names are
canonical, and are always prefixed by the string represented by PropertyDefs . P4JAVA_PROP_
KEY_PREFIX (normally com.perforce.p4java., forexample,
com.perforce.p4java.userName). Short form names are the same string without the standard
prefix (for example, userName). Use long form names when there’s any chance of conflict with system
or other properties; short form names, on the other hand, are convenient for putting property values onto
URI strings as long as you know the property name won't collide with another property name in use by
the app or system.

Properties can be passed to P4Javain several ways:

m As properties originally passed to the JVM using the usual Java JVM and system properties
mechanisms.

15

Character Set Support

Passing properties in this way is useful for fundamental P4Java-wide values that do not change
over the lifetime of the P4Java invocation and that do not differ from one IServer instance to
another. A typical example of such a property is the com. perforce.p4java.tmpDir
property, which is used by P4Java to get the name of the temporary directory to be used for
P4Java tmp files (and which defaults to java.io.tmpd1 r if not given).

= As properties passed in to anindividual IServer instance through the server factory
getServer method's properties parameter.

Properties passed in this way override properties passed in through the JVM. This mechanism is
useful for any properties that are (or may be) server-specific, such as userName,
clientName, and soon.

m As properties passed in through the server factory’s URI string parameter query string.

Properties passed in this way override properties passed in through the properties parameter and
the JVM. This mechanism is useful for ad hoc property-passing and/or overriding less-changeable
properties passed in through the properties parameter.

The following code shows an example of passing properties to a IServer instance using the URI
string query mechanism:

IServer server = ServerFactory.getServer(
"p4java://test:16667userName=testl12&clientName=testl2_client&"
+ "autoConnect=y", null);

Assuming no errors occur along the way, this code returns a IServer object connected to the Helix
Server host test on port 1666 with the Helix Server client name testl12_c11ient and Helix Server
user name test12 logged in automatically (note that the login only works if the underlying
authentication succeeds — see "Authentication" on page 18 for details.

Character Set Support

Character set support is only enabled for Unicode-enabled Helix Servers. In this mode, P4Java
differentiates between Helix Server file content character sets (that is, the encoding used to read or write
afile’s contents) and the character sets used for Helix Server file names, job specs, changelist
descriptions, and so on.

This distinction is made due to the way Java handles strings and basic 1/O: in general, while file content
character set encodings need to be preserved so that the end results written to or read from the local disk
are properly encoded, P4Java does not need to know about file metadata or other string value encodings.
Because Helix Server store and transmit all such metadata and strings in normalized UTF-8 form, and
because all Java strings are inherently encoded in UTF-16, the encoding to and from non-UTF-16
character sets (such as shiftjis)is done externally from P4Java (usually by the surrounding app),
and is not influenced by or implemented in P4Java itself. This means that the character set passed to the
IServer.setCharsetName methodis only used for translation of file content. Everything else,
including all file names, job specs, changelist descriptions, and so on, is encoded in the Java-native Java
string encoding UTF-16 (and may or may not need to be translated out of that coding to something like
shiftjisorwinansi).

16

Error Message Localization

P4Java supports file content operations on files encoded in most of the character sets supported by the
Helix Server, but not all. The list of supported Helix Server file content charsets is available to calling
programs through the PerforceCharsets.getknownCharsets method. If you attempt to set
aIServer object’s charset to a charset not supported by both the Helix Server and the local JDK
installation, you will get an appropriate exception; similarly, if you try to (for example) sync a file with an
unsupported character set encoding, you will also get an exception.

The Helix Server uses non-standard names for several standard character sets. P4Java also uses the
Helix Server version of the character set, rather than the standard name.

Error Message Localization

Error messages originating from the Helix Server are localized if the Helix Server is localized; error
messages originating in P4Java itself are not currently localized. P4Java’s internal error messages aren’t
intended for end-user consumption as-is; your applications should process such errors into localized
versions that are presentable to end users.

Logging and tracing

P4Java includes a simple logging callback feature, documented in the ILogCal1back Javadoc page,
that enables consumers to log P4Java-internal errors, warnings, informational messages, exceptions,
and so on. Logging is enabled or disabled on a P4Java-wide basis, not on a per-connection or per-server
basis.

The logging feature performs no message formatting or packaging. You can put the log message through
the surrounding application context’s logger as required. In general, your applications should log all error
and exception messages. Informational messages, statistics, and warning messages do not need to be
logged unless you are working with Perforce Technical Support to debug an issue.

Standard implementation classes

The com.perforce.p4java.impl.generic package is the root for a fairly large set of
standard implementation classes such as Job, Changel1i st, and so on. These implementation
classes are used internally by P4Java, and while usage is not mandatory, you are encouraged to use
them as well. This is especially useful if you wish to extend standard P4Java functionality by, for
example, adding audit or authentication methods to standard classes.

