O
HelixCore

Helix Core Server Administrator
Guide: Multi-Site Deployment

2018.1
March 2018

PERFORCE

ww.perforc

Copyright © 1999-2018 Perforce Software.
Allrights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sellany documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or supportis provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
Allother brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 138.

https://www.perforce.com/

Howtouse thisgquide 7
Feedback ... L 7
Other documentation .. il 7
SYNtaX CONVENIIONS ., 7

What's newin thisguide 8
2018, releas e il 8
2017 2 release il 8

Complete replication for graph depot archives 8
Helix Core Server Control (p4dctl) has moved 8

Introduction to federated services 9
Other types of federated architecture 13
Setting up federated SErviCes i 13

General gQUIdEliNeS o o L 13
Authenticating Users 14
CoNNECHING SEIVICES 14
Backing up and upgrading ServiCes 15
BacKing Up SerViCes .. il 16
Upgrading SerViCesS il 16
Configuring centralized authorization and changelist servers 17
Centralized authorization server (PA4AUTH) e, 17
Centralized changelist server (P4ACHANGE) 20
Verifying shelved files ... L 21

Helix Serverreplication 22
System reqUIreMENtS ... 24
Replication basiCs 24

The pd pull command 29
[dentifying YOUr SeIVer .. 30
SEIVICE USEIS . 31
Server options to control metadata and depotaccess 33
PAT AR GE T L 33
Server startup COmMMaNAS ... 34
P4 pull vs. pa replicate ... il 34
Enabling SSL sUppOrt .. 35

Replication and protections 35

How replica types handle requestso 36
Configuring aread-only replica 37
Master SEerVer SEIUD ... 38
Creatingthereplica il 41
Starting the replica ...l 42
Testingthe replica 42
Using the repliCa - .. 44
Upgrading replica Servers ... oL 45
Configuring aforwarding repliCa L 45
Configuring the master server .. il 46
Configuring the forwarding replicao o 46
Configuring a build farm server 47
Configuring the master server .. il 47
Configuring the build farm replica 49
Binding workspaces to the build farmreplica 50
Configuring a replica with shared archives 51
Filtering metadata during replication il 52
Verifying replica integrity il 55
Configuration ... 55
Warnings, notes, and limitations 57
Commit-edge ... 59
Setting up a commit/edge configuration 60
Create a service user account fortheedge server 60
Create commit and edge server configurations 61
Create and start the edge server . .. 63
Shortcuts to configuring the server 64
Setting global client views il 65
Creatingaclientfromatemplate 66
Migrating from existing installations 67
Replacing existing proxies and replicas 67
Deploying commit and edge servers incrementally 68
Hardware, sizing, and capacity il 68
Migration SCeNarios il 69
Managing distributed installations 72

Moving users to an edge Server .. 73

Promoting shelved changelists i 73

Locking and unlocking files 75
TGO S . . 75
Backup and high availability/disaster recovery (HA/DR)planning 77
Other considerations i 78

NV alidatioN L 79
Supported deployment configurations 80
BaCKUDS il 80
Helix BroKer .. . 81
SySstem reqUIrEMEN S 81
Installing the broKer L 81
Running the broKer .. 82
ENnabling SO SUPPOI . .. 83
Broker information il 83
Broker and protections 84
PABroker OptioNS L 85
Configuring the broKer 86
Format of broker configuration files 87
Specifying NOStS ... 87
Global SettiNgS 88
Command handler specifications 91
Alternate server definitions 96
Using the broker as a load-balancing router 97
Configuring the broker as a router ... 97
Routing policy and behavior 98
HeliX ProXY . .o 100
System reqUIreMEN S . 100
INStalling PAP 101
UN DX 101
WiNAOWS il 101
RUNNING P AP 101
Running P4P as a Windows SerVICeo 102
PAP OptiONS . 102
Administering PAP 104
NO bacKUups reqUIred ... 105

StOPPING PAP L 105

Upgrading PAP il 105

ENnabling SO SUPPOI ... L 105
Defending from man-in-the-middle attacks 105
Localizing PAP . . il 106
Managing disk space consumption 106
Determining if your Helix Server applications are using the proxy 106
P4P and protections 107
Determining if specific files are being delivered from the proxy 108
Case-sensitivity issues and the proxXy 108
Maximizing performance improvement 109
Reducing server CPU usage by disabling file compression 109
Network topologies versus PAP . 109
Preloading the cache directory for optimal initial performance _.._........................... 110
Distributing disk space consumption 111
Helix Core Server (p4d) Reference 112
SN X il 112
DS Pt ON 112
EXit StatUs il 112
OPtIONS L 112
Usage NOteS ... 118
Related Commands ...l 119
Gl oS S aNY 120

License Statements 138

How to use this guide

This manual is intended for administrators responsible for installing, configuring, and maintaining multiple
interconnected or replicated Perforce services.

This guide assumes familiarity with the Helix Core Server Administrator Guide: Fundamentals .

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other documentation

See https://www.perforce.com/support/self-service-resources/documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning

literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-£] The enclosed elements are optional. Omit the brackets when you compose
the command.

m Repeats as much as needed:

e alias-name[[$ (argl) ...
[$ (axgn)]]=transformation

m Recursive for all directory levels:

o« clone perforce:1666 //depot/main/p4...
~/local-repos/main

e p4 repos -e //gra.../rep...

element1 | Either element1 or element2 is required.
element2

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

What's new in this guide

What'’s new in this guide

This section provides a list of changes to this guide for the latest release. For a list of all new functionality
and major bug fixes in the latest Helix Server release, see
http://www.perforce.com/perforce/doc.current/user/relnotes. txt.

2018.1 release

To help the standby server stay as current as possible with the master server, consider using the
configurable that enables writing to the device on which the standby server's active journal would be
located. See the mention of the rpl . journalcopy . location configurable at "Configuring a
read-only replica" on page 37.

2017.2 release

Complete replication for graph depot archives

Edge servers support syncing file content from graph depots. Replication supports graph depots that
contain pack files, loose files, or a mixture of the pack files and loose files.

New content can be pushed by using the Git Connector or committed with p4 submit or p4 merge.

For information about depots of type graph, see:

m Working with depots of type graph in the P4 Command Reference.

m Overview in the Helix4Git Administrator Guide.

Helix Core Server Control (p4dctl) has moved

The appendix formerly named Helix Versioning Engine Control (p4dctl), which was both in this guide
(volume 2 of the "Helix Versioning Engine Administrator Guide") and in the volume 1, "Helix Versioning
Engine Administrator Guide: Fundamentals" (volume 1) is now exclusively in volume 1 at
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/appendix.p4dctl.html.

http://www.perforce.com/perforce/doc.current/user/relnotes.txt
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_submit.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_merge.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_depot.html#Working
https://www.perforce.com/perforce/doc.current/manuals/helix-for-git/#Helix4Git/chapter.overview.html%3FTocPath%3DOverview|_____0
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/appendix.p4dctl.html

Introduction to federated services

Helix Core Server Administrator Guide: Fundamentals explains how you create, configure, and maintain
a single Helix Core Server. Small organizations often find a single server is adequate to meet user needs.
However, as the business grows and usage expands in scale and geography, many organizations deploy
a more powerful server-side infrastructure.

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Introduction to federated services

Architecture

"Helix Proxy" on page 100

Advantage

m easyto

=

Client in USA

oy
with a cache of
versioned files

%

Y

(o]

Client in France

farcipdroot/...

—
—

Master
with both versioned
files and metadata

install,
configu
re, and
maintai
n

g (

Clientin J

Proxy
with a cad
versioneq

improv
es
perfor
mance
by
cachin

g
frequen

tly

éré

transmi
tted file
revisio
ns

m reduce
s
deman
don
the
Perforc
e
service
and the
networ
k over
whichiit
runs

® NO
need to
back
up the

proxy
cache

Disadvanta
ge

= not
optimal
for
syncing
large
numbers
of small
files

Tip

See the
Knowledge
Base article
on Proxy
Performanc
e.

10

http://answers.perforce.com/articles/KB/2830
http://answers.perforce.com/articles/KB/2830
http://answers.perforce.com/articles/KB/2830

Introduction to federated services

Architecture Advantage gDésadvanta
m especi
ally
benefic
ial with
larger
files
"Helix Broker" on page 81 m rule- m broker
based layer
‘E a 0 g ° load causes
o o L distribu some
Client in USA Client in France Client in Japan| tion overhea
that din
@ @ @ typicall network
y frees perform
the ance
pdbroker on a single PAPORT master m see
Irom "Using
routes READ routes WRITE read P4Brok
commands to the replica commands to the m Conlma erto
nds redirect
n well- read-
suited only
read-only for comma
REPLICA &___/ - builds nds" in
processes from the
comr;zzjs k-___‘f") "\‘___..ﬂ') the Knowle
read- dge
only Base
replica
m facilitat
es
swappi
ng the
servers
fora
checkp
oint or
upgrad
e

11

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/introduction.command-and-metadata.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/introduction.command-and-metadata.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/introduction.command-and-metadata.html
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/
http://answers.perforce.com/articles/KB/1253/

Introduction to federated services

Architecture

Forwarding replica

(=

Client in USA

Local cache of
files and metadata,

can be used as ___.-/‘
a warm standby ‘_______,/‘

Forwarding
Replica in USA

4,

(o]

Client in France

aq

Client in J4

Master Server
single-source-of-truth
for matadata, filas,
and workspace data

 —

 —

&
= Forward
Replica in

S
—

Master Server
in France

Advantage

m excelle
nt
perfor
mance
overall

n files
and
metada
taare
locally
cached

= custom
izable
filtering

m if fully
populat
ed, can
be a
warm
standb
y for
high
availab
ility or
disaste
r
recover

y

Disadvanta
ge

= "write"
comma
nds are
slower
because
local
metadat
amust
be
pulled
from the
master

m requires
machine
provisio
ning and
administ
ration.
See
"Config
uring a
forwardi
ng
replica"
on
page 45.

12

Other types of federated architecture

. Disadvanta
Architecture Advantage ge
"Commit-edge" on page 59 m best m cannot

perfor be used
rg ﬁ [| g mance asa
Client in USA Client in France Client in J overall warm
becaus standby
e most m requires
Local shalves, local Promoted Shelves, comma machine
workspaces, cann single-source-of-truth
bek:Pmd asa \.l\.rarcl',r'ut \~______-/J I-1::?1- varsioned files k_____ nds are provisio
standby. and metadata .
N — local ning and
4 administ
Edge Server » ration,
Llss includin
9
backups
Commit Server f h
in France oreac
edge

Other types of federated architecture

A federated architecture might also include servers dedicated to centralized authorization and changelist
numbering. See "Configuring centralized authorization and changelist servers" on page 17.

Setting up federated services

This section describes some of the issues that administration must address in setting up a federated
environment.

General guidelines .. 13
Authenticating users .. 14
Connecting Services 14

General guidelines
Following these guidelines will simplify the administration and maintenance of federated environments:

m Every server should be assigned a server ID; it is best if the serverID is the same as the server
name. Usethe p4 server command to identify each serverin your network.

13

Authenticating users

m Every server should have an assigned (and preferably unique) service user name. This simplifies
the reading of logs and provides authentication and audit trails for inter-server communication.
Assign service users strong passwords. Usethep4 server command to assign a service
user name.

m Enable structured logging on all your services. Doing so can greatly simplify debugging and
analysis, and is also required in order to use the p4 journaldbchecksums command to
verify the integrity of a replica.

m Configure each server to reject operations that reduce its disk space below the limits defined by
that service’s £ilesys. * .min configurables.

= Monitor the integrity of your replicas by using the integrity . csv structured serverlog and
thep4 journaldbchecksums command. See "Verifying replica integrity" on page 55 for
details.

Authenticating users

Users must have a ticket for each server they access in a federated environment. The best way to handle
this requirement is to set up a single login to the master, which is then valid across all replica instances.
This is particularly useful with failover configurations, when you would otherwise have to re-login to the
new master server.

You can set up single-sign-on authentication using two configurables:

m Setauth. id to the same value for all servers participating in a distributed configuration.

m Enable rpl. forward. login (setto 1) foreach replica participating in a distributed
configuration.

There might be a slight lag while you wait for each instance to replicate the db . user record from the
target server.

Connecting services
Services working together in a federated environment must be able to authenticate and trust one another.

m When using SSL to securely link servers, brokers, and proxies together, each link in the chain
must trust the upstream link.

m |tis best practice (and mandatory at security level 4) to use ticket-based authentication instead of
password-based authentication. This means that each service user for each server in the chain
must also have a valid login ticket for the upstream link in the chain.

Managing trust between services

The user that owns the server, broker, or proxy process is typically a service user. As the administrator,
you must create a PATRUST file on behalf of the service user by usingthe p4 trust command. By
default, a user's PATRUST file resides in that user's home directory with . p4trust as the file name.

14

https://www.perforce.com/perforce/doc.current/manuals/cmdref/Content/CmdRef/P4TRUST.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4TRUST.html

Backing up and upgrading services

See the "Communicating port information” topic in the Helix Core Server Administrator
Guide: Fundamentals.

Managing tickets between services

When linking servers, brokers, and proxies together, each service user must be a valid service user at
the upstream link, and it must be able to authenticate with a valid login ticket. Follow these steps to set
up service authentication:

1. Onthe upstream server, use p4 user tocreate a user of type service, andp4 group to
assign it to a group that has along orunlimi ted timeout.

Usep4 passwd to assign the service user a strong password.

2. Onthe downstream server, use p4 login tologin to the master server as the newly-created
service user, and to create a login ticket for the service user that exists on the downstream server.

3. Ensure that the PATICKET variable is correctly set when the user (often a script or other
automation tool) that actually invokes the downstream service, does so, so that the downstream
service can correctly read the ticket file and authenticate itself as the service user to the upstream
service.

Managing SSL key pairs

When configured to accept SSL connections, all server processes (p4d, p4p, p4broker), require a
valid certificate and key pair on startup.

The process for creating a key pair is the same as it is for any other server: set PASSLDIR to a valid
directory with valid permissions, and use the following commands to generate pairs of
privatekey.txtandcertificate. txt files, and make arecord of the key’s fingerprint.

m Server: usep4d -Gc to create the key/certificate pairand p4d -G£ to display its fingerprint.

m Broker: use pdbroker -Gc to createthe key/certificate pairand pdbroker -G£ todisplay
its fingerprint.

m Proxy: use p4dp -Gc to create the key/certificate pairand p4p -G£ todisplay its fingerprint.

You can also supply your own private key and certificate. Further information is available in the Helix
Core Server Administrator Guide: Fundamentals.

Backing up and upgrading services

Backing up and upgrading services in a federated environment involve special considerations. This
section describes the issues that you must resolve in this environment.

Backing Up ServiCes .. 16
Upgrading ServiCes il 16

15

https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/DB5-92242.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Backing up services

Backing up services

How you backup federated services depends upon the service type:

Broker m stores no data locally

m back up its configuration file manually

Proxy m requires no backups and automatically rebuilds its cache of data if files are missing

m contains no logic to detect when diskspace is running low. Periodically monitor your
proxy to ensure it has sufficient diskspace.

Server m Follow the backup procedures described in the Helix Core Server Administrator
Guide: Fundamentals. If you are using an edge-commit architecture, both the
commit server and the edge servers must be backed up. Use the instructions given
in "Backup and high availability/disaster recovery (HA/DR) planning” on page 77.

m Backup requirements for replicas that are not edge servers vary depending on your
site’s requirements.

m Consider taking checkpoints offline so that your users are not blocked from
accessing the primary server during lengthy checkpoint operations. See the
Knowedge Base articles on "Offline Checkpoints" and Taking Checkpoints on Edge
and Replica Servers, especially the section on "Detecting Coordinated Checkpoint
Completion"

= Although a checkpoint (p4d -3jc)is NOT supported on an edge or replica server,
you CAN take a checkpoint dump on an edge or replica server (p4d -3jd). See the
Helix Core Server (p4d) Reference.

= Maintaining journals:
« onedge servers is a best practice

« onreplica servers is optional, and you can disable such journals by using p4d
-J off

m You can have triggers fire when the journal is rotated on an edge or replica server.
See "Triggering on journal rotation" in Helix Core Server Administrator
Guide: Fundamentals.

= Journal rotation on a replica or edge server begins AFTER the master has completed
its journal rotation

Upgrading services

Servers, brokers, and proxies must be at the same release level in a federated environment. When
upgrading use a process like the following:

16

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://answers.perforce.com/articles/KB/2419/
http://answers.perforce.com/articles/KB/15188
http://answers.perforce.com/articles/KB/15188
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/appendix.p4d.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/scripting.triggers.journal.html

Configuring centralized authorization and changelist servers

1. Shut down the furthest-upstream service or commit server and permit the system to quiesce.

2. Upgrade downstream services first, starting with the replica that is furthest downstream, working
upstream towards the master or commit server.

3. Keep downstream services stopped until the server immediately upstream has been upgraded.

Configuring centralized authorization and changelist servers

There are cases where rather than using federated services you want to use a collection of servers that
have a shared user base. In this situation, you probably want to use specialized servers to simplify user
authentication and to guarantee unique change list numbers across the organization. The following
subsections explain how you create and use these servers: PAAUTH for centralized authentication and
P4CHANGE to generate unique changelist numbers.

Centralized authorization server (P4AUTH) 17
Centralized changelist server (PACHANGE) 20

Centralized authorization server (P4AUTH)

If you are running multiple Helix Servers, you can configure them to retrieve protections and licensing
data from a centralized authorization server. By using a centralized server, you are freed from the
necessity of ensuring that all your servers contain the same users and protections entries.

Note
When using a centralized authentication server, all outer servers must be at the same (or newer)
release level as the central server.

If a user does not exist on the central authorization server, that user does not appear to exist on the outer
server. If a user exists on both the central authorization server and the outer server, the most permissive
protections of the two lines of the protections table are assigned to the user.

You can use any existing Helix Core Server in your organization as your central authorization server. The
license file for the central authorization server must be valid, as it governs the number of licensed users
that are permitted to exist on outer servers. To configure a Helix Core Server to use a central
authorization server, set PAAUTH before starting the server, or specify it on the command line when you
start the server.

If your server is making use of a centralized authorization server, the following line will appear in the
output of p4 info:

Authorization Server: [protocol:]lhost:port

Where [protocol:] host: portrefers to the protocol, host, and port number of the central
authorization server. See "Specifying hosts" on page 87.

17

Centralized authorization server (P4AUTH)

In the following example, an outer server (named server2)is configured to use a central authorization
server (named central). The outer server listens for user requests on port 1999 and relies on the
central server’s data for user, group, protection, review, and licensing information. It also joins the
protection table from the server at central : 1666 toits own protections table.

For example:

$ p4d -In server2 -a central:1666 -p 1999

Note

On Windows, configure the outer server withp4 set -S as follows:
C:\> p4 set -S "Outer Server" PANAME=server2

C:\> p4 set -S "Outer Server" P4AUTH=central:1666
C:\> p4 set -S "Outer Server" P4PORT=1999

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4ANAME if both are set. We recommend setting serverID, but support PANAME for backward
compatibility.

When you configure a central authorization server, outer servers forward the following commands to the
central server for processing:

Command Forwarded Note

to auth
server?
p4 group Yes Local group data is derived from the central server.
p4 Yes Local group data is derived from the central server.
groups
p4 Yes License limits are derived from the central server. License updates
license are forwarded to the central server.
p4 Yes Property values are derived from the central server.
passwd
pr4 Yes For example, if two Swarm instances use the same auth
property server, updating one instance can update the other instance.

18

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_group.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_groups.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_groups.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_license.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_license.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_passwd.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_passwd.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_property.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_property.html

Centralized authorization server (P4AUTH)

Command Forwarded
to auth
server?

p4 No The default user named remote must have access to the central

review server. However, best practice is to create "Service users" on
page 31 and not use the default user named remote. See
Restricting access to remote depots in Helix Core Server
Administrator Guide: Fundamentals.

p4 No The default user named remote must have access to the central

reviews server. However, best practice is to create "Service users" on
page 31 and not use the default user named remote. See
Restricting access to remote depots in Helix Core Server
Administrator Guide: Fundamentals.