I/0 and file metadata issues

The quality of P4Java'’s network and file I/0 in real-world usage is strongly affected by the quality of
implementation of the underlying Java N1O packages. Java’s handling of file metadata also affects 1/O.
Although JDK 6 is an improvement over JDK 5, it can be difficult to manipulate file type and metadata
(such as permissions, access/modification time, symlinks, and so on) in pure Java. These are abilities
that C programmers take for granted. Issues often arise from JVM limitations such as an inability to set
read-only files as writable, reset modification times, observe Unix and Linux umask values, and so on.

17

Threading issues

Because of these issues, P4Java has a file metadata helper callback scheme, defined in
com.perforce.p4java.impl.generic.sys.ISystemFileCommandsHelper. This
approach enables users to register their own file metadata class helper (typically using something like an
Eclipse file helper or a set of native methods) with the server factory, to help in cases where the JDK is
not sufficient. See the relevant ISystemFi1eCommandsHelper Javadoc for details.

Threading issues

P4Java is inherently thread-safe when used properly. The following best practices can help to ensure that
users do not encounter thread-related problems:

m P4Java’s IServer object is partially thread-safe. The only state preserved in the underlying
implementation classes is the Helix Server client that is associated with the server, and the
server’s authentication state.

= You can have multiple threads working against a single IServer object simultaneously, but
note that changing authentication state (login state, password, user name, and so on) or the client
that is associated with the server can have unpredictable results on long-running commands that
are still running against that server object. You should ensure that changing these attributes only
happens when other commands are not in progress with the particular server object.

m P4Java makes no guarantees about the order of commands sent to the Helix Server by your
applications. You must ensure that any required ordering is enforced.

m Using a large numbers of threads against a single IServer object can impose a heavy load on
the JVM and the corresponding server. To control load, create your own logic for limiting thread
usage. Be certain that your use of threads does not cause deadlock or blocking. Consider using a
single IServer object for each thread.

m P4Java offers a number of useful callbacks for things like logging, file helpers, progress
monitoring, and so on. These callbacks are performed within a live thread context. Ensure that any
callbacks that you register or use do not cause blocking or deadlocks.

m To obtain the best resource and memory allocation strategies for your specific threading needs,
experiment with JVM invocation parameters. Garbage collection and memory allocation strategies
can make quite a difference in raw threading throughput and latency, but often indirectly and
unpredictably.

Authentication

P4Java implements both the Helix Server tickets-based authentication and the Helix Server single sign
on (SSO) feature. Both types of authentication are described in detail in the P4Java Javadoc, but some
P4Java-specific issues to note include:

m P4Javamanages a p4 tickets fileinamatter similar to that of the P4 command line (under
normal circumstances, the two can share the same tickets file). When a ticket value is requested
by the Helix Server and the current ticket value in the associated IServer object is not set, an

18

Other Notes

attempt is made to retrieve the ticket out of the p4 tickets file. If found, the ticket is stored on
the IServer object and used as the Helix Server authentication ticket.

A successful login causes the ticket value to be added or updated in the tickets file, and a logout
causes the current ticket value in the p4 t1ickets file to be removed. The IServer object’s
ticket should be set to nu11 to cause a re-reading of the ticket value from the p4 tickets file.

The p4 tickets fileis usually stored in the same place the p4 command line stores it, but the
PropertybDefs.TICKET_PATH_KEY property can be used to specify an altemate tickets
file.

m P4Javaimplements Helix Server's SSO scheme using a callback interface described in the
ISsocallback Javadoc (in the package
com.perforce.p4java.server.callback). Ensure that the callback doesn't block,
and that it adheres to the expected format of the associated Helix Server.

Other Notes

= As documented in the main Helix Server documentation, Helix Server form triggers can cause
additional output on form commands such as “change” or “client”, even when the trigger succeeds.
This trigger output is available through the P4Java command callback feature, but note that there
is currently no way to differentiate trigger output from normal command output, and that such
trigger output will also be prepended or appended to normal string output on commands such as
IServer.newLabel.

m P4Java’s command callback feature, documented in class
com.perforce.p4java.server.callback.ICommandCallback, is auseful
way to get blow-by-blow command status messages and trigger output messages from the server
in away that can mimic the p4 command line client’s output. Usage is straightforward, but note
the potential for deadlocks and blocking if you are not careful with callback method
implementation.

m P4Java’s progress callback feature gives users a somewhat impressionistic measure of
command progress for longer-running commands. Progress callbacks are documented in the
Javadoc for class
com.perforce.p4java.server.callback.IProgresscallback. Once again,
if you use this feature, ensure that your callback implementations do not cause deadlocks or
blocking.