P4 user Yes Local user data is derived from the central server.

pr4 users Yes Local user data is derived from the central server.

p4 No The local server’s protections table is displayed if the user is

protect authorized (as defined by the combined protection tables) to edit it.

p4 Yes Protections are derived from the central server’s protection table as

protects appended to the outer server’s protection table.

p4 login Yes Command is forwarded to the central server for ticket generation.

p4 Yes Command is forwarded to the central server for ticket invalidation.

logout

Limitations and notes

m All servers that use P4AAUTH must have the same Unicode setting as the central authorization

server.

m Setting PAAUTH by means ofap4 configure set P4AUTH=
[protocol:] server: port command requires a restart of the outer server.

If you need to set PAAUTH for a replica, use the following syntax:

p4 configure set ServerName#P4AUTH=[protocol:]server:port

m |f you have set PAAUTH, no warning will be given if you delete a user who has an open file or

client.

m Toensurethatp4 reviewandp4 reviews work correctly, you must enable remote depot
access for the service user (or, if no service user is specified, for a user named remote) on the
central server.

Note: There is no remote type user; there is a special user named remote that is used to
define protections for a remote depot.

19

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_review.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_review.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/superuser.remote_depots.code_drops.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_reviews.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_reviews.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/superuser.remote_depots.code_drops.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_user.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_users.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protect.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protects.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_protects.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_login.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logout.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_logout.html

Centralized changelist server (P4ACHANGE)

m To ensure that the authentication server correctly distinguishes forwarded commands from
commands issued by trusted, directly-connected users, you must define any IP-based protection
entries in the Perforce service by prepending the string “proxy-"to the

[protocol:] host: port definition.

Important
Before you prepend the string proxy - to the workstation’s |P address, make sure that a

broker or proxy is in place.

m Protections for non-forwarded commands are enforced by the outer server and use the plain client
IP address, even if the protections are derived from lines in the central server’s protections table.

Centralized changelist server (P4CHANGE)

By default, Helix Servers do not coordinate the numbering of changelists. Each Helix Core Server
numbers its changelists independently. If you are running multiple servers, you can configure your
servers to refer to a centralized changelist server from which to obtain changelist numbers. Doing so
ensures that changelist numbers are unique across your organization, regardless of the server to which
they are submitted.

Note
When using a centralized changelist server, all outer servers must be at the same (or newer) release

level as the central server.

To configure Helix Server to use a centralized changelist server, set PACHANGE before starting the
second server, or specify it on the p4d command line with the —g option:

$ p4d -In server2 -g central:1666 -p 1999

Note

On Windows, configure the outer server withp4 set -S as follows:
C:\> p4 set -S "Outer Server" P4NAME=server2

C:\> p4 set -S "Outer Server" PACHANGE=central:1666
C:\> p4 set -S "Outer Server" P4PORT=1999

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for backward
compatibility.

20

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Verifying shelved files

In this example, the outer server (named server2)is configured to use a centralized changelist server
(named central). Whenever a user of the outer server must assign a changelist number (that is, when
a user creates a pending changelist or submits one), the centralized server’s next available changelist
number is used instead.

There is no limit on the number of servers that can refer to a centralized changelist server. This
configuration has no effect on the output of the p4 changes command; p4 changes lists only
changelists from the currently connected server, regardless of whether it generates its own changelist
numbers or relies on a centralized changelist server.

If your server is making use of a centralized changelist server, the following line will appear in the output
ofpd info:

Changelist Server: [protocol:]host:port

Where [protocol:] host: portrefers to the protocol, host, and port number of the centralized
changelist server.

Verifying shelved files

The verification of shelved files lets you know whether your shelved archives have been lost or damaged.

If a shelf is local to a specific edge server, you mustissuethe p4 verify -S command on the edge
server where the shelf was created. If the shelf was promoted, runthe p4 wverify -S onthe commit
server.

Youmay alsorunthep4 wverify -S t command on areplicato request re-transfer of a shelved
archive that is missing or bad. Re-transferring a shelved archive from the master only works for shelved
archives that are present on the master; that is, for a shelf that was originally created on the master or
that was promoted if it was created on an edge server.

21

Helix Server replication

This topic assumes you have read the "Introduction to federated services" on page 9.

Replication is the duplication of server data from one Helix Core Server to another Helix Core Server,
ideally in real time. You can use replication to:

m Provide warm standby servers

A replica server can function as an up-to-date warm standby system to be used if the master
server fails. Such a replica server requires that both server metadata and versioned files are
replicated.

m Reduce load and downtime on a primary server

Long-running queries and reports, builds, and checkpoints can be run against a replica server,
reducing lock contention. For checkpoints and some reporting tasks, only metadata needs to be
replicated. For reporting and builds, replica servers need access to both metadata and versioned
files.

= Provide support for build farms

A replica with a local (non-replicated) storage for client workspaces (and their respective have
lists) is capable of running as a build farm.

m Forward write requests to a central server

A forwarding replica holds a readable cache of both versioned files and metadata, and forwards
commands that write metadata or file content towards a central server. A forwarding replica offers
a blend of the functionality of the Helix Proxy with the improved performance of a replica. (See
"Configuring a forwarding replica" on page 45.)

Combined with a centralized authorization server (see "Centralized authorization server (P4AUTH)" on
page 17), Helix Server administrators can configure the Helix Broker (see "Helix Broker" on page 81) to
redirect commands to replica servers to balance load efficiently across an arbitrary number of replica
servers.

Note
Most replica configurations are intended for reading of data. If you require read and write access to a

remote server, use a forwarding replica, a distributed Perforce service, or the Helix Proxy. See
"Configuring a forwarding replica" on page 45, "Commit-edge" on page 59 and "Helix Proxy" on
page 100.

Tip
The following Knowledge Base articles contain valuable information:

22

Helix Server replication

23

m [nstalling a Helix Replica Server

m Checkpoints in a Distributed Helix environment

m Taking Checkpoints on Edge and Replica Servers

m Configuring Checkpoint and Rotated Journal location in Distributed Helix Environments
m Inspecting replication progress

m Verifying Replica Integrity

m How toreseed a replica server

m Edge Server Meta Data Recovery

m Failing over to areplica server

m Edge Servers (differences in behavior of certain commands)

System requirements .. 24
Replication basics 24
The p4 pull command ... 29
Identifying YOUr SEIVET . 30
S OIVICE USBIS 31
Server options to control metadata and depotaccess 33
PAT AR GE T . 33
Server startup commands ... 34
P4 pull vs. pAreplicate 34
Enabling SSL sUPPOIt .. 35
Replication and protections 35
How replica types handle requests 36
Configuring aread-only replica 37
Master SEerVer SEIUD ... 38
Creatingthe replica 41
Starting the replica 42
Testingthereplica ... il 42
Using the replical 44
Upgrading replica Servers .l 45
Configuring a forwarding replica 45
Configuring the master server ... 46
Configuring the forwarding replica 46
Configuring a build farm server ... 47
Configuring the master server ... 47
Configuring the build farmreplica 49
Binding workspaces to the build farmreplica 50
Configuring a replica with shared archives 51
Filtering metadata during replication 52
Verifying replica integrity 55
CoONfiQUIAtiON 55
Warnings, notes, and limitations 57

http://answers.perforce.com/articles/KB/1260/
http://answers.perforce.com/articles/KB/3865
http://answers.perforce.com/articles/KB/15188
http://answers.perforce.com/articles/KB/2505
http://answers.perforce.com/articles/KB/14798
http://answers.perforce.com/articles/KB/3867
http://answers.perforce.com/articles/KB/2520
http://answers.perforce.com/articles/KB/12127
http://answers.perforce.com/articles/KB/2495/
http://answers.perforce.com/articles/KB/3847

System requirements

System requirements
m Replica servers should be at the same release as the master server.

Important
See "Upgrading replica servers" on page 45 and the Knowledge Base article, "Upgrading
Replica Servers".

m Replica servers must have the same Unicode setting as the master server.

m Replica servers must be hosted on a filesystem with the same case-sensitivity behavior as the
master server’s filesystem.

m p4 pull (when replicating metadata) does not read compressed journals. The master server
must not compress journals until the replica server has fetched all journal records from older
journals. Only one metadata-updatingp4 pull thread can be active at one time.

m The replica server does not need a duplicate license file.

m The master and replica servers must have the same time zone setting.
Note
On Windows, the time zone setting is system-wide.

On UNIX, the time zone setting is controlled by the TZ environment variable at the time the
replica server is started.

Replication basics

Replication of Helix Servers depends upon several commands and configurables:

Command or Typical use case
Feature
p4 pull A command that can replicate both metadata and versioned files, and

report diagnostic information about pending content transfers.

A replica server can run multiple p4 pull commands against the same
master server. To replicate both metadata and file contents, you must run
twop4 pull threads simultaneously: one (and only one) p4 pull
(without the —u option) thread to replicate the master server's metadata,
and one (ormore)p4 pull -u threads toreplicate updates to the
server's versioned files.

24

http://answers.perforce.com/articles/KB/2515/
http://answers.perforce.com/articles/KB/2515/
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_pull.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_pull.html

Replication basics

Command or Typical use case
Feature
p4 configure A configuration mechanism that supports multiple servers.

Because p4 configure stores its data on the master server, all
replica servers automatically pick up any changes you make.

p4 server A configuration mechanism that defines a server in terms of its offered
services. In order to be effective, the ServerID: fieldin the p4
server form must correspond with the server's server. id file as
defined by the p4 serverid command.

p4 serverid A command to set or display the unique identifier for a Helix Core Server.
On startup, a server takes its ID from the contents of a server. idfile
in its root directory and examines the corresponding spec defined by the
p4 server command.

Important

To avoid configuration problems, the value of server ID should
always match the value of PANAME if both are set. We recommend
setting serverID, but support PANAME for backward compatibility.

p4 verify -t Causes the replica to schedule a transfer of the contents of any damaged
or missing revisions.

The command reports BAD ! orMISSING! files with (transfer
scheduled) atthe end of the line.

For the transfer to work on a replica with
1br.replication=cache, the replica should have one or more p4
pull -uthreads configured (perhaps also using the —--batch=N

flag.)
Server names Helix Servers can be identified and configured by name.
PANAME Whenyouuse p4 configure onyour master server, you can specify
p4d -In name different sets of configurables for each named server. Each named

server, upon startup, refers to its own set of configurables, and ignores
configurables set for other servers.

Important
To avoid configuration problems, the value of se rver ID should

always match the value of PANAME if both are set. We recommend
setting serverID, but support PANAME for backward compatibility.

25

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_server.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_verify.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Replication basics

Command or Typical use case
Feature
Service users A type of user intended for authentication of server-to-server

communications. Service users have extremely limited access to the

p4d -u svcuser) ;
depot and do not consume Helix Server licenses.

To make logs easier to read, create one service user on your master
server for each replica or proxy in your network of Helix Servers .

Metadata access Replica servers can be configured to automatically reject user commands

p4d -M readonly that attempt to modify metadata (db . * files).

db.replication In-M readonly mode, the Helix Core Server denies any command
that attempts to write to server metadata. In this mode, a command such
as p4 sync (which updates the server's have list) is rejected, but p4
sync -p (which populates a client workspace without updating the
server’s have list) is accepted.

Metadata filtering Replica servers can be configured to filter in (or out) data on client
workspaces and file revisions.

You canusethe -P serverId optionwith the p4d command to
create a filtered checkpoint based on a serverld.

Youcanusethe -T tableexcludelistoptionwithp4 pull to
explicitly filter out updates to entire database tables.

UsingtheClientDataFilter:,RevisionDataFilter:, and
ArchiveDataFilter: fields of thep4 server form can provide
you with far more fine-grained control over what data is replicated. Use
the -P serveridoptionwithp4 pull, and specify the Name : of
the serverwhose p4 server spec holds the desired set of filter
patterns.

26

https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/appendix.p4d.html
https://www.perforce.com/perforce/doc.current/manuals/p4sag/#P4SAG/appendix.p4d.html

Replication basics

Command or
Feature

Depot file access

p4d
p4d
p4d
péad
p4d
lbr.

27

-D readonly
-D shared
-D ondemand
-D cache

-D none
replication

Typical use case

Replica servers can be configured to automatically reject user commands
that attempt to modify archived depot files (the “library”).

m In-D readonly mode, the Helix Core Server accepts

commands that read depot files, but denies commands that write
tothem. In this mode, p4 describe candisplay the diffs
associated with a changelist, but p4 submit is rejected.
However, edge servers do have the capability to write some files,
such as shelved files, to the depot.

In-D ondemand mode, or -D shared mode (the two are
synonymous) the Helix Server accepts commands that read
metadata, but does not transfer new files nor remove purged files
from the master. (p4 pull -uandp4 verify -t,which
would otherwise transfer archive files, are disabled.) If afile is not
present in the archives, commands that reference that file will fail.

This mode must be used when a replica directly shares the same
physical archives as the target, whether by running on the same
machine or via network sharing. This mode can also be used when
an external archive synchronization technique, such as rsync is
used for archives.

In-D cache mode, the Helix Core Server permits commands
that reference file content, but does not automatically transfer new
files. Files that are purged from the target are removed from the
replica when the purge operation is replicated. If afile is not
present in the archives, the replica will retrieve it from the target
server.

In -D none mode, the Helix Core Server denies any command
that accesses the versioned files that make up the depot. In this
mode, acommand such as p4 describe changenumis
rejected because the diffs displayed with a changelist require
access to the versioned files, but p4 describe -s
changenum (which describes a changelist without referring to
the depot files in order to generate a set of diffs) is accepted.

These options can also be set using 1br . replication. *
configurables, described under "Configurables" in the P4 Command
Reference.

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#lbr.replication
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_describe.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_submit.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_pull.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_verify.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Replication basics

Command or Typical use case
Feature

Target server
PATARGET ser\./erlor gnother replica server to which a replica server points when
retrieving its data.

You can set PATARGET explicitly, oryou canuse p4 configure to

set a PATARGET for each named replica server.

A replica server with PATARGET set must have both the -M and -D
options, or their equivalent db . replication and
1br.replication configurables, correctly specified.

As with the Helix Proxy, you can use PATARGET to specify the master

Startup commands Usethe startup.n (where nis aninteger) configurable to

startup.1 automatically spawn multiple p4 pull processes on startup.

State file

statefile that holds a byte offset. When you stop either the master serverora

replica server, the most recent journal position is recorded on the replica

in the state file.

Upon restart, the replica reads the state file and picks up where it left off;

do not alter this file or its contents. (When the state file is written, a

temporary file is used and moved into place, which should preserve the
existing state file if something goes wrong when updating it. If the state
file should be empty or missing, the replica server will refetch from the

start of its last used journal position.)

By default, the state file is named state and it resides in the replica

Replica servers track the most recent journal position in a small text file

server’s root directory. You can specify a different file name by setting the

statefile configurable.

P4Broker
and more. See "Helix Broker" on page 81 for details.

The Helix Broker can be used for load balancing, command redirection,

Warning

Replication requires uncompressed journals. Starting the master using the p4d -jc -z command

breaks replication; use the -2 flag instead to prevent journals from being compressed.

The p4 pull command ... 29
Identifying your server . 30
S eIVICe USBIS | i 31
Server options to control metadata and depotaccess 33
PAT AR GE T il 33
Server startup commands ... 34
pd pull vs. pdreplicate .. 34
Enabling SSL support 35
Replication and protections 35

28

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4TARGET.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#db.replication
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#startup.n
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#statefile

The p4 pull command

The p4 pull command

Thep4 pull command provides the most general solution for replication. Use p4 pull to configure
areplica server that:

m replicates versioned files (the , v files that contain the deltas that are produced when new
versions are submitted) unidirectionally from a master server.

m replicates server metadata (the information contained in the db . * files) unidirectionally from a
master server.

m uses the startup . n configurable to automatically spawn as many p4 pull processes as
required.

A common configuration for a warm standby server is one in which one (and only one) p4 pull
process is spawned to replicate the master server's metadata, and multiplep4 pull -u
processes are spawned to run in parallel, and continually update the replica’s copy of the master
server's versioned files.

m The startup. n configurables are processed sequentially. Processing stops at the first gap in
the numerical sequence. Any commands after a gap are ignored.

Although you canrunp4 pull from the command line for testing and debugging purposes, it's most
useful when controlled by the startup . n configurables, and in conjunction with named servers,
service users, and centrally-managed configurations.

The —--batch optiontothe p4 pull specifies the number of files a pull thread should process in a
single request. The default value of 1 is usually adequate. For high-latency configurations, a larger value
might improve archive transfer speed for large numbers of small files. (Use of this option requires that
both master and replica be at version 2015.2 or higher.)

Setting the rpl . compress configurable allows you to compress journal record data that is
transmitted usingp4 pull.

Note

If you are running a replica with monitoring enabled and you have not configured the monitor table to
be disk-resident, you can run the following command to get more precise information about what pull
threads are doing. (Remember to setmonitor. 1sof).

S p4 monitor show -sB -la -L

Command output would look like this:

31701 B uservice-edge3 00:07:24 pull sleeping 1000 ms
[server.locks/replica/49,d/pull (W)]

The possible status messages are:

29

Identifying your server

For journal records For pulling archives

scanned NNNN records | sleeping

applied NNNN records | running

rotating journal

Identifying your server

Giving your server a unique ID permits most of the server configuration data to be stored in the Helix Core
Server. This is an alternative to using startup options or environment variables. A unique server ID is
essential for configuring replication because p4 configure settings are replicated from the master server
to the replicas along with other metadata.

Configuring the following servers require the use of a server spec:

Type Description

Commit server central server in a distributed installation
Edge server node in a distributed installation

Build server replica that supports build farm integration
Depot master commit server with automated failover
Depot standby standby replica of the depot master
Standby server read-only replica that uses p4 journalcopy
Forwarding standby forwarding replica that uses p4 journalcopy

The p4 serverid command creates a small text file named server . id in the root directory of the
server. The server executable, p4d, can also create this server. idfile:

p4d -r $P4ROOT -xD
Tip
m Toseetheserverid, use p4d -xD orthe p4 serverid command

m [ftheresponseis "Server does not yet have a server ID", settheserver
ID withp4d -xD myServer

m Tochange an existing server ID, delete the server . idfile, then set the server ID

You can use the p4 server command to:

30

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_journalcopy.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_journalcopy.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_server.html

Service users

m define a specification for each of the servers known to your installation

m create a unique server ID that can be passed to the p4 serverid command, and to define the
services offered by any server that, upon startup, reads that server ID from a server. idfile

For example, you can set your master server id tomyMas ter and the replicaid tomyReplica:

P4 -p svrA.company.com:11111 serverid myMaster

Server myMaster saved.

P4 -p svrB.company.com:22222 serverid myReplica

Server myReplica saved.

You can use p4 configure on the master instance to control settings on both the master and the replica
because configuration settings are part of the replicated metadata of a Helix Server server.

For example, if you issue the following commands on the master server:

S pd4d -p svrA.company.com:11111 configure set myMaster#monitor=2
S p4 -p svrA.company.com:11111 configure set myReplicaf#fmonitor=1

the two servers have different monitoring levels after the configuration data has been replicated.
Therefore, if you run p4 monitor show against the master server, you see both active and idle processes
because the monitor configurable is set to 2 for the master server. In contrast, if you run p4 monitor
show against the replica, you see only active processes because 1 is the monitor setting.

A master and each replica is likely to have its own journal and checkpoint files. To ensure their prefixes
are unique, use the journalPrefix configurable for each named server:

$ p4 -p svrA.company.com:11111 configure set
myMaster#journalPrefix=/p4/ckps/myMaster

For server 'myMaster', configuration variable 'journalPrefix' set

to '/p4/ckps/myMaster’

$ p4d -p svrA.company.com:11111 configure set
myReplica#fjournalPrefix=/p4/ckps/myReplica
For server 'myReplica', configuration wvariable 'journalPrefix'

set to '/p4/ckps/myReplica’

Service users

There are three types of Helix Server users: standard users, operator users, and service
users. A standard useris a traditional user of Helix Server, an operator useris intended for
human or automated system administrators, and a service useris used for server-to-server
authentication, as part of the replication process.

Service users are useful for remote depots in single-server environments, but are required for multi-server
and distributed environments.

31

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_configure.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#monitor
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_monitor.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#journalPrefix

Service users

Create a service userfor each master, replica, or proxy server that you control. Doing so greatly
simplifies the task of interpreting your server logs. Service users can also help you improve security, by
requiring that your edge servers and other replicas have valid login tickets before they can communicate
with the master or commit server. Service users do not consume Helix Server licenses.

A service user can run only the following commands:

= p4 dbschema
= pd export

= pd4 login

= p4 logout

= p4 passwd

m p4 info

= pd user

To create a service user, run the command:
p4 user -f servicel

The standard user form is displayed. Enter a new line to set the new user's Type : to be service; for
example:

User: servicel

Email: services@example.com

FullName: Service User for Replica Server 1

Type: service

By default, the output of p4 users omits service users. To include service users, runp4 users -
a.

Tickets and timeouts for service users

A newly-created service user that is not a member of any groups is subject to the default ticket timeout of
12 hours. To avoid issues that arise when a service user’s ticket ceases to be valid, create a group for
your service users that features an extremely long timeout, or tounlimi ted. On the master server,
issue the following command:

p4 group service users

Add servicel tothelist of Users: inthe group, and set the Timeout: and
PasswordTimeout: values toalarge value ortounlimited.

Group: service users

Timeout: unlimited

PasswordTimeout: unlimited

Subgroups:

Owners:

32

Server options to control metadata and depot access

Users:

servicel

Important
Service users must have a ticket created withthe p4 login for replication to work.

Permissions for service users

On the master server, use p4 protect to grant the service user super permission. Service users
are tightly restricted in the commands they can run, so granting them super permission is safe.

Server options to control metadata and depot access

When you start a replica that points to a master server with PATARGET, you must specify both the -M
(metadata access) and a —=D (depot access) options, or set the configurables db . replication
(access to metadata) and 1br . replication (access the depot’s library of versioned files) to control
which Helix Server commands are permitted or rejected by the replica server.

P4TARGET

Set PATARGET to the the fully-qualified domain name or IP address of the master server from which a
replica server is to retrieve its data. You can set PATARGET explicitly, specify it on the p4d command
line withthe -t protocol:host:portoption, oryoucanusep4 configuretoseta
P4ATARGET for each named replica server. See the table below for the available protocol options.

If you specify a target, p4d examines its configuration for startup . n commands: if no valid p4
pull commands are found, p4d runs and waits for the user to manually start ap4 pull command. If
you omit a target, p4d assumes the existence of an external metadata replication source such as p4
replicate. See "p4 pull vs. p4 replicate" on the facing page for details.

Protocol Behavior

<not Use tcp4 : behavior, but if the address is numeric and contains two or more colons,
set> assume tcp6:. Ifthenet.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcp: Use tcp4 : behavior, but if the address is numeric and contains two or more colons,
assume tcp6:. Ifthenet.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcp4: Listen on/connect to an IPv4 address/port only.

tcpé6: Listen on/connect to an IPv6 address/port only.

tcp46: Attempt to listen on/connect to an IPv4 address/port. If this fails, try IPv6.

33

Server startup commands

Protocol Behavior

tcpb64: Attempt to listen on/connect to an IPv6 address/port. If this fails, try IPv4.

ssl: Use ss14 : behavior, but if the address is numeric and contains two or more colons,
assume ssl6:. Ifthenet.rfc3484 configurable is set, allow the OS to determine
which transport is used.

ssl4: Listen on/connect to an IPv4 address/port only, using SSL encryption.

ssl6: Listen on/connect to an IPv6 address/port only, using SSL encryption.

ssl46: Attempt to listen on/connect to an IPv4 address/port. If this fails, try IPv6. After
connecting, require SSL encryption.

sslé64: Attempt to listen on/connect to an IPv6 address/port. If this fails, try IPv4. After
connecting, require SSL encryption.

P4TARGET can be the hosts' hostname or its IP address; both IPv4 and IPv6 addresses are supported.
Forthe 1isten setting, you can use the * wildcard to refer to all IP addresses, but only when you are
not using CIDR notation.

If you use the * wildcard with an IPv6 address, you must enclose the entire IPv6 address in square
brackets. Forexample, [2001:db8:1:2: *] is equivalentto [2001:db8:1:2: :]/64. Best
practice is to use CIDR notation, surround IPv6 addresses with square brackets, and to avoid the *
wildcard.

Server startup commands

You can configure Helix Server to automatically run commands at startup usingthep4 configure
as follows:

p4 configure set "servername#startup.n=command"

Where n represents the order in which the commands are executed: the command specified for
startup. 1 runs first, then the command for startup . 2, and so on. The only valid startup
commandis p4 pull.

p4 pull vs. p4 replicate

Helix Server also supports a more limited form of replication based on the p4 replicate command. This
command does not replicate file content, but supports filtering of metadata on a per-table basis.

34

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_replicate.html

Enabling SSL support

Enabling SSL support

To encrypt the connection between a replica server and its end users, the replica must have its own valid
private key and certificate pair in the directory specified by its P4ASSLDIR environment variable.
Certificate and key generation and management for replica servers works the same as it does for the
(master) server. See "Enabling SSL support" on page 83. The users' Helix Server applications must be
configured to trust the fingerprint of the replica server.

To encrypt the connection between a replica server and its master, the replica must be configured so as
to trust the fingerprint of the master server. That is, the user that runs the replica p4d (typically a service
user) must create a PATRUST file (usingp4 trust)that recognizes the fingerprint of the master Helix
Core Server.

The PATRUST variable specifies the path to the SSL trust file. You must set this environment variable in
the following cases:

m forareplica that needs to connect to an SSL-enabled master server, or

m for an edge server that needs to connect to an SSL-enabled commit server.

Replication and protections

To apply the IP address of a replica user's workstation against the protections table, prepend the string
proxy- to the workstation’s |IP address.

Important
Before you prepend the string proxy - to the workstation’s IP address, make sure that a broker or

proxy is in place.

Forinstance, consider an organization with a remote development site with workstations on a subnet of
192.168.10.0/24. The organization also has a central office where local development takes place;
the central office exists onthe 10.0. 0. 0/8 subnet. A Perforce service resides inthe 10.0.0.0/8
subnet, and areplica resides inthe 192 .168.10.0/24 subnet. Users at the remote site belong to the
group remotedev, and occasionally visit the central office. Each subnet also has a corresponding set
of IPv6 addresses.

To ensure that members of the remotedewv group use the replica while working at the remote site, but
do not use the replica when visiting the local site, add the following lines to your protections table:

list group remotedev 192.168.10.0/24 -//...
list group remotedev [2001:db8:16:81::1/48 -//...
write group remotedev proxy-192.168.10.0/24 //...
write group remotedev proxy-[2001:db8:16:81::]1/48 Y
list group remotedev proxy-10.0.0.0/8 -//...
list group remotedev proxy-[2001:db8:1008::]/32 -//...

35

How replica types handle requests

write group remotedev 10.0.0.0/8 /...
write group remotedev proxy—[2001:db8:1008::]/32 /] ...

The first line denies 1ist access to all users in the remotedewv group if they attempt to access Helix
Server without using the replica from their workstations inthe 192 .168.10.0/24 subnet. The
second line denies access in identical fashion when access is attempted from the IPV6
[2001:db8:16:81::] /48 subnet.

The third line grants write access to all users in the remotedewv group if they are using the replica
and are working fromthe 192 .168.10.0/24 subnet. Users of workstations at the remote site must
use the replica. (The replicaitself does not have to be in this subnet, for example, it could be at
192.168.20.0.) The fourth line grants access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81::]/48 subnet.

Similarly, the fifth and sixth lines deny 1ist access to remotedev users when they attempt to use
the replica from workstations on the central office’s subnets (10.0.0.0/8 and

[2001:db8:1008: :]/32). The seventh and eighth lines grant write access to remotedewv users
who access the Helix Server directly from workstations on the central office’s subnets. When visiting the
local site, users from the remotedewv group must access the Helix Server directly.

When the Perforce service evaluates protections table entries, the dm . proxy . protects
configurable is also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client
host addresses that connect via an intermediary (proxy, broker, replica, or edge server), indicating that
the connection is not direct.

Settingdm . proxy . protects to 0 removes the proxy- prefix and allows you to write a single set
of protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

How replica types handle requests

One way of explaining the differences between replica types is to describe how each type handles user
requests; whether the server processes them locally, whether it forwards them, or whether it returns an
error. The following table describes these differences.

m Readonly commands includep4 files,p4 filelog,p4 fstat,p4 user -o

m Work-in-progress commands include p4 sync,p4 edit,p4 add,p4 delete, p4
integrate,p4 resolve,p4 revert,pd4 diff,p4 shelve,p4 unshelve, p4
submit, p4 reconcile.

m Global update commands include p4 user,p4 group,p4 branch,p4 label, p4
depot,p4 stream,p4 protect,p4 triggers,pd4 typemap,p4 server, pé
configure,p4 counter.

36

Configuring a read-only replica

Replica type Read-only p4sync, Work-in- Global

commands p4client progress update
commands commands

Depot standby, Yes, local Error Error Error
standby, replica

Forwarding standby, Yes, local Forward Forward Forward
forwarding replica

Build server Yes, local Yes, local Error Error
Edge server Yes, local Yes, local Yes, local Forward
Standard server, depot Yes, local Yes, local Yes, local Yes, local

master, commit server

Configuring a read-only replica

To support warm standby servers, a replica server requires an up-to-date copy of both the master
server's metadata and its versioned files.

Tip

To help the standby server stay as current as possible with the master server, consider setting the
rpl.journalcopy.location configurable. The value of 1 could keep the standby server's journalcopy
more current with the master server's journal by writing the journalcopy to a faster device than the
deviceinthe journalPre fix configurable defined for the standby server.

Note

Replication is asynchronous, and a replicated server is not recommended as the sole means of
backup or disaster recovery. We recommend that you maintain a separate set of database
checkpoints and depot backups. Disaster recovery and failover strategies are complex and site-
specific. Perforce Consultants are available to assist organizations in the planning and deployment of
disaster recovery and failover strategies. For details, see:
https://www.perforce.com/support/consulting.

The following extended example configures a replica as a warm standby server for an existing Helix Core
Server with some data in it. For this example, assume that:

= Your master server is named Master and is running on a host called master, using port 11111,
and its server root directory is /p4 /master

= Your replica server will be named Replical and will be configured to run on a host machine
named replica, using port 22222, and its root directory will be /p4/replica.

m The service usernameis service.

37

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rpl.journalcopy.location
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#journalPrefix
https://www.perforce.com/support/consulting

Master server setup

Note
You cannot define PANAME using the p4 configure command, because a server must know its
own name to use values setby p4 configure.

You cannot define PAROOT usingthe p4 configure command, to avoid the risk of specifying an
incorrect server root.

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for backward
compatibility.

Master server setup

To define the behavior of the replica, you enter configuration information into the master server's
db.configfileusingthep4 configure set command. Configure the master server first; its
settings will be replicated to the replica later.

To configure the master, log in to Helix Server as a superuser and perform the following steps:

1.

To set the servernamed Replical tousemaster:11111 as the master server to pull
metadata and versioned files, issue the command:

$ p4 -p master:11111 configure set
Replical#P4TARGET=master:11111

Helix Server displays the following response:

For server Replical, configuration variable 'P4TARGET' set to

'master:11111"

Note

To avoid confusion when working with multiple servers that appear identical in many ways,
use the —u option to specify the superuser account and —p to explicitly specify the master
Helix Server's host and port.

These options have been omitted from this example for simplicity. In a production
environment, specify the host and port on the command line.

2. SettheReplical serverto save the replica server's log file using a specified file name.

Keeping the log names unique prevents problems when collecting data for debugging or
performance tracking purposes.

$ p4 configure set Replical#P4LOG=replicallog. txt

38

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Master server setup

39

3. SettheReplical server configurable to 1, which is equivalent to specifying the -

vserver=1 server startup option:

$ p4 configure set Replical#server=1

. To enable process monitoring, set Replical's monitor configurable to 1:

S p4 configure set Replical#monitor=1

. Tohandle the Replical replication process, configure the following three startup. n

commands. (When passing multiple items separated by spaces, you must wrap the entire set
value in double quotes.)

The first startup process sets p4 pull to poll once every second for journal data only:

$ p4 configure set "Replical#startup.l=pull -i 1"

The next two settings configure the server to spawntwop4 pull threads at startup, each of
which polls once per second for archive data transfers.

$ p4 configure set "Replicalf#startup.2=pull -u -i 1"

S p4 configure set "Replical#startup.3=pull -u -i 1"

Eachp4 pull -ucommand creates a separate thread for replicating archive data. Heavily-
loaded servers might require more threads, if archive data transfer begins to lag behind the
replication of metadata. To determine if you need more p4 pull -u processes, read the
contents of the rdb . 1br table, which records the archive data transferred from the master Helix
Server to the replica.

To display the contents of this table when a replica is running, run;

$ p4 -p replica:22222 pull -1

Likewise, if you only need to know how many file transfers are active or pending, usep4 -p
replica:22222 pull -1 -s.

Ifpd pull -1 -sindicates alarge number of pending transfers, consider adding more p4
pull -u startup.ncommands to address the problem.

If a specific file transfer is failing repeatedly (perhaps due to unrecoverable errors on the master),
you can cancel the pending transfer withp4 pull -d -f file -r rev, wherefileand
rev refer to the file and revision number.

Master server setup

6. Setthedb.replication (metadataaccess)and 1br.replication (depot file access)
configurables to readonly:
$ p4 configure set Replical#db.replication=readonly
$ p4 configure set Replical#lbr.replication=readonly

Because this replica server is intended as a warm standby (failover) server, both the master
server's metadata and its library of versioned depot files are being replicated. When the replica is
running, users of the replica will be able to run commands that access both metadata and the
server's library of depot files.

7. Create the service user:

$ p4 user -f service
The user specification for the service user opens in your default editor. Add the following line to
the user specification:

Type: service

Save the user specification and exit your default editor.

By default, the service user is granted the same 12-hour login timeout as standard users. To
prevent the service user’s ticket from timing out, create a group with a long timeout on the master
server. In this example, the Timeout : field is set to two billion seconds, approximately 63

years:

$ p4 group service_ group

Users: service
Timeout: 2000000000
For more details, see "Tickets and timeouts for service users" on page 32.

8. Set the service user protections to super in your protections table. (See "Permissions for
service users" on page 33.) It is good practice to set the security level of all your Helix Servers to
at least 1 (preferably to 3, so as to require a strong password for the service user, and ideally to 4,
to ensure that only authenticated service users may attempt to perform replica or remote depot
transactions.)
$ p4 configure set security=4

$ p4 passwd

9. SettheReplical configurable forthe serviceUser to service.

$ p4 configure set Replical#iserviceUser=service

This step configures the replica server to authenticate itself to the master server as the service
user; this is equivalent to starting p4d withthe -u serwvice option.

40

Creating the replica

10. If the user running the replica server does not have a home directory, or if the directory where the
default . p4tickets fileis typically stored is not writable by the replica’s Helix Server process,
set the replica PATICKETS value to point to a writable ticket file in the replica’s Helix Server root
directory:

S p4 configure set
"Replical#P4ATICKETS=/p4/replica/.pdtickets"

Creating the replica
To configure and start a replica server, perform the following steps:

1. Boot-strap the replica server by checkpointing the master server, and restoring that checkpoint to
the replica:
$ p4 admin checkpoint
(For a new setup, we can assume the checkpoint file is named checkpoint.1)

2. Move the checkpoint to the replica server's PAROOT directory and replay the checkpoint:
$ p4d -r /p4/replica -jr $P4ROOT/checkpoint.l

3. Copy the versioned files from the master server to the replica.

Versioned files include both text (in RCS format, ending with , v) and binary files (directories of
individual binary files, each directory ending with , d). Ensure that you copy the text files in a
manner that correctly translates line endings for the replica host’s filesystem.

If your depots are specified using absolute paths on the master, use the same paths on the
replica. (Or use relative paths in the Map : field for each depot, so that versioned files are stored
relative to the server’s root.)

4. Tocreate avalid ticket file, use p4 login to connect to the master server and obtain a ticket on
behalf of the replica server’s service user. On the machine that will host the replica server, run:
$ p4 -u service -p master:11111 login

Then move the ticket to the location that holds the PATICKETS file for the replica server’s
service user.

At this point, your replica server is configured to contact the master server and start replication.
Specifically:

= Aservice user (service)inagroup (service_group)with along ticket timeout

m A valid ticket for the replica server’s service user (fromp4 login)

41

Starting the replica

= Areplicated copy of the master server's db . config, holding the following preconfigured
settings applicable to any server with a PANAME of Replical, specifically:

« A specified service user (named service), which is equivalent to specifying —u
service onthe command line

o Atarget serverofmaster:11111, whichis equivalent to specifying -t
master:11111 onthe command line

e Bothdb.replicationandlbr.replication settoreadonly, whichis
equivalent to specifying -M readonly -D readonly onthe command line

o Aseriesof p4 pull commands configured to run when the master server starts

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for
backward compatibility.

Starting the replica

To name your server Replical, set PANAME or specify the —In option and start the replica as
follows:

$ p4dd -r /p4/replica -In Replical -p replica:22222 -d

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for backward
compatibility.

When the replica starts, all of the master server’'s configuration information is read from the replica’s copy
of the db . config table (which you copied earlier). The replica then spawns three p4 pull threads:
one to poll the master server for metadata, and two to poll the master server for versioned files.

Note

Thep4 info command displays information about replicas and service fields for untagged output
as well as tagged output.

Testing the replica

Testing p4 pull

To confirm that the p4 pull commands (specifiedinReplical's startup . nconfigurations) are
running, issue the following command:

42

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Testing the replica

$ p4 -u super -p replica:22222 monitor show -a

18835 R service00:04:46 pull -i 1

18836 R service00:04:46 pull -u -i 1

18837 R service00:04:46 pull -u -i 1

18926 R super 00:00:00 monitor show -a

If you need to stop replication for any reason, use thep4 monitor terminate command:

$ p4 -u super -p replica:22222 monitor terminate 18837 process
'18837' marked for termination

To restart replication, either restart the Helix Server process, or manually restart the replication
command:

$ p4 -u super -p replica:22222 pull -u -i 1

Ifthep4 pull and/orp4 pull -u processes are terminated, read-only commands will continue to
work for replica users as long as the replica server’'s p4d is running.

Testing file replication

Create a new file under your workspace view:

$ echo "hello world" > myfile
Mark the file for add:

$ p4 -p master:11111 add myfile
And submit the file:

$ p4 -p master:11111 submit -d "testing replication"

Wait a few seconds for the pull commands on the replica to run, then check the replica for the replicated
file:

$ p4 -p replica:22222 print //depot/myfile

//depot/myfile#l - add change 1 (text)

hello world

If a file transfer is interrupted for any reason, and a versioned file is not present when requested by a user,
the replica server silently retrieves the file from the master.

Note
Replicaservers in -M readonly -D readonly mode will retrieve versioned files from master

servers even if started withoutap4 pull -ucommand to replicate versioned files to the replica.
Such servers act as "on-demand" replicas, as do servers runningin -M readonly -D
ondemand mode or with their 1br . replication configurable set to ondemand.

43

Using the replica

Administrators: be aware that creating an on-demand replica of this sort can still affect server
performance or resource consumption, for example, if a user enters acommand suchas p4 print
// . .., whichreads every file in the depot.