19

Other Notes

= We strongly recommend setting the progName and progverson properties (either globally
orforeach IServer instance) whenever you use P4Java. Set these values to something
meaningful that reflects the application or tool in which P4Java is embedded; this can help Helix
Server administrators and application debugging.

For example, the following code sets progName and progVversion via the JVM invocation

property flags:

$ java -Dcom.perforce.p4java.programName=p4test
-Dcom.perforce.p4java.programversion=2.01A

Alternatively, you can also use the server factory getServer method’s properties parameter:

Properties props = new Properties(System.getProperties());
props.setProperty(PropertybDefs.PROG_NAME_KEY, "ant-test");
props.setProperty(PropertybDefs.PROG_VERSION_KEY, "Alpha 0.9d");

server = IServerFactory.getServer(serveruUriString, props);

= If your application receives a ConnectionException fromaIServerorIClient
method while communicating with a Helix Server, the only truly safe action is to close the
connection and start over with a new connection, rather than continue using the connection.

A ConnectionException event typically represents a serious network error (such as the
Helix Server unexpectedly closing a connection or a bad checksum in a network packet), and
there’s no guarantee that after receiving such an event the connection is even usable, let alone
reliable.

20

Other Notes

» Thereis currently no diff method on IFileSpec interfaces to compare versions of the same
Helix Server-managed file, but this functionality may be easily implemented with a combination of
IServer.getFileContents to retrieve the contents of specific versions to temporary
files, and the use of the operating system’s diff application on these temporary files as shown
below:

InputStream fspecStreaml = server.getFileContents(
FileSpecBuilder.makeFileSpecList(
new String[] {specl}), false, true);
InputStream fspecStream2 = server.getFileContents(
FileSpecBuilder.makeFileSpecList(
new String[] {spec2}), false, true);

File filel = null;

File file2 = null;

try {
filel = File.createTempFile("p4jdiff", ".tmp");
file2 = File.createTempFile("p4jdiff", ".tmp");

FileOutputStream outStreaml = new FileOutputStream(filel);

FileOutputStream outStream2 = new FileoutputStream(file2);

byte[] bytes = new byte[1024];

int bytesRead = 0;

while bytesRead = fspecStreaml.read(bytes > 0) {
outStreaml.write(bytes, 0, bytesRead);

}

fspecStreaml.close();

outStreaml.close();

while bytesRead = fspecStream2.read(bytes > 0) {

outStream2.write(bytes, 0, bytesRead);
3
fspecStream2.close();
outStream2.close();
Process diffProc = Runtime.getRuntime().exec(new String[] {
"/usr/bin/diff",filel.getPath(),file2.getPath()});
diffProc.waitFor(Q);

21

Other Notes

if (diffProc != null) {
InputStream iStream = diffProc.getInputStream();
byte[] inBytes = new byte[1024];
int inBytesRead = 0;
while inBytesRead = iStream.read(inBytes > 0) {
System.out.write(inBytes, 0, inBytesRead);

3

} catch (Exception exc) {
error("diff error: " + exc.getLocalizedMessage());
return;

} finally {
if (filel !'= null) filel.delete();

if (file2 !'= null) file2.delete();

22

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'‘protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (ersioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvementin
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

The file revision, in conjunction with the source revision, used to help determine what integration
changes should be applied to the target revision.

23

Glossary

binary file type

A Helix Server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix Server and is able to run scripts
on the commands before sending them to the Helix Server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix Server. The changes specified in the

24

Glossary

changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

The unique numeric identifier of a changelist. By default, changelists are sequential.

check in

To submit a file to the Helix Server depot.

check out

To designate one or more files for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix Server files that is not streams-based. The default depot name is depot. See
also default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

25

Glossary

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix Server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server thatis part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix Server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

26

Glossary

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix Server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix Server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Versioning Engine. It contains all versions of all files ever
submitted to the depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix Server syntax for specifying the location of files in the depot. Depot syntax begins with: /depot/

27

Glossary

diff
(noun) A set of lines that do not match when two files are compared. A conflictis a pair of unequal

diffs between each of two files and a base. (verb) To compare the contents of files or file revisions.
See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

Areplica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

F

file conflict
In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix Server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix Server, this is called the depot.

28

Glossary

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix Server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix Server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicat servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix Server users to collaborate on the same
projects using their preferred tools.

graph depot
A depot of type graph thatis used to store Git repos in the Helix Server. See also Helix4Git.