Verifying the replica

When you copied the versioned files from the master server to the replica server, you relied on the
operating system to transfer the files. To determine whether data was corrupted in the process, run p4
verify onthe replica server:

S pd verify //...

Any errors that are present on the replica but not on the master indicate corruption of the data in transit or
while being written to disk during the original copy operation. (Runp4 wverify onaregularbasis,
because a failover server's storage is just as vulnerable to corruption as a production server.)

Using the replica

You can perform all normal operations against your master server (p4 -p master:11111
command). To reduce the load on the master server, direct reporting (read-only) commands to the
replica(p4 -p replica:22222 command). Because thereplicais runningin -M readonly
-D readonly mode, commands that read both metadata and depot file contents are available, and
reporting commands (suchas p4 annotate,p4 changes,p4 filelog,p4 diff2,p4
jobs, and others) work normally. However, commands that update the server's metadata or depot files
are blocked.

Commands that update metadata

Some scenarios are relatively straightforward: consider a command such as p4 sync. A plain p4
sync fails, because whenever you sync your workspace, the Helix Core Server must update its
metadata (the "have" list, which is stored in the db . have table). Instead, usep4 sync -pto
populate a workspace without updating the have list:

$ p4 -p replica:22222 sync -p //depot/project/...@1234
This operation succeeds because it does not update the server's metadata.

Some commands affect metadata in more subtle ways. For example, many Helix Server commands
update the last-update time that is associated with a specification (for example, a user or client
specification). Attempting to use such commands on replica servers produces errors unless you use the
-o option. Forexample, p4 client (which updates the Update: and Access: fields of the client
specification) fails:

$ P4 -p replica:22222 client replica_client

Replica does not support this command.

However,p4 client -oworks:

44

Upgrading replica servers

$ p4 -p replica:22222 client -o replica_client
(client spec is output to STDOUT)

If a command is blocked due to an implicit attempt to write to the server's metadata, consider
workarounds such as those described above. (Some commands, like p4 submi t, always fail,
because they attempt to write to the replica server’s depot files; these commands are blocked by the =D
readonly option.)

Using the Helix Broker to redirect commands

You can use the Helix Broker with a replica server to redirect read-only commands to replica servers.
This approach enables all your users to connect to the same protocol: host: port setting (the
broker). In this configuration, the broker is configured to transparently redirect key commands to
whichever Helix Core Server is appropriate to the task at hand.

For an example of such a configuration, see the Knowledge Base article, "Using P4Broker to redirect
read-only commands".

See also the chapter on "Helix Broker" on page 81.

Upgrading replica servers

It is best practice to upgrade any server instance replicating from a master server first. If replicas are
chained together, start at the replica that is furthest downstream from the master, and work upstream
towards the master server. Keep downstream replicas stopped until the server immediately upstream is
upgraded.

Note
There has been a significant change in release 2013.3 that affects how metadatais storedindb . *

files; despite this change, the database schema and the format of the checkpoint and the journal files
between 2013.2 and 2013.3, remains unchanged.

Consequently, in this one case (of upgrades between 2013.2 and 2013.3), it is sufficient to stop the
replica until the master is upgraded, but the replica (and any replicas downstream of it) must be
upgraded to at least 2013.2 before a 2013.3 master is restarted.

When upgrading between 2013.2 (or lower) and 2013.3 (or higher), it is recommended to wait for all
archive transfers to end before shutting down the replica and commencing the upgrade. You must
manually delete the rdb . 1br file in the replica server’s root before restarting the replica.

See the Knowledge Base article, "Upgrading Replica Servers".

Configuring a forwarding replica

A forwarding replica offers a blend of the functionality of the Helix Proxy with the improved performance
of areplica.

45

http://answers.perforce.com/articles/KB/1253?startURL=%2Farticles%2FKB_Article%2FUsing-P4Broker-With-Replica-Servers
http://answers.perforce.com/articles/KB/1253?startURL=%2Farticles%2FKB_Article%2FUsing-P4Broker-With-Replica-Servers
http://answers.perforce.com/articles/KB/2515

Configuring the master server

If you are auditing server activity, each of your forwarding replica servers must have its own PAAUDIT
log configured.

Configuring the master server
Configuring the forwarding replica

Configuring the master server

The following example assumes an environment with a regular server named master, and a forwarding
replica server named fwd-replica on ahost named forward.

1. Start by configuring a read-only replica. For details, see "Configuring a read-only replica" on
page 37. (Instead of Replical, use the name fwd-replica.)

2. Onthe master server, configure the forwarding replica as follows:

$ p4 server fwd-1667

The following form is displayed:

ServerID: fwd-1667

Name : fwd-replica

Type: server

Services: forwarding-replica
Address: tcp:forward:1667
Description:

Forwarding replica pointing to master:1666

Configuring the forwarding replica

1. Onthe replica machine, assign the replica server a serverlD:

$ p4 serverid fwd-1667

When the replica server with the serverID: of fwd-1667 (which was previously assigned
the Name : of fwd-replica)pulls its configuration from the master server, it will behave as a
forwarding replica.

2. Onthe replica machine, restart the replica server:

$ p4 admin restart

46

Configuring a build farm server

Configuring a build farm server

Continuous integration and other similar development processes can impose a significant workload on
your Helix Server infrastructure. Automated build processes frequently access the Helix Server to
monitor recent changes and retrieve updated source files; their client workspace definitions and
associated have lists also occupy storage and memory on the server. With a build farm server, you can
offload the workload of the automated build processes to a separate machine, and ensure that your main
Helix Server's resources are available to your users for their normal day-to-day tasks.

Note

Build farm servers were implemented in Helix Server release 2012.1. With the implementation of edge
servers in 2013.2, we now recommend that you use an edge server instead of a build farm server. As
discussed in "Commit-edge" on page 59, edge servers offer all the functionality of build farm servers
and yet offload more work from the main server and improve performance, with the additional
flexibility of being able to run write commands as part of the build process.

A Helix Core Server intended for use as a build farm must, by definition:

m Permit the creation and configuration of client workspaces

m Permit those workspaces to be synced

One issue with implementing a build farm rather than a read-only replica is that under Helix Server, both
of those operations involve writes to metadata: in order to use a client workspace in a build environment,
the workspace must contain some information (even if nothing more than the client workspace root)
specific to the build environment, and in order for a build tool to efficiently sync a client workspace, a build
server must be able to keep some record of which files have already been synced.

To address these issues, build farm replicas host their own local copies of certain metadata: in addition to
the Helix Server commands supported in a read-only replica environment, build farm replicas support the
p4 clientandp4 sync commands when applied to workspaces that are bound to that replica.

If you are auditing server activity, each of your build farm replica servers must have its own P4AAUDIT
log configured.

Configuring the master server ___ . 47
Configuring the build farm replical 49
Binding workspaces to the build farm replica 50

Configuring the master server

The following example assumes an environment with a regular server named master, and a build farm
replica server namedbuildfarml onahost namedbuilder.

1. Start by configuring a read-only replica for warm standby; see "Configuring a read-only replica" on
page 37 for details. (That is, create a read-only replicanamedbuildfarml.)

47

Configuring the master server

2. Onthe master server, configure the master server as follows:

$ p4 server master-1666

The following form is displayed:

A Perforce Server Specification.

ServerID: The server identifier.

Type: The server type: server/broker/proxy.

Name : The P4NAME used by this server (optional).

Address: The P4PORT used by this server (optional).

Description: A short description of the server (optional).

Services: Services provided by this server, one of:
standard: standard Perforce server

replica: read-only replica server

#

#

#

#

#

#

#

#

#

broker: pé4broker process
proxy: pdp caching proxy

commit-server: central server in a distributed installation
edge-server: node in a distributed installation

forwarding-replica: replica which forwards update commands
build-server: replica which supports build automation

P4AUTH: server which provides central authentication

P4CHANGE: server which provides central change numbers

#

#

Use 'p4 help server' to see more about server ids and services.

ServerID: master-1666
Name: master-1666
Type: server
Services: standard
Address: tcp:master:1666
Description:

Master server - regular development work
1. Create the master server's server. id file. On the master server, run the following command:

$ p4 -p master:1666 serverid master-1666

48

Configuring the build farm replica

Important
To avoid configuration problems, the value of se rve r ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for
backward compatibility.

2. Restart the master server.

On startup, the master server reads its server ID of master-1666 fromits server. idfile. It
takes on the PANAME of master and uses the configurables that apply to a PANAME setting of
master.

Configuring the build farm replica

1. Onthe master server, configure the build farm replica server as follows:

$ p4 server builder-1667
The following form is displayed:

ServerID: builder-1667
Name: builder-1667
Type: server

Services: build-server
Address: tcp:builder:1667
Description:

Build farm - bind workspaces to builder-1667
and use a port of tcp:builder:1667

2. Create the build farm replica server's server . id file. On the replica server (not the master
server), run the following command

$ p4 -p builder:1667 serverid builder-1667

49

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Binding workspaces to the build farm replica

3. Restart the replica server.

On startup, the replica build farm server reads its server ID of builder-1667 from its
server. idfile.

Because the server registry is automatically replicated from the master server to all replica
servers, the restarted build farm server takes on the PANAME of buildfarml and uses the
configurables that apply to a PANAME setting of buildfarml.

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for
backward compatibility.

In this example, the build farm server also acknowledges the build-server settingin the
Services: fieldofits p4 server form.

Binding workspaces to the build farm replica

At this point, there should be two servers in operation: a master server named master, with a server ID
ofmaster-1666,andabuild-server replicanamedbuildfarml, with a server ID of
builder-1667.

1.

Bind client workspaces to the build farm server.

Because this server is configured to offer the build-server service, it maintains its own local
copy of the list of client workspaces (db . domain and db . view. rp)and their respective
have lists (db . have. rp).

On the replica server, create a client workspace withp4 client:

$ p4 -c build0001 -p builder:1667 client build0001

When creating a new workspace on the build farm replica, you must ensure that your current client
workspace has a ServerlD that matches that required by builder:1667. Because workspace
build0001 does not yet exist, you must manually specify buil1d0001 as the current client
workspace withthe —¢ clientname option and simultaneously supply build0001 as the
argument tothe p4 client command. For more information, see the Knowledge Base article
on Build Farm Client Management.

Whenthe p4 client form appears, set the ServerID: fieldtobuilder-1667.

50

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html
http://answers.perforce.com/articles/KB/2496

Configuring a replica with shared archives

2. Sync the bound workspace

Because the client workspace build0001 is boundtobuilder-1667, users on the master
server are unaffected, but users on the build farm server are not only able to edit its specification,
they are able to sync it:

$ export P4PORT=builder:1667
$ export PACLIENT=build0001
$ p4 sync

The replica’s have list is updated, and does not propagate back to the master. Users of the master
server are unaffected.

In a real-world scenario, your organization’s build engineers would re-configure your site’s build system to
use the new server by resetting their PAPORT to point directly at the build farm server. Evenin an
environment in which continuous integration and automated build tools create a client workspace (and
sync it) for every change submitted to the master server, performance on the master would be
unaffected.

In a real-world scenario, performance on the master would likely improve for all users, as the number of
read and write operations on the master server’s database would be substantially reduced.

If there are database tables that you know your build farm replica does not require, consider using the -F
and -T filter options top4 pull. Also consider specifyingthe ArchiveDataFilter:,
RevisionDataFilter: andClientDataFilter: fields of the replica’s p4 server form.

If your automation load should exceed the capacity of a single machine, you can configure additional
build farm servers. There is no limit to the number of build farm servers that you may operate in your
installation.

Configuring a replica with shared archives

Normally, a replica service retrieves its metadata and file archives on the user-defined pull interval, for
examplep4 pull -i 1.Whenthe lbr.replication configurableis setto ondemand or
shared (the two are synonymous), metadata is retrieved on the pull interval and archive files are
retrieved only when requested by a client; new files are not automatically transferred, nor are purged files
removed.

When a replica server is configured to directly share the same physical archive files as the master server,
whether the replica and master are running on the same machine or via network shared storage, the
replica simply accesses the archives directly without requiring the master to send the archives files to the
replica. This can form part of a High Availability configuration.

Warning
When archive files are directly shared between a replica and master server, the replica must have
lbr.replication setto ondemand or shared, or archive corruption may occur.

To configure a replica to share archive files with a master, perform the following steps:

51

Filtering metadata during replication

1. Ensure that the clocks for the master and replica servers are synchronized.

Nothing needs to be done if the master and replica servers are hosted on the same operating
system.

Synchronizing clocks is a system administration task that typically involves using a Network
Time Protocol client to synchronize an operating system’s clock with a time server on the Intemnet,
or a time server you maintain for your own network.

See http://support.ntp.org/bin/view/Support/InstallingN TP for details.
2. If you have not already done so, configure the replica server as a forwarding replica.
See "Configuring a read-only replica" on page 37.
3. Setlbr.replication.
Forexample: p4 configure set REP13-1#lbr.replication=ondemand
4. Restart the replica, specifying the share archive location for the replica’s root.
Once these steps have been completed, the following conditions are in effect:
m archive file content is only retrieved when requested, and those requests are made against the
shared archives.
= no entries are written to the rdb . 1br librarian file during replication.

= commands that would schedule the transfer of file content, suchas p4 pull -uandp4
verify -t arerejected:

$ p4 pull -u
This command is not used with an ondemand replica server.
$ p4 verify -t //depot/...
This command is not used with an ondemand replica server.
m if startup configurables, such as startup.N=pull -u, are defined, the replica server

attempts to run such commands. Since the attempt to retrieve archive content is rejected, the
replica’s server log will contain the corresponding error:

Perforce server error:
2014/01/23 13:02:31 pid 6952 service-od@21131 background
'pull -u -i 10"

This command is not used with an ondemand replica server.

Filtering metadata during replication

As part of an HA/DR solution, you typically want to ensure that all the metadata and all the versioned
files are replicated. In most other use cases, particularly build farms and/or forwarding replicas, this leads
to a great deal of redundant data being transferred.

52

http://support.ntp.org/bin/view/Support/InstallingNTP

Filtering metadata during replication

It is often advantageous to configure your replica servers to filter in (or out) data on client workspaces and
file revisions. For example, developers working on one project at a remote site do not typically need to
know the state of every client workspace at other sites where other projects are being developed, and
build farms don’t require access to the endless stream of changes to office documents and spreadsheets
associated with a typical large enterprise.

The simplest way to filter metadata is by usingthe -T tableexcludelistoptionwithp4 pull
command. If you know, for example, that a build farm has no need to refer to any of your users' have lists
or the state of their client workspaces, you can filter out db . have and db . working entirely with p4
pull -T db.have,db.working.

Excluding entire database tables is a coarse-grained method of managing the amount of data passed
between servers, requires some knowledge of which tables are most likely to be referred to during Helix
Server command operations, and offers no means of control over which versioned files are replicated.

You can gain much more fine-grained control over what data is replicated by using the
ClientDataFilter:,RevisionDataFilter:,andArchiveDataFilter: fields of the
p4 server form. These options enable you to replicate (or exclude from replication) those portions of
your server's metadata and versioned files that are of interest at the replica site.

Example Filtering out client workspace data and files

If workspaces for users in each of three sites are named with site[123] ~-ws-username, a
replica intended to act as partial backup for users at sitel could be configured as follows:

ServerID: sitel-1668

Name : sitel-1668

Type: server

Services: replica

Address: tcp:sitelbak:1668
Description:

Replicate all client workspace data, except the states of
workspaces of users at sites 2 and 3.
Automatically replicate .c files in anticipation of user
requests. Do not replicate .mp4 video files, which tend
to be large and impose high bandwidth costs.
ClientDataFilter:
-//site2-ws—*
-//site3-ws—*
RevisionDataFilter:
ArchiveDataFilter:
//....c
-//....mp4

When you start the replica, yourp4 pull metadata thread might resemble the following:

53

Filtering metadata during replication

$ p4 configure set "sitel-1668#startup.l=pull -i 30"

In this configuration, only those portions of db . have that are associated with sitel are replicated.
All metadata concerning workspaces associated with site2 and site3 is ignored.

All file-related metadata is replicated. All files in the depot are replicated, except for those ending in
.mp4. Files ending in . c are transferred automatically to the replica when submitted.

To further illustrate the concept, consider a build farm replica scenario. The ongoing work of the
organization (such as code, business documents, or videos) can be stored anywhere in the depot, but
this build farm is dedicated to building releasable products, and has no need to have the rest of the
organization’s output at its immediate disposal:

Example Replicating metadata and file contents for a subset of a depot
Releasable code is placedinto / /depot/releases/ . . . and automated builds are based on
these changes. Changes to other portions of the depot, as well as the states of individual workers'
client workspaces, are filtered out.

ServerID: builder-1669
Name : builder-1669
Type: server
Services: build-server
Address: tcp:built:1669
Description:

Exclude all client workspace data

Replicate only revisions in release branches
ClientDataFilter:

=/l oo
RevisionDataFilter:

=//...

//depot/releases/. ..
ArchiveDataFilter:

=//...

//depot/releases/. ..

To seed the replica, you can use a command like the following to create a filtered checkpoint:

$ p4d -r /p4/master -P builder-1669 -3jd myCheckpoint

The filters specified forbuilder-1669 are used in creating the checkpoint. You can then continue
to update the replica usingthe p4 pull command.

When you start the replica, yourp4 pull metadata thread might resemble the following:

$ p4 configure set "builder-1669#startup.l=pull -i 30"

54

Verifying replica integrity

Thep4 pull thread that pulls metadata for replication filters out all client workspace data (including
the have lists) of all users.

Thep4 pull -uthread(s)ignore all changes on the master except those that affect revisions in
the //depot/releases/ . . . branch, which are the only ones of interest to a build farm. The
only metadata that is available is that which concemns released code. All released code is
automatically transferred to the build farm before any requests are made, so that when the build farm
performs ap4 sync, the sync is performed locally.

Verifying replica integrity

Tools to ensure data integrity in multi-server installations are accessed through the p4
journaldbchecksums command, and their behavior is controlled by three configurables:
rpl.checksum. auto, rpl.checksum. change, and rpl.checksum. table.

Whenyourunp4 journaldbchecksums against a specific database table (or the set of tables
associated with one of the levels predefined by the rpl . checksum. auto configurable), the
upstream server writes a journal note containing table checksum information. Downstream replicas, upon
receiving this journal note, then proceed to verify these checksums and record their results in the
structured log for integrity-related events.

These checks are also performed whenever the journal is rotated. In addition, newly defined triggers
allow you to take some custom action when journals are rotated. For more information, see the section
"Triggering on journal rotation" in Helix Core Server Administrator Guide: Fundamentals.

Administrators who have one or more replica servers deployed should enable structured logging for
integrity events, set the rpl . checksum. * configurables for their replica servers, and regularly
monitor the logs for integrity events.

Configuration 55

Configuration

Structured server logging must be enabled on every server, with at least one log recording events of type
integrity, forexample:

$ p4 configure set serverlog.file.8=integrity.csv

After you have enabled structured server logging, set the following configurables to the desired levels of
integrity checking:

m rpl.checksum.auto

= rpl.checksum.change

m rpl.checksum.table

Best practice for most sites is a balance between performance and log size:

55

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rpl.checksum.auto
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rpl.checksum.change
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rpl.checksum.table

Configuration

p4 configure set rpl.checksum.auto=1 (or 2 foradditional verification that is unlikely to
vary between an upstream server and its replicas.)

p4 configure set rpl.checksum.change=2 (this setting checks the integrity of every
changelist, but only writes to the log if there is an error.)

p4 configure set rpl.checksum. table=1 (this setting instructs replicas to verify table
integrity on scan or unload operations, but only writes to the log if there is an error.)