29

Glossary

30

Gravatar

gravatar.com is a third party service that you can subscribe to, gravatar enables you to upload an
image that you can use in Swarm. When configured, Swarm will attempt to fetch your avatar from
gravatar.com and use it within Swarm. If your avatar is not found on gravatar.com, Swarm will use
one of its own default avatars to represent your activity. See also the "avatar" entry in this glossary.

group

A feature in Helix Server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix Server

The Helix Server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Versioning Engine.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4 Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix Server depots.

iconv

iconv is a PHP extension that performs character set conversion, and is an interface to the GNU
libiconv library.

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix Server. The job template determines what information is
tracked. The template can be modified by the Helix Server system administrator. A job describes

work to be done, such as a bug fix. Associating a job with a changelist records which changes fixed
the bug.

job daemon

A job daemon is a program that checks the Helix Server machine daily to determine if any jobs are
open. If so, the daemon sends an email message to interested users, informing them the number of
jobs in each category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix Server machine.

job view

A syntax used for searching Helix Server jobs.

journal

A file containing a record of every change made to the Helix Server's metadata since the time of the
last checkpoint. This file grows as each Helix Server transaction is logged. The file should be
automatically truncated and renamed intoa numbered journal when a checkpointis taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix Server's metadata.

31

Glossary

32

L

label
A named list of user-specified file revisions.

label view
The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy
A method used by Helix Server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file
A file that ensures that the number of Helix Server users on your site does not exceed the number for
which you have paid.

list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot
Any depot located on the currently specified Helix Server.

local syntax
The syntax for specifying a filename that is specific to an operating system.

lock
1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix Server. To specify a log file, set the P4ALOG environment variable or use
the p4d -L flag when starting the service.

Glossary

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix Server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix Server from two conflicting file revisions.

metadata

The data stored by the Helix Server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata includes all the data stored in the
Perforce service except for the actual contents of the files.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

33

Glossary

numbered changelist

A pending changelist to which Helix Server has assigned a number.

(0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix Server user who created a particular client, branch, or label.

P

p4
1. The Helix Versioning Engine command line program. 2. The command you issue to execute
commands from the operating system command line.

p4d
The program that runs the Helix Server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
Server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.
project

In Helix Swarm, a group of Helix Server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test

34

Glossary

integration, and automated deployment.

protections

The permissions stored in the Helix Server’s protections table.

proxy server

A Helix Server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix Server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix Server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix Server but not
make any changes.

remote depot

A depotlocated on another Helix Server accessed by the current Helix Server.

replica

A Helix Server that contains a full or partial copy of metadata from a master Helix Server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.
resolve

The process you use to manage the differences between two revisions of a file. You can choose to
resolve conflicts by selecting the source or target file to be submitted, by merging the contents of

35

Glossary

conflicting files, or by making additional changes.

reverse delta storage

The method that Helix Server uses to store revisions of text files. Helix Server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A review daemon is a program that periodically checks the Helix Server machine to determine if any
changelists have been submitted. If so, the daemon sends an email message to users who have
subscribed to any of the files included in those changelists, informing them of changes in files they
are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager is a tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

36

Glossary

S

server data
The combination of server metadata (the Helix Server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the PAROOT environment variable or use the p4d -r
flag.

service
In the Helix Versioning Engine, the shared versioning service that responds to requests from Helix
Server client applications. The Helix Server (p4d) maintains depot files and metadata describing the
files and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix Server without checking in a changelist.

status
For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix Server depot for processing.

37

Glossary

super access

An access level that gives the user permission to run every Helix Server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix Server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix Server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix Server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script automatically invoked by Helix Server when various conditions are met. (See "Helix
Versioning Engine Administrator Guide: Fundamentals" on "Using triggers to customize behavior")

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

38

Glossary

typemap

A table in Helix Server in which you assign file types to files.

U

user

The identifier that Helix Server uses to determine who is performing an operation.

\

versioned file

Source files stored in the Helix Server depot, including one or more revisions. Also known as a depot
file or source file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch

view.

w

wildcard
A special character used to match other characters in strings. The following wildcards are available
in Helix Server: * matches anything except a slash; ... matches anything including slashes; % %0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

39

Glossary

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

40

License Statements

Perforce Software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

41

http://www.openssl.org/

	How to use this guide
	Feedback
	Other documentation
	Syntax conventions

	P4Java Programming
	System Requirements
	Installation
	Documentation
	Sample programs
	Java package roadmap
	Basic P4Java usage model
	Typical usage patterns
	The IServer and IClient interfaces and the ServerFactory class
	Exception and error handling
	Helix Server file operations
	Summary vs. Full Objects

	Advanced usage notes
	Helix Server addresses, URIs, and properties
	SSL connection support
	The IServerResource Interface
	P4Java properties
	Character Set Support
	Error Message Localization
	Logging and tracing
	Standard implementation classes
	I/O and file metadata issues
	Threading issues
	Authentication
	Other Notes

	Glossary
	License Statements