Valid settings for rpl . checksum. auto are:

rpl.checksum.auto Database tables checked with every journal rotation

0 No checksums are performed.

1 Verify only the most important system and revision tables:

.archmap, db.config, db.depot,

.graphindex, db.graphperm, db.group,
.groupx, db.integed, db.integtx, db.ldap,
.object, db.protect, db.pubkey, db.ref,
.rev, db.revcx, db.revdx, db.revhx,

.revtx, db.stream, db.submodule, db.ticket,
.trigger, db.user

EEEEEEE

2 Verify all database tables from level 1, plus:

.bodtext, db.bodtextcx, db.bodtexthx,
.counters, db.excl, db.fix, db.fixrev,
.haveview, db.ixtext, db.ixtexthx, db.job,
.logger, db.message, db.nameval,
.property, db.remote, db.repo, db.revbx,
.review, db.revsx, db.revux, db.rmtview,
.server, db.svrview, db.traits, db.uxtext

EEEEEEE

3 Verify all metadata, including metadata that is likely to differ, especially
when comparing an upstream server with a build-farm or edge-server
replica.

Valid settings for rpl . checksum. change are:

rpl.checksum.change Verification performed with each changelist

0 Perform no verification.

1 Write ajournal note whenap4 submit,p4 fetch,p4
populate,pd4d push,orp4d unzip command completes. The
value of the rpl . checksum. change configurable will
determine the level of verification performed for the command.

56

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_submit.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_fetch.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_populate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_populate.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_push.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_unzip.html

Warnings, notes, and limitations

rpl.checksum.change Verification performed with each changelist

2 Replica verifies changelist summary, and writes to
integrity. csvif the changelist does not match.

3 Replica verifies changelist summary, and writes to integrity log even
when the changelist does match.

Valid settings for rpl . checksum. table are:

rpl.checksum. table | evel of table verification performed

0 Table-level checksumming only.

1 When a table is unloaded or scanned, journal notes are written. These
notes are processed by the replica and are logged to
integrity. csvif the check fails.

2 When a table is unloaded or scanned, journal notes are written, and
the results of journal note processing are logged even if the results
match.

For more information, seep4 help journaldbchecksums.

Warnings, notes, and limitations

The following warnings, notes, and limitations apply to all configurations unless otherwise noted.

m On master servers, do not reconfigure these replica settings while the replica is running:
e PATARGET
e dm.domain.accessupdate
o dm.user.accessupdate

m Be careful not to inadvertently write to the replica’s database. This might happen by using an -r
option without specifying the full path (and mistakingly specifying the current path), by removing
db files in P4AROOT, and so on. For example, when usingthep4d -r . -3jccommand, make
sure you are not currently in the root directory of the replica or standby in which p4
journalcopy is writing journal files.

m Large numbers of Perforce password (P4PASSWD) invalid or unseterrorsin
the replica log indicate that the service user has not been logged in or that the PATICKETS file is
not writable.

In the case of a read-only directory or PATICKETS file, p4 login appears to succeed, but p4
login -s generates the "invalid or unset" error. Ensure that the PATICKETS file exists and
is writable by the replica server.

57

Warnings, notes, and limitations

m Client workspaces on the master and replica servers cannot overlap. Users must be certain that
their PAPORT, PACLIENT, and other settings are configured to ensure that files from the replica
server are not synced to client workspaces used with the master server, and vice versa.

m Replica servers maintain a separate table of users for each replica; by default, thep4 users
command shows only users who have used that particular replica server. (To see the master
server’s list of users, usep4 users -c).

The advantage of having a separate user table (stored on the replicaindb . user . rp)is that
after having logged in for the first time, users can continue to use the replica without having to
repeatedly contact the master server.

m All server IDs must be unique. The examples in the section "Configuring a build farm server" on
page 47 illustrate the use of manually-assigned names that are easy to remember, but in very
large environments, there may be more servers in a build farm than is practical to administer or
remember. Use the command p4 server -g tocreateanew server specification with a
numeric Server ID. Such a Server ID is guaranteed to be unique.

Whether manually-named or automatically-generated, it is the responsibility of the system
administrator to ensure that the Server ID associated with a server's p4 server form
corresponds exactly with the server . id file created (and/or read) by the p4 serverid
command.

m Users of P4V and forwarding replicas are urged to upgrade to P4V 2012.1 or higher. Helix Server
applications older than 2012.1 that attempt to use a forwarding replica can, under certain
circumstances, require the user to log in twice to obtain two tickets: one for the first read (from the
forwarding replica), and a separate ticket for the first write attempt (forwarded to the master)
requires a separate ticket. This confusing behavior is resolved if P4V 2012.1 or higher is used.

= Although replicas can be chained together as of Release 2013.1, (that is, areplica’s PATARGET
can be another replica, as well as from a central server), it is the administrator's responsibility to
ensure that no loops are inadvertently created in this process. Certain multi-level replication
scenarios are permissible, but pointless; for example, a forwarding replica of a read-only replica
offers no advantage because the read-only replica will merely reject all writes forwarded to it.
Please contact Perforce Technical Support for guidance if you are considering a multi-level replica
installation.

m The rpl.compress configurable controls whether compression is used on the master-replica
connection(s). This configurable defaults to 0. Enabling compression can provide notable
performance improvements, particularly when the master and replica servers are separated by
significant geographic distances.

Enable compression with: p4 configure set fwd-replica#rpl.compress=1

58

This topic assumes you have read the "Introduction to federated services" on page 9.

Note

You cannot issue the p4 unsubmit andp4 resubmit commands toanedge server. You can

only issue these commands to a commit server.

Tip
Commit-edge architecture builds upon Helix Server replication technology. Before attempting to

deploy a commit-edge configuration, read "Helix Server replication" on page 22, including the section
on "Connecting services" on page 14, which includes information on "Managing SSL key pairs" on

page 15.

Tip

An edge server can be used instead of a build farm server, and this usage is referred to as a build edge

server. If the only users of an edge server are build processes, disaster recovery is possible without

backing up the local edge server-specific workspace and related information. See "Migrating from
existing installations" on page 67.

Important
Some Helix Core Server commands behave differently when you have edge servers. See
http://answers.perforce.com/articles/KB/3847.

Setting up a commit/edge configuration 60
Create a service user account forthe edge server 60
Create commit and edge server configurations .. 61
Createand startthe edge server 63

Shortcuts to configuring the server .. 64

Setting global client views ... 65

Creating a client from atemplate 66

Migrating from existing installations _____.. 67
Replacing existing proxies and replicas ... 67
Deploying commit and edge serversincrementally 68
Hardware, sizing, and capacity ... 68
Migration SCenarios 69

Managing distributed installations 72
Moving usersto anedge server .. 73
Promoting shelved changelists 745
Locking and unlocking files 75
TGOS .o 75
Backup and high availability/disaster recovery (HA/DR) planning .._...............__. 77

59

http://answers.perforce.com/articles/KB/3847

Setting up a commit/edge configuration

Other considerations 78
Validation .. 79
Supported deployment configurations 80
BaCKUDS 80

Setting up a commit/edge configuration

This section explains how you set up a commit/edge configuration. It assumes that you have an existing
server that you want to convert to a commit server and that you are familiar with Helix Server
management and operation. For the sake of this example, we’ll assume that the existing serveris in
Chicago, and that we need to set up an edge server at a remote site in Tokyo.

s Commit server
P4PORT=chicago.perforce.com:1666
P4ROOT=/chicago/p4root

= Edge server
P4PORT=tokyo.perforce.com:1666
P4ROOT=/tokyo/pdroot

The setup process includes the following major steps:

1. Onthe commit server, create a service user account for each edge server you plan to create.
2. Onthe commit server, create commit and edge server configurations.
3. Create and start the edge server.
You must have super privileges to perform these steps.
Tip
To improve performance, consider using the configurable lbr.autocompress.

See also the Knowledge Base articles on performance.

Create a service user account for the edge server 60
Create commit and edge server configurations _........._ 61
Create and start the edge serverl 63

Create a service user account for the edge server

To support secure communication between the commit server and the edge server, a user account of
type service must be created. In the example below, we use a unique service user name for the tokyo
edge server, but one could also use a generic service user name and use it for multiple edge servers.

60

https://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html#CmdRef/configurables.configurables.html#lbr.autocompress
http://answers.perforce.com/

Create commit and edge server configurations

Create the service user account.

$ p4 user -f svc_tokyo edge

In the user spec, set the user Type : fieldto service.
Add the service user to a group with an unlimited timeout. This prevents the service user login
from the edge server from timing out.

$ p4 group no_timeout

Inthe group spec, set the Users: fieldto sve_tokyo edge andthe Timeout: field to
unlimited.

Assign a password to the service user by providing a value at the prompt.
$ p4 passwd svc_tokyo_edge
Assignthe sve_tokyo_edge service user super protections in the protect spec.

$ p4 protect

super user svc_tokyo edge * //...

Create commit and edge server configurations

The following steps are needed to configure the commit and edge servers.

Note
It is best to set the PANAME and ServerlD to the same value: this makes it easy to isolate

configuration variables on each server in a distributed environment.

Important
To avoid configuration problems, the value of se rver ID should always match the value of

P4NAME if both are set. We recommend setting serverID, but support PANAME for backward
compatibility.

1.

Create the commit server specification:

$ p4 server chicago_commit

Inthe server spec, set the Services: fieldto commit-server and the Name : field to
chicago commit.

Create the edge server specification:

$ p4 server tokyo edge

In the server spec, set the Services: fieldto edge-server and the Name : field to
tokyo_edge.

61

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_serverid.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4NAME.html

Create commit and edge server configurations

3. Set the server ID of the commit server:
$ p4 serverid chicago_commit

4. This step, which sets the journalPrefix value on the commit and edge server to control the
name and location of server checkpoints and rotated journals, is not required, but it is a best
practice. During the replication process, the edge server might need to locate the rotated journal
on the commit server; having journalPrefix defined on the commit server allows the edge
server to easily identify the name and location of rotated journals:

$ p4 configure set chicago_
commit#journalPrefix=/chicago/backup/p4d_backup
$ p4 configure set tokyo
edge#journalPrefix=/tokyo/backup/p4d_backup

5. Set PATARGET for the edge server to identify the commit server:

$ p4 configure set tokyo
edge#P4TARGET=chicago.perforce.com:1666

6. Set the service userin the configuration of the edge server and the commit server:
$ p4 configure set tokyo_edgeffserviceUser=svc_tokyo_edge

$ p4 configure set chicago_commit#serviceUser=svc_chicago_

commit

7. Set the location for the edge server’s log files:
$ p4 configure set tokyo_ edge#P4LOG=/tokyo/logs/tokyo
edge.log

8. Set PATICKETS location for the service userin the edge and commit server configuration:

$ p4 configure set chicago_
commit#P4TICKETS=/chicago/p4root/.pdtickets
$ p4 configure set tokyo
edge#PATICKETS=/tokyo/p4root/.pdtickets

9. Configure the edge server database and archive nodes:

$ p4 configure set tokyo_edge#db.replication=readonly

$ p4 configure set tokyo_ edge#lbr.replication=readonly

62

Create and start the edge server

10. Define startup commands for the edge server to periodically pull metadata and archive data.

$ p4 configure set tokyo_edge#fstartup.l="pull -i 1"
$ p4 configure set tokyo_edgeffstartup.2="pull -u -i 1"
$ p4 configure set tokyo_edgeffstartup.3="pull -u -i 1"

These commands configure three pull threads, each attempting to fetch metadata once per
second. The latter two pull threads use the —u option to transfer archive files instead of journal
records. Typically, there is more file data to transfer than metadata, so one pull thread fetches the

journal data, and two fetch the file data.

Create and start the edge server

Now that the commit server configuration is complete, we can seed the edge server from a commit
server checkpoint and complete a few more steps to create it.

Take a checkpoint of the commit server, but filter out the database content not needed by an edge

1.
server. (The -z flag creates a zipped checkpoint.)

$ p4dd -r /chicago/p4root -K
"db.have,db.working,db.resolve,db.locks,
db.revsh,db.workingx,db.resolvex" -z -jd edge.ckp

2. Recover the zipped checkpoint into the edge server P4AROOT directory.
$ p4dd -r /tokyo/p4root -z -jr edge.ckp.gz
3. Set the server ID for the newly seeded edge server:

$ p4d -r /tokyo/pd4root -xD tokyo_ edge

4. Create the service user login ticket in the location specified in the edge configuration and the
commit configuration:
$ p4 -E PATICKETS=/chicago/p4root/.p4tickets -u svc_tokyo

edge
-p tokyo.perforce.com:1666 login

$ p4 -E PATICKETS=/chicago/p4root/.p4tickets -u svc_chicago_

commit
-p chicago.perforce.com:1666 login

63

Shortcuts to configuring the server

5. Copy the versioned files from the commit server to the edge server. Files and directories can be
moved using rsync, tar, ftp, a network copy, or any other method that preserves the files as they
were on the original server.

For additional information on copying files, see:
m http://answers.perforce.com/articles/KB/2558
m "Creating the replica" on page 41
6. Start the edge server using syntax appropriate for your platform.

For example:

$ p4d -r /tokyo/p4root -d

Consult the following sources for detailed instructions for UNIX and Windows, which appear in the
"Installing and Upgrading the Server" chapter of the Helix Core Server Administrator
Guide: Fundamentals.

7. Check the status of replication by running the following command against the edge server.
$ p4 pull -1j
8. Create the service user login ticket from the commit to the edge server. On the commit server:

$ p4 -E PATICKETS=/chicago/p4root/.p4tickets -u svc_tokyo_
edge
-p tokyo.perforce.com:1666 login

Shortcuts to configuring the server

You can also configure an edge or commit server using the —c optiontothe p4 server command.
When you specify this option, the DistributedConfig field of the server spec is mostly filled in for
the commands that need to be run to configure the server. The workflow is as follows:

1. Open a server spec using syntax like the following

S p4 server [-c edge-server|commit-server] serverId

For example,

$ p4 server -c edge-server mynewedge

64

http://answers.perforce.com/articles/KB/2558
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.install.html#install.unix.start
http://www.perforce.com/perforce/doc.current/manuals/p4sag/chapter.install.html#install.windows.start_stop
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Setting global client views

2. Completethe DistributedConfig field by specifying the commands you want executed to
configure the server. When invoked with the —c option, the field looks like the code shown below.

Specified values are set appropriately for the type of server you specified inthe p4 server
command. Values marked <unset> must be set; values marked #optional can be set if
desired.

db.replication=readonly
lbr.replication=readonly
1br.autocompress=1
rpl.compress=4
startup.l=pull -i 1
startup.2=pull -u -i 1
startup.3=pull -u -i 1
P4TARGET=<unset>
serviceUser=<unset>
monitor=1 # optional
journalPrefix=<unset> # optional
PATICKETS=<unset> foptional
P4LOG=<unset> # optional

3. Afteryou have saved changes, you can execute a command like the following to see the settings
fortheDistributedConfig field

$ p4 server -o -1 mynewedge

DistributedConfig:
db.replication=readonly
lbr.replication=readonly
startup.l=pull -i 1
startup.2=pull -u -i 1
startup.3=pull -u -i 1
PATARGET=localhost:20161

serviceUser=service

Setting global client views

The server.global.client.views configurable determines whether the view maps of a non-
stream client on an edge server are made global when the client is modified. This configurable can be set
globally or individually for each server, thus allowing client maps to be global on most edge servers while
keeping them local on those edge servers that don’'t need or want them to be global.

65

Creating a client from a template

The value of server.global.client.views onan edge server determines whether it forwards
view maps to a commit server.

You should make client view maps on a replica global if up-to-date information is needed by another
server running a command that needs a client view map; for example, if that client is to be used as a
template on another server.

m |fserver.global.client.views=1 onan edge server, then when a client is modified
on that edge server, its view map is made global.

m The default value of 0 on the edge server means that client view maps on that edge server are not
made global when a client is modified.

Setting this configurable does not immediately make client view maps global; that happens only when a
client is modified afterwards. Clearing this configurable does not delete the view maps of any clients, but
it does prevent subsequent changes to a client’s view map from being propagated to other servers. If a
client with global view maps is deleted, its view maps are also deleted globally regardless of the value of
server.global.client.views; this is to prevent orphaned view maps.

In summary, view maps of a client are made global only under these conditions:

m The client is bound to an edge server.

m The edge serverhas server.global.client.views=1.
m Theclient is a non-stream client.

= The client is modified.

If you are working with an existing client, you can "modify" it by adding a few words to the
description. For example, you can add a statement that this client’s view maps are now global.

Note
Clients bound directly to a commit server have their view maps replicated everywhere independently
of the setting of server.global.client.views.

For complicated reasons, it is best to choose one setting for this configurable, and not change it.

Creating a client from a template

You might want to create a client from a template when you want to create a client that is similar to an
existing client (especially the view map). For example, you want to create a client that maps the mainline
server code so that you can build it yourself. This might require multiple view map entries, so you want to
base your client on one that already has those view maps defined.

Clients created on a commit server can be used as templates by clients created on the commit server or
on any edge server.

A client bound to an edge server can be used as a template for clients on that same edge server. To use it
as a template on a different edge server or on the commit server, its view map should be global (that is,
copied to the commit server).

66

Migrating from existing installations

A client’s view map is made global when the client is modified and
server.global.client.views=1 on both the edge serverto which it is bound and on the
commit server. You can create a client for an edge server or commit server based on an existing client
template (bound to a different edge server) using a command like the following:

S p4 client -t clientBoundToOtherEdge clientBoundToMyEdge

The newly created client will have its View map copied from the View map of the template client, with
the client name on the right-hand side entries changed from the template client name
(clientBoundToOtherEdge)to the new client name (clientBoundToMyEdge).

Migrating from existing installations

The following sections explain how you migrate to an edge-commit architecture from an existing
replicated architecture.

m "Replacing existing proxies and replicas" below explains what sort of existing replicates can be
profitably replaced with edge servers.

m "Deploying commit and edge servers incrementally" on the next page describes an incremental
approach to migration.

m "Hardware, sizing, and capacity" on the next page discusses how provisioning needs shift as you
migrate to the edge-commit architecture.

m "Migration scenarios" on page 69 provides instructions for different migration scenarios.

Replacing existing proxies and replicas

If you currently use a Helix Proxy, evaluate whether it should be replaced with an edge server. If a proxy
is delivering acceptable performance, then it can be left in place indefinitely. You can use proxies in front
of edge servers if necessary. Deploying commit and edge servers is notably more complex than
deploying a master server and proxy servers. Consider your environment carefully.

Of the three types of replicas available, forwarding replicas are the best candidates to be replaced with
edge servers. An edge server provides a better solution than a forwarding replica for many use cases.

Build replicas can be replaced if necessary. If your build processes need to issue write commands other
thanp4 sync, anedge serveris a good option. But if your build replicas are serving adequately, then
you can continue to use them indefinitely.

Read-only replicas, typically used for disaster recovery, can remain in place. You can use read-only
replicas as part of a backup plan for edge servers.

67

Deploying commit and edge servers incrementally

Deploying commit and edge servers incrementally

You can deploy commit and edge servers incrementally. For example, an existing master server can be
reconfigured to act as a commit server, and serve in hybrid mode. The commit server continues to
service all existing users, workspaces, proxies, and replicas with no change in behavior. The only
immediate difference is that the commit server can now support edge servers.

Once a commit server is available, you can proceed to configure one or more edge servers. Deploying a
single edge server for a pilot team is a good way to become familiar with edge server behavior and
configuration.

Additional edge servers can be deployed periodically, giving you time to adjust any affected processes
and educate users about any changes to their workflow.

Initially, running a commit server and edge server on the same machine can help achieve a full split of
operations, which can make subsequent edge server deployments easier.

Hardware, sizing, and capacity

For an initial deployment of a distributed Perforce service, where the commit server acts in a hybrid
mode, the commit server uses your current master server hardware. Over time, you might see the
performance load on the commit server drop as you add more edge servers. You can reevaluate commit
server hardware sizing after the first year of operation.

An edge server handles a significant amount of work for users connected to that edge server. A sensible
strategy is to repurpose an existing forwarding replica and monitor the performance load on that
hardware. Repurposing a forwarding replica involves the following:

m Reconfiguring the forwarding replica as an edge server.

m Creating new workspaces on the edge server or transferring existing workspaces to the edge
server. Existing workspaces can be transferred usingp4 unloadandp4 reload
commands. See "Migrating a workspace from a commit server or remote edge server to the local
edge server" on page 71 for details.

As you deploy more edge servers, you have the option to deploy fewer edge servers on more powerful
hardware, or a to deploy more edge servers, each using less powerful hardware, to service a smaller
number of users.

You can also take advantage of replication filtering to reduce the volume of metadata and archive content
on an edge server.

Note
An edge server maintains a unique copy of local workspace metadata, which is not shared with other
edge servers or with the commit server.

Filtering edge server content can reduce the demands for storage and performance capacity.

As you transition to commit-edge architecture and the commit server is only handling requests from edge
servers, you may find that an edge server requires more hardware resources than the commit server.

68

Migration scenarios

Migration scenarios

This section provides instructions for several migration scenarios. If you do not find the material you
need, email support@ perforce.com.

Configuring a master server as a commit server

Scenario: You have a master server. You want to convert your master to a commit server, allowing it to
work with edge servers as well as to continue to support clients.

1. Choose a ServerlD for your master server, if it does not have one already, and use p4
serveridtosaveit.

2. Define a server spec for your master server or edit the existing one if it already has one, and set
Services: commit-server.

Converting a forwarding replica to an edge server

Scenario: You currently have a master server and a forwarding replica. You want to convert your master
server to a commit server and convert your forwarding replica to an edge server.

Depending on how your current master server and forwarding replica are set up, you may not have to do
all of these steps.

1. Have all the users of the forwarding replica either submit, shelve, or revert all of their current work,
and have them delete their current workspaces.

Stop your forwarding replica.

3. Choose a ServerlD for your master server, if it does not have one already, and use p4
serveridtosaveit.

4. Define a server spec for your master server, or edit the existing one if it already has one, and set
Services: commit-server.

5. Usep4 server toupdate the server spec for your forwarding replica, and set Services:
edge-server.

69

mailto:support@perforce.com

Migration scenarios

6. Update the replica server with your central server data by doing one of the following:
m Use a checkpoint:
a. Take a checkpoint of your central server, filtering out the db . have, db.working,
db.resolve,db.locks,db.revsh,db.workingx, db.resolvex
tables.
$ p4d -K
"db.have,db.working,db.resolve,db.locks,db.revsh,db.w
orkingx,db.resolvex"
-jd my filtered checkpoint file
Tip
If you want to produce a filtered journal dump file, go to Helix Core Server

Administrator Guide: Fundamentals, and look in the "Helix Core Server
Reference" for the —k and —K options.

b. Restore that checkpoint onto your replica.

c. lItis good practice, but it is not required that you remove the replica’s state file.
m Use replication:

a. Start your replica on a separate port (so local users don't try to use it yet).

b. Wait for it to pull the updates from the master.

c. Stop the replica and remove the db . have, db.working, db.resolve,
db.locks,db.revsh,db.workingx, db.resolvex tables.

7. Start the replica; it is now an edge server.
8. Have the users of the old forwarding replica start to use the new edge server:

m Create their new client workspaces and sync them.

You are now up and running with your new edge server.

Converting a build server to an edge server

Scenario: You currently have a master server and a build server. You want to convert your master server
to a commit server and convert your build server to an edge server.

Build servers have locally-bound clients already, and it seems very attractive to be able to continue to
use those clients after the conversion from a build-server to an edge server. There is one small detail:

= On a build server, locally-bound clients store their have and view datain db . have . rp and
db.view.rp.

m On an edge server, locally-bound clients store their have and view data in db . have and
db.view.

Therefore the process for converting a build server to an edge server can be the following :

70

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Migration scenarios

1. Define a ServerlD and server spec for the master, setting Services: commit-server.

2. Edit the server spec for the build-server and change Services: build-serverto
Services: edge-server.

3. Shut down the build-server and do the following:

$ rm db.have db.view db.locks db.working db.resolve db.revsh
db.workingx db.resolvex
$ mv db.have.rp db.have
$ mv db.view.rp db.view

4. Start the server; it is now an edge server and all of its locally-bound clients can continue to be
used.

Note
Step 3 above discards the db . view table, but there are multiple possibilities:
1. Retaindb.view, Discarddb.view.rp

This means the edge server will discard all pre-existing build clients and need to create them in
the edge server.

2. Retaindb.view.rp, Discarddb.view

This means the edge server will have access to pre-existing build clients, but the other clients
that were previously accessible in the build farm become accessible.

3. Retainbothdb.viewanddb.view. rp

If you want to maintain the same access of all available clients including the build clients,
please contact Technical Support.

Migrating a workspace from a commit server or remote edge server
to the local edge server

Scenario: You have a workspace on a commit or remote edge server that you want to move to the local
edge server.

1. Current work may be unsubmitted and/or shelved.

2. Execute the following command against the local edge server, where the workspace is being
migrated to. protocol : host: port refers to the commit or remote edge server the
workspace is being migrated from.

$ p4 reload -c workspace -p protocol:host:port

71

Managing distributed installations

Managing distributed installations

Commit-edge architecture raises certain issues that you must be aware of and learn to manage. This
section describes these issues.

m Each edge server maintains a unique set of workspace and work-in-progress data that must be

backed up separately from the commit server. See "Backup and high availability/disaster recovery

(HA/DR) planning" on page 77 for more information.

m Exclusive locks are global: establishing an exclusive lock requires communication with the
commit server, which might incur network latency.

m Parallel submits from an edge server to a commit server use standard pull threads to transfer the
files. The administrator must ensure that pull threads can be run on the commit server by doing the

following:
« Make sure that the service user used by the commit server is logged into the edge server.

o Make sure the ExternalAddress field of the edge server’s server spec is set to the

address that will be used by the commit server’s pull threads to connect to the edge server.

If the commit and edge servers communicate on a network separate from the network used

by clients to communicate with the edge server, the ExternalAddress field must
specify the edge server ip address and port number that is used for connections from the
commit server. Furthermore, the edge server must listen on the two (or more) networks.

Seethep4 help submit command for more information.

m Shelving changes in a distributed environment typically occurs on an edge server. Shelving can
occur on a commit server only while using a client workspace bound to the commit server.
Normally, changelists shelved on an edge server are not shared between edge servers.

You can promote changelists shelved on an edge server to the commit server, making them
available to other edge servers. See "Promoting shelved changelists" on the facing page for
details.

m Auto-creation of users is not possible on edge servers.

= You must use a command like the following to delete a client that is bound to an edge server: It is

not sufficient to simply use the —d and - £ options.

S p4 client -d -f --serverid=thatserver thatclient

This prevents your inadvertently deleting a client from an edge server. Likewise, you must specify
the server id and the changelist number when trying to delete a changelist whose client is bound to

an edge server.

$ p4 change -d -f --serverid=thatserver 6321

Moving users to an edge server 73
Promoting shelved changelists 73
Locking and unlocking files 75
TGOS 75
Backup and high availability/disaster recovery (HA/DR) planning 77

72

Moving users to an edge server

Other considerations 78

Moving users to an edge server

As you create new edge servers, you assign some users and groups to use that edge server.

m Users need the PAPORT setting for the edge server.

m Users need to create a new workspace on the edge server or to transfer an existing workspace to
the new edge server. Transferring existing workspaces can be automated.

If you use authentication triggers or single sign-on, install the relevant triggers on all edge servers and
verify the authentication process.

Promoting shelved changelists

Changelists shelved on an edge server, which would normally be inaccessible from other edge servers,
can be automatically or explicitly promoted to the commit server. Promoted shelved changelists are
available to any edge server.

m |Inashared archive configuration, where the commit server and edge servers have access to the
same storage device for the archive content, shelves are automatically promoted to the commit
server. For more information, see "Automatically promoting shelves" below.

= You must explicitly promote a shelf when the commit and edge servers do not share the archive.
For more information, see "Explicitly promoting shelves" below.

You can view a shelf’'s promotion status using the —ztag output of the p4 describe, p4
changes, orp4 change -ocommands.

See "Working with promoted shelves" on the next page for more information on the limitations of working
on promoted shelves.

Automatically promoting shelves

When the edge server and commit server are configured to access the same archive contents, shelf
promotion occurs automatically, and promoting shelved fields withp4 shelwve -p is not required.

To configure the edge server and commit server to access the same archive contents, you should set
server .depot. root to the same path for both the commit and edge server, and you should set the
1br.replication configurable to shared forthe edge server. For example:

S p4 configure set commit#server.depot.root=/p4/depot/root
$ p4 configure set edgeiiserver.depot.root=/p4d/depot/root

S p4 configure set edge#lbr.replication=shared

Explicitly promoting shelves

You have two ways of explicitly promoting shelves:

73

Promoting shelved changelists

Setthedm. shelve.promote configurable: dm. shelve.promote=1.

This makes edge servers always promote shelved files to the commit server, which means that
file content is transferred and stored both on the commit server and the edge server. (Generally, it
is a bad idea to enable automatic promotion because it causes a lot of unnecessary file transfers
for shelved files that are not meant to be shared.)

Use the —p option withthe p4 shelwe command.

See the example below for more information on this option.

For example, given two edge servers, edgel and edge2, the process works as follows:

1.

2.

Shelve and promote a changelist from edgel.
edgel$ p4 shelve -p -c 89

The shelved changelist is now available to edge2.
edge2$ p4 describe -S 89

Promotion is only required once.

Subsequent p4 shelwve commands automatically update the shelved changelist on the commit
server, using server lock protection. For example, make changes on edgel and refresh the

shelved changelist:

edgels p4 shelve -r -c 89

The updates can now be seen on edge2:

edge2$ p4 describe -S 89

Promoting shelves when unloading clients

Use the new —p option forthe p4 unload command to promote any non-promoted shelves belonging
to the specified client that is being unloaded. The shelf is promoted to the commit server where it can be
accessed by other edge servers.

Working with promoted shelves

The following limitations apply when working with promoted shelves:

74

Once a shelf is promoted, it stays promoted.

There is no mechanism to unpromote a shelved changelist; instead, delete the shelved files from
the changelist.

You may unshelve a promoted shelf into open files and branches on a server from where the shelf
did not originate.

You cannot unshelve a remote promoted shelf into already-open local files.

You cannot unload an edge server workspace if you have promoted shelves.

Locking and unlocking files

m Youcanrunp4 submit -e onapromoted shelf only onthe serverthat owns the change.

= You can move a promoted shelf from one edge server to another usingthe p4 unshelve
command.

Locking and unlocking files

You can use the —g flag of the p4 1lock command to lock the files locally and globally. The —g option
must be used withthe ~c changelist option. This lock is removed by thep4 unlock -g
command or by any submit command for the specified changelist.

Use the —x option tothe p4 unlock command to unlock files that have the +1 filetype (exclusive
open) but have become orphaned. This is typically only necessary in the event of an extended network
outage between an edge server and the commit server.

Tomake p4 lock onan edge server take global locks on the commit server by default, set the
server.locks.global configurable to 1. See the section Configurables in P4 Command
Reference.

Triggers

This section explains how you manage existing triggers in a commit-edge configuration and how you use
edge type triggers.

Determining the location of triggers

In a distributed Perforce service, triggers might run either on the commit server, or on the edge server, or
perhaps on both. For more information on triggers, see the Helix Core Server Administrator
Guide: Fundamentals.

Make sure that all relevant trigger scripts and programs are deployed appropriately. Edge servers can
affect non-edge type triggers in the following ways:

m |f you enforce policy with triggers, you should evaluate whether a change list or shelve trigger
should execute on the commit server or on the edge server.

m Edge servers are responsible for running form triggers on workspaces and some types of labels.
Tip
Read about the sequence of triggers that run during an edge server submit in "Triggers in a Distributed
Perforce Environment" at http://answers.perforce.com/articles/KB/3848.

Trigger scripts can determine whether they are running on a commit or edge server using the trigger
variables described in the following table. When a trigger is executed on the commit server, $peerip%
matches $clientip%.

75

https://www.perforce.com/perforce/doc.current/manuals/cmdref/appendix.configurables.html#configurables.configurables
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://answers.perforce.com/articles/KB/3848

Triggers

Trigger Variable Description

speerip% The IP address of the proxy, broker, replica, or edge server.

%clientip% The IP address of the machine whose user invoked the command,
regardless of whether connected through a proxy, broker, replica, or
edge server.

$submitserverid% Forachange-submit, change-content, orchange-
commi t trigger in a distributed installation, the server . id of the
edge server where the submit was run. See p4 serverid inthe P4
Command Reference for details.

Using edge triggers

In addition, edge servers support two trigger types that are specific to edge-commit architecture: edge -
submit and edge-content:

Trigger Description

Type

edge- Executes a pre-submit trigger on the edge server after changelist has been created,

submit but prior to file transfer from the client to the edge server. The files are not necessarily
locked at this point.

edge- Executes a mid-submit trigger on the edge server after file transfer from the client to

content the edge server, but prior to file transfer from the edge server to the commit server. At
this point, the changelist is shelved.

Triggers on the edge server are executed one after another when invoked viap4 submit -e.Forp4
submit, edge-submi t triggers run immediately before the changelist is shelved, and edge-
content triggers run immediately after the changelist is shelved.

Because edge-submi t triggers run prior to file transfer to the edge server, these triggers cannot
access file content.

The following edge-submi t trigger is an MS-DOS batch file that rejects a changelist if the submitter
has not had the change reviewed and approved. This trigger fires only on changelist submission attempts
that affect at least one file in the / /depot/qga branch.

@echo off

rem REMINDERS

rem - If necessary, set Perforce environment vars or use config file

rem - Set PATH or use full paths (C:\PROGRA~1\Perforce\p4.exe)

rem - Use short pathnames for paths with spaces, or quotes

rem - For troubleshooting, log output to file, for instance:

rem - C:\PROGRA~1\Perforce\p4 info >> trigger.log

if not x%1==x goto doit

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Backup and high availability/disaster recovery (HA/DR) planning

echo Usage is %0 [change#]

:doit

p4 describe -s %1|findstr "Review Approved...\n\n\t" > nul

if errorlevel 1 echo Your code has not been reviewed for changelist %1

p4 describe -s %1|findstr "Review Approved...\n\n\t" > nul

To use the trigger, add the following line to your triggers table:

sampleEdge edge-submit //depot/ga/... "reviewcheck.bat %changelist%"

Backup and high availability/disaster recovery (HA/DR)
planning

A commit server can use the same backup and HA/DR strategy as a master server. Edge servers
contain unique information and should have a backup and an HA/DR plan. Whether an edge server
outage is as urgent as a master server outage depends on your requirements. Therefore, an edge server
may have an HA/DR plan with a less ambitious Recovery Point Objective (RPO) and Recovery Time
Objective (RTO) than the commit server.

If a commit server must be rebuilt from backups, each edge server must be rolled back to a backup prior
to the commit server’s backup. Alternatively, if your commit server has no local users, the commit server
can be rebuilt from a fully-replicated edge server (in this scenario, the edge server is a superset of the
commit server).

Backing up and recovering an edge server is similar to backing up and restoring an offline replica server.
Specifically, you need to do the following:

1. Onthe edge server, schedule a checkpoint to be taken the next time journal rotation is detected on
the commit server. For example:
$ p4 -p myedgehost:myedgeport admin checkpoint

Thep4 pull command performs the checkpoint at the next rotation of the journal on the
commit server. A stateCKP file is written to the PAROOT directory of the edge server,
recording the scheduling of the checkpoint.

2. Rotate the journal on the commit server:
$ p4 -p mycommithost:mycommitport admin journal

As long as the edge server’s replication state file is included in the backup, the edge server can be
restored and resume service. If the edge server was offline for a long period of time, it may need some
time to catch up on the activity on the commit server.

As part of a failover plan for a commit server, make sure that the edge servers are redirected to use the
new commit server.

77

Other considerations

Note

For commit servers with no local users, edge servers could take significantly longer to checkpoint
than the commit server. You might want to use a different checkpoint schedule for edge servers than
commit servers. If you use several edge servers for one commit server, you should stagger the edge-
checkpoints so they do not all occur at once and bring the system to a stop. Journal rotations for edge
servers could be scheduled at the same time as journal rotations for commit servers.

Other considerations
As you deploy edge servers, give consideration to the following areas.

= Labels
In a distributed Perforce service, labels can be local to an edge server or global.
» By default, labels are also bound to the Edge Server on which they are created.

« The —g flag defaults to the value of 0, which indicates that the label is to be defined globally
on all servers in the installation. Configuring rpl . labels .global=1 allows updating
of local labels. See rpl.labels.global in the P4 Command Reference.

o Forimportant details, on the command line, type p4 help distributed

m Exclusive Opens

Exclusive opens (+1 filetype modifier) are global: establishing an exclusive open requires
communication with the commit server, which may incur network latency.

= [ntegrations with third party tools

If you integrate third party tools, such as defect trackers, with Helix Server, evaluate whether
those tools should continue to connect to the master/commit server or could use an edge server
instead. If the tools only access global data, then they can connect at any point. If they reference
information local to an edge server, like workspace data, then they must connect to specific edge
servers.

Build processes can usefully be connected to a dedicated edge server, providing full Helix Server
functionality while isolating build workspace metadata. Using an edge server in this way is similar
to using a build farm replica, but with the additional flexibility of being able to run write commands
as part of the build process.

78

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/configurables.configurables.html#rpl.labels.global
https://www.perforce.com/perforce/doc.current/manuals/cmdref/

Validation

m Files with propagating attributes

In distributed environments, the following commands are not supported for files with propagating
attributes: p4 copy,p4 delete,p4 edit,p4 integrate,p4 reconcile, p4
resolve,p4 shelve,p4 submit,andp4 unshelve. Integration of files with
propagating attributes from an edge server is not supported; depending on the integration action,
target, and source, eitherthe p4 integrateorthep4 resolwve command will fail.

If your site makes use of this feature, direct these commands to the commit server, not the edge
server. Perforce-supplied software does not presently set propagating attributes on files and is not
known to be affected by this limitation.

m Logging and auditing

Edge servers maintain their own set of server and audit logs. Consider using structured logs for
edge servers, as they auto-rotate and clean up with journal rotations. Incorporate each edge
server’s logs into your overall monitoring and auditing system.

In particular, consider the use of the rpl . checksum. * configurables to automatically verify
database tables for consistency during journal rotation, changelist submission, and table scans
and unloads. Regularly monitor the integrity . csv structured log for integrity events.

= Unload depot

The unload depot might have different contents on each edge server. Clients and labels bound to
an edge server are unloaded into the unload depot on that edge server, and are not displayed by
thep4 clients -Uandp4 labels -Ucommands on otheredge servers.

Be sure to include the unload depot as part of your edge server backups. The commit server does
not verify that the unload depot is empty on every edge server. Therefore, to delete the unload
depot from the commit server, p4 depot -d -f£fisthe command.

m Future upgrades

Commit and edge servers should be upgraded at the same time.
= Time zones

Commit and edge servers must use the same time zone.
= Helix Swarm

The initial release of Swarm can usefully be connected to a commit server acting in hybrid mode or
to an edge server for the users of that edge server. Full Swarm compatibility with multiple edge
servers will be handled in a follow-on Swarm release. For more detailed information about using
Swarm with edge servers, please contact Perforce Technical Support support@ perforce.com.

Validation

As you deploy commit and edge servers, you can focus your testing and validation efforts in the following
areas.

79

mailto:support@perforce.com

Supported deployment configurations

Supported deployment configurations

m Hybrid mode: commit server also acting as a regular master server
m Read-only replicas attached to commit and edge servers

m Proxy server attached to an edge server

Backups

Exercise a complete backup plan on the commit and edge servers. Note that journal rotations are not
permitted directly on an edge server. Journal rotations can occur on edge servers as a consequence of
occurring on a master server.

80

Helix Broker

This topic assumes you have read the "Introduction to federated services" on page 9.

The work needed to install and configure a broker is minimal: the administrator needs to configure the
broker and configure the users to access the Helix Server through the broker. Broker configuration
involves the use of a configuration file that contains rules for specifying which commands individual
users can execute and how commands are to be redirected to the appropriate Perforce service. You do
not need to back up the broker. In case of failure, you just need to restart it and make sure that its
configuration file has not been corrupted.

From the perspective of the end user, the broker is transparent: users connect to a Helix Broker just as
they would connect to any other Helix Core Server.

System requirements il 81
Installing the broker __ il 81
Running the broker 82
Enabling SSL SUPPOIto 83
Broker information ...l 83
Broker and protections 84
P4Broker optioNs ... 85
Configuring the broker . .. 86
Format of broker configurationfiles 87
Specifying NOStS 87
Global SettiNgS . ..o o 88
Command handler specifications 91
Alternate server definitions 96
Using the broker as a load-balancingrouter 97
Configuringthe brokerasarouter 97
Routing policy and behavior 98

System requirements

To use the Helix Broker, you must have:

m A Helix Server (p4d) at release 2007.2 or higher (2012.1 or higher to use SSL).
m Helix Server applications at release 2007.2 or higher (2012.1 or higher to use SSL).

The Helix Broker is designed to run on a host that lies close to the Helix Server, preferably on the same
machine.

Installing the broker

To install P4Broker, do the following:

81

Running the broker

1. Download the p4broker executable from the Perforce website,

2. Copy it to a suitable directory on the host (such as /usr/local/bin), and ensure that the
binary is executable:

$ chmod +x pé4broker

Running the broker

After you have created your configuration file (see "Configuring the broker" on page 86), start the Helix
Broker from the command line by issuing the following command:

$ p4broker -c config file

Alternatively, you can set PABROKEROPT IONS before launching the broker and use it to specify the
broker configuration file (or other options) to use. (See

For example, on Unix:

$ export P4BROKEROPTIONS="-c /usr/perforce/broker.conf"
S p4broker -d

and on Windows:

C:\> p4 set -s PABROKEROPTIONS="-c c:\p4broker\broker.conf"
C:\> p4dbroker

The Helix Broker reads the specified broker configuration file, and on Unix platforms the —d option
causes the Helix Broker to detach itself from the controlling terminal and run in the background.

To configure the Helix Broker to start automatically, create a startup script that sets
P4BROKEROPTIONS and runs the appropriate p4dbroker command.

On Windows systems, you can also set PABROKEROPTIONS and run the broker as a service. This
involves the following steps:

C:\> ecd C:\pdbroker\

C:\p4broker\> copy pé4broker.exe p4dbrokers.exe

C:\pdbroker\> copy "C:\Program Files\Perforce\Server\svcinst.exe"

svcinst.exe

C:\pd4broker\> svcinst create -n P4Broker -e
"C:\pdbroker\p4dbrokers.exe" -a

C:\pdbroker\> p4 set -S P4Broker P4BROKEROPTIONS="-c
C:\p4broker\p4dbroker.conf"

C:\pdbroker\> svcinst start -n P4Broker

82

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/P4BROKEROPTIONS.html
https://www.perforce.com/perforce/doc.current/manuals/cmdref/#CmdRef/p4_set.html

Enabling SSL support

svcinst. exe is astandard Windows program. P4Brokecr is the name given to the Windows

service. For more information, see the Knowledge Base article, "Installing P4Broker on Windows and
Unix systems".

Enabling SSL support 83
Broker information 83

Enabling SSL support

To encrypt the connection between a Helix Broker and its end users, your broker must have a valid
private key and certificate pair in the directory specified by its P4ASSLDIR environment variable.
Certificate and key generation and management for the broker works the same as it does for the Helix
Core Server. See "Enabling SSL support" on page 35. The users' Helix Server applications must be
configured to trust the fingerprint of the broker.

To encrypt the connection between a Helix Broker and a Helix Core Server, your broker must be
configured so as to trust the fingerprint of the Helix Core Server. That is, the user that runs p4dbroker
(typically a service user) must create a PATRUST file (usingp4 trust)that recognizes the fingerprint
of the Helix Core Server, and must set PATRUST, specifying the path to that file (P4TRUST cannot be
specified in the broker configuration file).

For complete information about enabling SSL for the broker, see:
http://answers.perforce.com/articles/KB/2596

Broker information

You canissue thep4 info to determine whetheryou are connected to a broker or not. When
connected to a broker, the Broker address and Broker version appearinthe output:
$ p4 info

User name: bruno

Client name: bruno-ws

Client host: bruno.host

Client root: /Users/bruno/Workspaces/depot

Current directory: /Users/bruno/Workspaces/depot/main/jam

Peer address: 192.168.1.40:55138

Client address: 192.168.1.114

Server address: perforce:1667

Server root: /perforce/server/root

Server date: 2014/03/13 15:46:52 -0700 PDT

Server uptime: 92:26:02

Server version: P4D/LINUX26X86 64/2014.1/773873 (2014/01/21)

83

https://community.perforce.com/s/article/2796
https://community.perforce.com/s/article/2796
http://answers.perforce.com/articles/KB/2596

Broker and protections

ServerID: master-1666

Broker address: perforce:1666 Broker version:
P4BROKER/LINUX26X86_ 64/2014.1/782990

Server license: 10000 users (support ends 2016/01/01)
Server license-ip: 192.168.1.40

Case Handling: sensitive

When connected to a broker, you can use the p4 broker command to see a concise report of the
broker’s info:

$ p4 broker

Current directory: /Users/bruno/Workspaces/depot/main/jam
Client address: 192.168.1.114:65463

Broker address: perforce:1666

Broker version: P4BROKER/LINUX26X86 64/2014.1/782990

Broker and protections

To apply the IP address of a broker user’'s workstation against the protections table, prepend the string
proxy- to the workstation’s IP address.

Important
Before you prepend the string proxy - to the workstation’s IP address, make sure that a broker or

proxy is in place.

Forinstance, consider an organization with a remote development site with workstations on a subnet of
192.168.10.0/24. The organization also has a central office where local development takes place;
the central office exists onthe 10.0.0 . 0/8 subnet. A Perforce service resides inthe 10.0.0.0/8
subnet, and a broker resides inthe 192 .168.10.0/24 subnet. Users at the remote site belong to the
group remo tedev, and occasionally visit the central office. Each subnet also has a corresponding set

of IPv6 addresses.

To ensure that members of the remo tedew group use the broker while working at the remote site, but
do not use the broker when visiting the local site, add the following lines to your protections table:

list group remotedev 192.168.10.0/24 -//...
list group remotedev [2001:db8:16:81::]/48 =//...
write group remotedev proxy-192.168.10.0/24 /] ...
write group remotedev proxy—[2001:db8:16:81::]/48 //...
list group remotedev proxy-10.0.0.0/8 -//...

84

P4Broker options

list group remotedev proxy—-[2001:db8:1008::]1/32 =// ...
write group remotedev 10.0.0.0/8 YV
write group remotedev [2001:db8:1008::]1/32 // ...

The first line denies 1ist access to all users in the remotedewv group if they attempt to access Helix
Server without using the broker from their workstations inthe 192 .168.10.0/24 subnet. The
second line denies access in identical fashion when access is attempted from the IPV6
[2001:db8:16:81: :]/48 subnet.

The third line grants wri te access to all users in the remotedew group if they are using the broker
and are working from the 192 .168 .10 . 0/24 subnet. Users of workstations at the remote site must
use the broker. (The broker itself does not have to be in this subnet, for example, it could be at
192.168.20.0.)The fourth line grants access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81: :] /48 subnet.

Similarly, the fifth and sixth lines deny 1ist access to remotedev users when they attempt to use
the broker from workstations on the central office’s subnets (10.0.0.0/8 and

[2001:db8:1008: :]/32). The seventh and eighth lines grant write access to remotedewv users
who access the Helix Server directly from workstations on the central office’s subnets. When visiting the
local site, users from the remotedev group must access the Helix Server directly.

When the Perforce service evaluates protections table entries, the dm. proxy . protects
configurable is also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client
host addresses that connect via an intermediary (proxy, broker, broker, or edge server), indicating that
the connection is not direct.

Settingdm . proxy . protects to 0 removes the proxy- prefix and allows you to write a single set
of protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

P4Broker options
-c file Specify a configuration file. Overrides PABROKEROPTIONS setting.
=(¢ Output a sample configuration file, and then exit.
-d Run as a daemon (in the background).
—f Run as a single-threaded (non-forking) process.
-h Print help message, and then exit.
-q Run quietly (no startup messages).

85

Configuring the broker

Option Meaning

-V Print broker version, and then exit.

-v Set server trace options. Overrides the value of the PADEBUG setting, but does
subsystem notoverride the debug-1level setting in the p4dbroker . conf file. Default is
=level null.

The server command trace options and their meanings are as follows.

m server=0

Disable broker command logging.
m server=l

Logs broker commands to the server log file.
m server=2

In addition to data logged at level 1, logs broker command completion and
basic information on CPU time used. Time elapsed is reported in seconds.
On UNIX, CPU usage (system and user time) is reported in milliseconds,

as pergetrusage ().

m server=3

In addition to data logged at level 2, adds usage information for compute
phases of p4 syncandp4 flush (p4 sync -k)commands.

For command tracing, output appears in the specified log file, showing the date,
time, username, IP address, and command for each request processed by the
server.

-Gc Generate SSL credentials files for the broker: create a private key
(privatekey. txt)and certificate file (certificate. txt)in
P4SSLDIR, and then exit.

Requires that PASSLDIR be set to a directory that is owned by the user invoking
the command, and that is readable only by that user. If config. txt is present
in PASSLDIR, generate a self-signed certificate with specified characteristics.

-Gf Display the fingerprint of the broker’s public key, and exit.

Administrators can communicate this fingerprint to end users, who can then use
thep4 trust command to determine whether or not the fingerprint (of the server
to which they happen to be connecting) is accurate.

Configuring the broker

P4Broker is controlled by a broker configuration file. The broker configuration file is a text file that
contains rules for:

86

Format of broker configuration files

m Specifying which commands that individual users can use.

m Defining commands that are to be redirected to a specified replica server.
To generate a sample broker configuration file, issue the following command:

$ pdbroker -C > p4dbroker.conf

You can edit the newly created p4dbroker . conf file to specify your requirements.

Format of broker configuration files 87
Specifying hosts 87
Global settings 88
Command handler specifications 91
Alternate server definitions 96

Format of broker configuration files

A broker configuration file contains the following sections:

m Global settings: settings that apply to all broker operations

m Alternate server definitions: the addresses and names of replica servers to which commands can
be redirected in specified circumstances

m Command handler specifications: specify how individual commands should be handled. In the
absence of a command handler for any given command, the Helix Broker permits the execution of
that command.

Specifying hosts

The broker configuration requires specification of the target setting, which identifies the Perforce
service to which commands are to be sent, the 1isten address, which identifies the address where the
broker listens for commands from Helix Server client applications, and the optional altserver
alternate server address, which identifies a replica, proxy, or other broker connected to the Perforce
service.

The host specification uses the format protocol : host: port, where protocol is the
communications protocol (beginning with ss1 : for SSL, or tecp : for plaintext), host is the name or IP
address of the machine to connect to, and port is the number of the port on the host.

Protocol Behavior

<not Ifthenet.rfc3484 configurable is set, allow the OS to determine which transport
set> is used. This is applicable only if a host name (either FQDN or unqualified) is used.

If an IPv4 literal address (e.g. 127 .0.0. 1)is used, the transport is always tcp4,
and if an IPv6 literal address (e.g. : : 1)is used, then the transport is always tcp6.

87

Global settings

Protocol Behavior

tep: Use tcp4 : behavior, but if the address is numeric and contains two or more colons,
assume tcpb6:. Ifthenet.rfc3484 configurable is set, allow the OS to determine
which transport is used.

tcp4: Listen on/connect to an IPv4 address/port only.

tcp6: Listen on/connect to an IPv6 address/port only.

tcp46: Attempt to listen on/connect to an IPv4 address/port. If this fails, try IPv6.

tcpb64: Attempt to listen on/connect to an IPv6 address/port. If this fails, try IPv4.

ssl: Use ss14: behavior, but if the address is numeric and contains two or more colons,
assume ssl6:. Ifthenet.rfc3484 configurable is set, allow the OS to determine
which transport is used.

ssl4: Listen on/connect to an IPv4 address/port only, using SSL encryption.

sslé6: Listen on/connect to an IPv6 address/port only, using SSL encryption.

ssl46: Attempt to listen on/connect to an IPv4 address/port. If this fails, try IPv6. After
connecting, require SSL encryption.

sslé64: Attempt to listen on/connect to an IPv6 address/port. If this fails, try IPv4. After

connecting, require SSL encryption.

The hos tfield can be the hosts' hosthame or its IP address; both IPv4 and IPv6 addresses are
supported. For the 1isten setting, you can use the * wildcard to refer to all IP addresses, but only
when you are not using CIDR notation.

If you use the * wildcard with an IPv6 address, you must enclose the entire IPv6 address in square
brackets. Forexample, [2001:db8:1:2: *] is equivalentto [2001:db8:1:2: :]/64. Best
practice is to use CIDR notation, surround IPv6 addresses with square brackets, and to avoid the *

wildcard.
Global settings
The following settings apply to all operations you specify for the broker.
Setting Meaning Example
target The default Helix Core Server target =
(P4D) to which commands are [protocol:]host:port;

88

sent unless overridden by other
settings in the configuration file.

Global settings

Setting Meaning Example

listen The address on which the Helix listen = [protocol:]
Broker listens for commands from [host:]port;
Helix Server client applications.

directory The home directory for the Helix directory = path;
Broker. Other paths specified in
the broker configuration file must
be relative to this location.

logfile Path to the Helix Broker lodfile. logfile = path;

debug-level Level of debugging output to log.

Overrides the value specified by

server=l;
server=1l,

debug-level
debug-level =
rpl=3;

the —v option and PADEBUG. time=1,
You can specify more than one
value; see example.
admin-name The name of your Helix Server admin-name = "P4 Admin";

Administrator. This is displayed in
certain error messages.

An email address where users can
contact their Helix Server
Administrator. This address is
displayed to users when broker
configuration problems occur.

admin-email

admin-email =
admin@example.com;

admin-phone The telephone number of the Helix

Server Administrator.

admin-phone = nnnnnnn;

The redirection mode to use:
selective orpedantic.

redirection

In selective mode, redirection
is permitted within a session until
one command has been executed
against the default (target) server.
From then on, all commands
within that session run against the
default server and are not
redirected.

In pedantic mode, all requests
for redirection are honored.

The default mode is
selective.

redirection selective;

89

mailto:admin@example.com

Global settings

Setting Meaning Example
service- An optional user account by which service-user = svcbroker;
user the broker authenticates itself

when communicating with a target

server.

The broker configuration does not
include a setting for specifying a
password as this is considered
insecure. Usethep4 login -
u service-user -p
command to generate a ticket.
Store the displayed ticket value in
afile, and then set the ticket-
f1ile setting to the path of that
file.

To provide continuous operation of
the broker, the service-user
user should be included in a group
that has its Timeout setting set
tounlimited. The default
ticket timeout is 12 hours.

ticket-file Anoptional alternate location for ticket-file =
PATICKETS files. /home/pdbroker/.pdtickets;
compress Compress connection between compress = false;

broker and server. Over a slow link
such as a WAN, compression can
increase performance. If the
broker and the server are near to
each other (and especially if they
reside on the same physical
machine), then bandwidth is not an
issue, and compression should be
disabled to spare CPU cycles.

90

Command handler specifications

Setting Meaning Example
altserver An optional alternate servertohelp altserver name { target=
reduce the load on the target [protocol:]host:port };

server. The name assigned to the
alternate serveris used in
command handler specifications.
See "Alternate server definitions”
on page 96.

Each altserver setting must appear
onone line.

Multiple al tserver settings
may appear in the broker
configuration file, one for each
alternate server.

Command handler specifications

Command handlers enable you to specify how the broker responds to different commands issued by
different users from within different environments. When users run commands, the Helix Broker
searches for matching command handlers and uses the first match found. If no command handler
matches the user's command, the command is forwarded to the target Helix Core Server for normal
processing.

The general syntax of a command handler specification is outlined in the sample broker . conf:

command: commandpattern
{
Conditions for the command to meet (optional)

Note that with the exception of 'flags', these are regex patterns.

flags = required-flags;

args = required-arguments;

user = required-user;

workspace = required-client-workspace;

prog = required-client-program;

version = required-version-of-client-program;

What to do with matching commands (required)

action = pass | reject | redirect | filter | respond ;
How to go about it

destination = altserver; # Required for action = redirect

execute = /path/to/filter/program; # Required for action = filter

91

Command handler specifications

message = rejection-message; # Required for action = reject
1

The commandpa t tern parameter can be a regular expression and can include the . * wildcard. For
example, a commandpatternof user. * matches boththe p4 user andp4 users
commands. See "Regular expression synopsis" on the facing page.

The following table describes the parameters in detail.

Parameter Meaning

flags A list of options that must be present on the command line of the command
being handled.

This feature enables you to specify different handling for the same p4
command, depending on which options the user specifies. Note that only single
character options may be specified here. Multi-character options, and options
that take arguments should be handled by a filter program.

args A list of arguments that must be present on the command line of the command
being handled.

user The name of the user who issued the command.

workspace The Helix Server client workspace setting in effect when the command was
issued.

prog The Helix Server client application through which the user issued the command.

This feature enables you to handle commands on a per-application basis.

version The version of the Helix Server application through which the userissued the
command.
action Defines how the Helix Broker handles the specified commands. Valid values

are: pass, reject, redirect, filter, orrespond.

destination Forredirected commands, the name of the replica to which the commands are
redirected. The destination must be the name of a previously defined alternate
(replica) server listed in the al tserver setting.

You can implement load-balancing by setting the destination to the keyword
random. Commands are randomly redirected to any alternate (replica) server
that you have already defined.

You can also set destination to the address : port of the server where you
want commands redirected.

execute The path to a filter program to be executed. For details about filter programs, see
"Filter programs" on page 94.

message A message to be sent to the user, typically before the command is executed;
this may be used with any of the above actions.

92

Command handler specifications

Parameter Meaning

checkauth Authenticates the connection. If set to true, the Helix Broker checks that the
user has access to the Helix Core Server before performing the action by
runningp4 protects -mwiththe user's connection. If setto false, orif
not set, Helix Broker does not perform the check. If afilter program is run, the
highest level permission that the user has is passed in as the maxPerm
parameter. For details about filter programs, see "Filter programs" on the next

page.

For example, the following command handler prevents user joe from invokingp4 submi t from the
buildonly client workspace.

command: submit

{
user = joe;
workspace = buildonly;
action = reject;

message = "Submit failed: Please do not submit from this workspace."

Regular expression synopsis

A regular expression, or regex, is a sequence of characters that forms a search pattern, for use in pattern
matching with strings. The following is a short synopsis of the regex facility available in command
handler specifications.

A regular expression is formed from zero or more branches. Branches are separated by | . The regex
matches any string that matches at least one of the branches.

A branch is formed from zero or more pieces, concatenated together. A branch matches when all of its
pieces match in sequence, that is, a match for the first piece, followed by a match for the second piece,
etc.

A piece is an atom possibly followed by a quantifier. *, +, or ?. An atom followed by * matches a
sequence of 0 or more instances of the atom. An atom followed by + matches a sequence of 1 or more
instances of the atom. An atom followed by ? matches a sequence of 0 or 1 instances of the atom.

An atomis:

m asubordinate regular expression in parentheses - matches that subordinate regular expression

arange (see below),

. -matches any single character,

~ - matches the beginning of the string,

$ - matches the end of the string,

93

Command handler specifications

= a \ followed by a single character - matches that character,

m or a single character with no other significance - matches that character.

A range is a sequence of characters enclosed in square brackets ([1), and normally matches any single
character from the sequence. If the sequence begins with #, it matches any single character that is not in
the sequence. If two characters in the sequence are separated by -, this is shorthand for the full list of
ASCII characters between them (e.g. [0-9] matches any decimal digit, [a-z] matches any
lowercase alphabetical character). To include a literal] in the sequence, make it the first character
(following a possible). To include a literal -, make it the first or last character.

Filter programs

When the action foracommand handleris £i1ter, the Helix Broker executes the program or script
specified by the execute parameter and performs the action returned by the program. Filter programs
enable you to enforce policies beyond the capabilities provided by the broker configuration file.

The Helix Broker invokes the filter program by passing command details to the program’s standard input
in the following format:

Command detail Definition

command: User command

brokerListenPort: Port on which the broker is listening

brokerTargetPort: Port on which the target server is listening

clientPort: P4PORT setting of the client

clientProg: Client application program

clientVersion: Version of client application program

clientProtocol: Level of client protocol

apiProtocol: Level of api protocol

maxLockTime: Maximum lock time (in ms) to lock tables before aborting

maxPerm Highest permission (if "checkauth" on the previous
page is set)

maxResults: Maximum number of rows of result data to be returned

maxScanRows: Maximum number of rows of data scanned by a command

workspace: Name of client workspace

user: Name of requesting user

clientIp: IP address of client

proxylp: IP address of proxy (if any)

94

Command handler specifications

Command detail Definition

cwd: Client’s working directory

argCount: Number of arguments to command

ArgO: First argument (if any)

Argl: Second argument (if any)

clientHost: Hostname of the client

brokerLevel: The internal version level of the broker.
proxyLevel: The internal version level of the proxy (if any).

Non-printable characters in command arguments are sent to filter programs as a percent sign followed by
a pair of hex characters representing the ASCII code for the non-printable character in question. For
example, the tab characteris encoded as $09.

Your filter program must read this data from STDIN before performing any additional processing,
regardless of whether the script requires the data. If the filter script does not read the data from STDIN,
"broken pipe" errors can occur, and the broker rejects the user's command.

Your filter program must respond to the Broker on standard output (stdout) with data in one of the four
following formats:

action: PASS

message: a message for the user (optional)

action: REJECT

message: a message for the user (required)

action: REDIRECT
altserver: (an alternate server name)

message: a message for the user (optional)

action: RESPOND

message: a message for the user (required)

action: CONTINUE

Note
The values for the action are case-sensitive.

The action keyword is always required and tells the Broker how to respond to the user’s request. The
available actions are:

95

Alternate server definitions

Action Definition

PASS Run the user's command unchanged. A message for the user is optional.
REJECT Reject the user's command; return an error message. Amessage for the user is
required.

REDIRECT Redirect the command to a different (alternate) replica server. Analtserveris
required. See "Configuring alternate servers to work with central authorization
servers" on the facing page for details. Amessage for the user is optional.

To implement this action, the broker makes a new connection to the alternate server
and routes all messages from the client to the alternate server rather than to the
original server. This is unlike HTTP redirection where the client is requested to make
its own direct connection to an alternate web server.

RESPOND Do not run the command; return an informational message. A message for the user
is required.

CONTINUE Defertothe next command handler matching a given command.

For additional information on using multiple handlers, see:
http://answers.perforce.com/articles/KB/11309

If the filter program returns any response other than something complying with the four message formats
above, the user's command is rejected. If errors occur during the execution of your filter script code
cause the broker to reject the user's command, the broker returns an error message.

Broker filter programs have difficulty handling multi-line message responses. You must use syntax like
the following to have new lines be interpreted correctly when sent from the broker:

message="\"line 1\nline 3\nline f\n\""

That is, the string must be quoted twice.

Alternate server definitions

The Helix Broker can direct user requests to an alternate server to reduce the load on the target server.
These alternate servers must be replicas (or brokers, or proxies) connected to the intended target server.

To set up and configure a replica server, see "Helix Server replication" on page 22. The broker works with
both metadata-only replicas and with replicas that have access to both metadata and versioned files.

There is no limit to the number of alternate replica servers you can define in a broker configuration file.

The syntax for specifying an alternate server is as follows:

altserver name { target=[protocol:]host:port }

The name assigned to the alternate server is used in command handler specifications. See "Command
handler specifications" on page 91.

96

http://answers.perforce.com/articles/KB/11309

Using the broker as a load-balancing router

Configuring alternate servers to work with central authorization
servers

Alternate servers require users to authenticate themselves when they run commands. For this reason,
the Helix Broker must be used in conjunction with a central authorization server (P4AUTH) and Helix
Servers at version 2007.2 or later. For more information about setting up a central authorization server,
see "Configuring centralized authorization and changelist servers" on page 17.

When used with a central authorization server, a single p4 login request can create a ticket that is
valid for the user across all servers in the Helix Broker’s configuration, enabling the user to log in once.
The Helix Broker assumes that a ticket granted by the target server is valid across all alternate servers.

If the target server in the broker configuration file is a central authorization server, the value assigned to
the target parameter must precisely match the setting of PAAUTH on the alternate server machine(s).
Similarly, if an alternate sever defined in the broker configuration file is used as the central authorization
server, the value assigned to the target parameter for the alternate server must match the setting of
P4AUTH on the other server machine(s).

Using the broker as a load-balancing router

Previous sections described how you can use the broker to direct specific commands to specific servers.
You can also configure the broker to act as a load-balancing router. When you configure a broker to act as
arouter, Helix Server builds adb . routing table that is processed by the router to determine which
server an incoming command should be routed to. (The db . routing table provides a mapping of
clients and users to their respective servers. To reset the db . routing table, remove the

db. routingfile.)

This section explains how you configure the broker to act as a router, and it describes routing policy and
behavior.

Configuring the brokeras arouter 97
Routing policy and behavior 98

Configuring the broker as a router

To configure the broker as a router, add the router statement to the top level of the broker
configuration. The target server of the broker-router should be a commit or master server.

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level = server=l;
admin-name = "Perforce Admins";
admin-phone = 999/911;

97

Routing policy and behavior

admin-email = perforce-admins@example.com;
router;
You must theninclude al tserver statements to specify the edge servers of the commit server that is
the target server of the broker-router.
altserver: edgeservl
{
target = edgeservel.example.com:1669;
}

If you are using the broker to route messages for a commit-edge architecture, you must list all existing
edge serves as altservers.

Routing policy and behavior

When a command arrives at the broker, the broker looks in its db . routing table to determine where
the command should be routed. The routing logic attempts to bind a user to a server where they already
have clients. You can modify the routing choice on the p4 command line using the following argument to
override routing for that command.

-Zroute=serverID

Routing logic uses a default destination server, chosen at random, if a client and user have no binding to
an existing edge server. That is, requests are routed to an existing altserver that is randomly chosen
unless a specific destination is given.

m To route requests to the commit server, use the destination form as follows:

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level server=1;
"Perforce Admins";
999/911;

perforce-admins@example.com;

admin-name

admin-phone

admin-email

router;

destination target;

98

Routing policy and behavior

m To cause new users to be bound to a new edge server rather than being assigned to existing edge
servers, use a destination form like the following:

target = commitserv.example.com:1666;
listen = 1667;

directory = /p4/broker;

logfile = broker.log;

debug-level server=1;

"Perforce Admins";
999/911;

perforce-admins@example.com;

admin-name

admin-phone

admin-email

router;

destination = "myNewEdge";

m Toforce a command to be routed to the commit server, use anaction = redirectrule
withadestination target statement; forexample:

command: regex pattern

{
action=redirect;

destination target;

Note
You need to remove the db . routing file when you move clients to a different workspace or edge

server.

99

Helix Proxy

This topic assumes you have read the "Introduction to federated services" on page 9.

To improve performance obtained by multiple Helix Server users accessing a shared Helix Server
repository across a WAN,

1. Configure P4P on the side of the network close to the users.
2. Configure the users to access the service through P4P.

3. Configure P4P to access the master Perforce service.

System requirements ... 100
Installing PAP . 101
UN DX e 101
WiNAOWS 101
RunNning PAP L 101
Running P4P as a WIindOWS SEIVICE i 102
PAP OpPtioNS 102
Administering PAP . 104
NoO backups required 105
StOPPING PP L 105
Upgrading PP 105
Enabling SSL sUPPOIt .. 105
Defending from man-in-the-middle attacks 105
Localizing PAP . 106
Managing disk space consumption 106
Determining if your Helix Server applications are using the proxy 106
P4P and proteCtions ... L 107
Determining if specific files are being delivered from the proxy 108
Case-sensitivity issues and the proxXy 108
Maximizing performance improvement 109
Reducing server CPU usage by disabling file compression 109
Network topologies versus PAP 109
Preloading the cache directory for optimal initial performance 110
Distributing disk space consumption 111

System requirements
To use Helix Proxy, you must have:

m Helix Server release 2002.2 or later (2012.1 or later to use SSL)

= Sufficient disk space on the proxy host to store a cache of file revisions

100

Installing P4P

Installing P4P

In addition to the basic steps described next you might also want to do the following:

m Enable SSL support. See "Enabling SSL support" on page 105 for more information.

m Defend against man-in-the-middle attacks. See "Defending from man-in-the-middle attacks" on
page 105 for more information.

UN DX . 101

UNIX

Toinstall P4P on UNIX or Linux, do the following:

1. Download the p4p executable to the machine on which you want to run the proxy.

2. Select adirectory on this machine (P4PCACHE) in which to cache file revisions.

3. Select a port (P4PORT) on which p4p will listen for requests from Helix Server applications.
4. Select the target Helix Server (PATARGET) for which this proxy will cache.

Windows

Install P4P from the Windows installer's custom/administrator installation dialog.

Running P4P

To run Helix Proxy, invoke the p4p executable, configuring it with environment variables or command-
line options. Options you specify on the command line override environment variable settings.

For example, the following command line starts a proxy that communicates with a central Helix Server
located on a host named central, listening on port 1666.
S pdp -p tcp64:[::]1:1999 -t central:1666 -r /var/proxyroot

To use the proxy, Helix Server applications connect to P4P on port 1999 on the machine where the proxy
runs. The proxy listens on both the IPv6 and IPv4 transports. P4P file revisions are stored under a
directory named /var/proxyroot.

P4P supports connectivity over IPv6 networks as well as IPv4. See the Helix Core Server Administrator
Guide: Fundamentals for more information.

Running P4P as a Windows Service 102

101

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Running P4P as a Windows service

Running P4P as a Windows service

To run P4P as a Windows service, either install P4P from the Windows installer, or specify the —s option
when you invoke p4p . exe, or rename the P4P executable top4ps . exe.

To pass parameters to the P4Proxy service, set the PAPOPTIONS registry variable usingthe p4 set
command. For example, if you normally run the Proxy with the command:

C:\> pd4p -p 1999 -t ssl:mainserver:1666

You can set the PAPOPTIONS variable for a Windows service named Helix Proxy by setting the
service parameters as follows:

C:\> p4 set -S "Perforce Proxy" P4POPTIONS="-p 1999 -t
ssl:mainserver:1666"

Whenthe "Helix Proxy" service starts, P4P listens for plaintext connections on port 1999 and
communicates with the Helix Core Servervia SSL at ss1l :mainserver:1666.

P4P options

The following command-line options specific to the proxy are supported.

Proxy options:

Option Meaning

-d Run as daemon - fork first, then run (UNIX only).

=4 Do not fork - run as a single-threaded server (UNIX only).

-i Runfor inetd (socket on stdin/stdout - UNIX only).

-q Run quietly; suppress startup messages.

= Do not compress data stream between the Helix Server to P4P. (This option reduces

CPU load on the central server at the expense of slightly higher bandwidth consumption.)

-s Run as a Windows service (Windows only).

Running p4p .exe -sis equivalent toinvoking p4ps . exe.

-S Disable cache fault coordination.

The proxy maintains a table of concurrent sync operations, called pdb . 1br, to avoid
multiple transfers of the same file. This mechanism prevents unnecessary network
traffic, but can impart some delay to operations until the file transfer is complete.

When -S is used, cache fault coordination is disabled, allowing multiple transfers of files
to occur. The proxy then decides whether to transfer a file based solely on its checksum.
This may increase the burden on the network, while potentially providing speedier
completion for sync operations.

102

P4P options

General options:

Option Meaning

-hor-? Display a help message.
-V Display the version of the Helix Proxy.
-r root Specify the directory where revisions are cached. Default is PAPCACHE, or the

directory from which p4p is started if PAPCACHE is not set.

-L logfile Specify the location of the log file. Default is P4LOG, or the directory from
which p4p is started if PALOG is not set.

-p port Specify the port on which P4P will listen for requests from Helix Server
applications. Default is P4APORT, or 1666 if PAPORT is not set.

-t port Specify the port of the target Helix Server (that is, the Helix Server for which
P4P acts as a proxy). Default is PATARGET orperforce:1666 if
PATARGET is not set.

-e size Cache only those files that are larger than size bytes. Default is PAPFSIZE,
or zero (cache all files) if PAPFSIZE is not set.

-u For proxy servers, authenticate as the specified serviceuser when
serviceuser communicating with the central server. The service user must have a valid
ticket before the proxy will work.

-v level Specifies server trace level. Debug messages are stored in the proxy server's
log file. Debug messages from p4p are not passed through to p4d, and debug
messages from p4d are not passed through to instances of p4p. Default is
P4DEBUG, or none if PADEBUG is not set.

Certificate-handling options:

Option Meaning

-Ge Generate SSL credentials files for the proxy: create a private key (privatekey. txt)
and certificate file (certificate. txt)in PASSLDIR, and then exit.

Requires that PASSLDIR be set to a directory that is owned by the user invoking the
command, and that is readable only by that user. If config. txt is presentin
P4SSLDIR, generate a self-signed certificate with specified characteristics.

-Gf Display the fingerprint of the proxy’s public key, and exit.

Administrators can communicate this fingerprint to end users, who can then use the p4
trust command to determine whether or not the fingerprint (of the server to which they
happen to be connecting) is accurate.

Proxy monitoring options:

103

Administering P4P

Option Meaning

=dl List pending archive transfers

-1-s List pending archive transfers, summarized

-v lbr.stat.interval=n Set the file status interval, in seconds. If not set, defaults to
10 seconds.

-v 0: (default) Monitoring disabled

proxy.monitor.level=n 1: Proxy monitors file transfers only

2: Proxy monitors all operations

3: Proxy monitors all traffic for all operations

-v Proxy monitoring interval, in seconds. If not set, defaults to
proxy.monitor.interval= 10 seconds.

n

-ml Show currently-active connections and their status.

_22 Requires proxy .monitor. level set equal toor

greater than 1. The optional argument specifies the level of
detail: =-m1, -m2, or -m3 show increasing levels of detail
corresponding to the proxy .monitor. level setting.

Proxy archive cache options:

Option Meaning

-v 1: (default) Proxy folds case; all files with the same name are assumed to
lbr.proxy.case= be the samefile, regardless of case.

n 2: Proxy folds case if, and only if, the upstream server is case-insensitive

(that is, if the upstream serveris on Windows)

3: Proxy never folds case.

Administering P4P

The following sections describe the tasks involved in administering a proxy.

No backups required 105
StopPPING PAP 105
Upgrading PAP 105
Enabling SSL SUPPOIt 105
Defending from man-in-the-middle attacks 105
Localizing PAP L 106
Managing disk space consumption 106
Determining if your Helix Server applications are using the proxy 106

104

No backups required

P4P and protections .. . 107
Determining if specific files are being delivered from the proxy _.._..................... 108
Case-sensitivity issues and the proxy 108

No backups required

You never need to back up the P4P cache directory.

If necessary, P4P reconstructs the cache based on Helix Server metadata.

Stopping P4P

P4P is effectively stateless; to stop P4P under UNIX, kill the p4p process with SIGTERM or
SIGKILL. Under Windows, click End Process in the Task Manager.

Upgrading P4P

After you have replaced the p4p executable with the upgraded version, you must also remove the
pdb . 1br and pdb . moni tor files (if they exist) from the proxy root before you restart the upgraded

proxy.

Enabling SSL support

To encrypt the connection between a Helix Proxy and its end users, your proxy must have a valid private
key and certificate pair in the directory specified by its PASSLD IR environment variable. Certificate and
key generation and management for the proxy works the same as it does for the Helix Core Server. See
"Enabling SSL support" on page 35. The users' Helix Server applications must be configured to trust the
fingerprint of the proxy.

To encrypt the connection between a Helix Proxy and its upstream Perforce service, your proxy
installation must be configured to trust the fingerprint of the upstream Perforce service. That is, the user
that runs p4p (typically a service user) must create a PATRUST file (usingp4 trust)that recognizes
the fingerprint of the upstream Perforce service.

See the Knowledge Base article, "Enabling SSL Support for the Server/Broker/Proxy".

Defending from man-in-the-middle attacks

You can use the net . mimcheck configurable to enable checks for possible interception or
modification of data. These settings are pertinent for proxy administration:

m A value of 3 checks connections from clients, proxies, and brokers for TCP forwarding.

m A value of 5 requires that proxies, brokers, and all Helix Server intermediate servers have valid
logged-in service users associated with them. This allows administrators to prevent unauthorized
proxies and services from being used.

105

https://community.perforce.com/s/article/2596

Localizing P4P

You must restart the server after changing the value of this configurable. For more information about this
configurable, see the "Configurables" appendix in P4 Command Reference.

Localizing P4P

If your Helix Server has localized error messages (see "Localizing server error messages" in Helix Core
Server Administrator Guide: Fundamentals), you can localize your proxy’s error message output by
shutting down the proxy, copying the server's db . message file into the proxy root, and restarting the

proxy.

Managing disk space consumption

P4P caches file revisions inits cache directory. These revisions accumulate until you delete them. P4P
does not delete its cached files or otherwise manage its consumption of disk space.

Warning
If you do not delete cached files, you will eventually run out of disk space. To recover disk space,
remove files under the proxy’s root.

You do not need to stop the proxy to delete its cached files or the pdb . 1br file.

If you delete files from the cache without stopping the proxy, you must also delete the pdb . 1br file at
the proxy’s root directory. (The proxy uses the pdb . 1br file to keep track of which files are scheduled
for transfer, so that if multiple users simultaneously request the same file, only one copy of the file is
transferred.)

Determining if your Helix Server applications are using the
proxy

If your Helix Server application is using the proxy, the proxy’s version information appears in the output of
p4 info.

For example, if a Perforce service is hosted at ss1:central : 1666 and you direct your Helix Server
application to a Helix Proxy hosted at outpost:1999, the output of p4 info resembles the
following:

$ export P4PORT=tcp:outpost:1999
S p4 info

User name: p4adm

Client name: admin-temp

Client host: remotesite22

Client root: /home/p4adm/tmp
Current directory: /home/p4adm/tmp

106

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

P4P and protections

Client address: 192.168.0.123

Server address: central:1666

Server root: /usr/depot/p4d

Server date: 2012/03/28 15:03:05 -0700 PDT

Server uptime: 752:41:23

Server version: P4D/FREEBSD4/2012.1/406375 (2012/01/25)

Server encryption: encrypted

Proxy version: P4P/SOLARIS26/2012.1/406884 (2012/01/25)

Server license: P4 Admin <pd4adm> 20 users (expires 2013/01/01)
Server license-ip: 10.0.0.2

Case handling: sensitive

P4P and protections

To apply the IP address of a Helix Proxy user’s workstation against the protections table, prepend the
string proxy - to the workstation’s IP address.

Important
Before you prepend the string proxy - to the workstation’s |P address, make sure that a broker or

proxy is in place.

Forinstance, consider an organization with a remote development site with workstations on a subnet of
192.168.10.0/24. The organization also has a central office where local development takes place;
the central office exists onthe 10.0.0 . 0/8 subnet. A Perforce service resides inthe 10.0.0.0/8
subnet, and a Helix Proxy resides inthe 192 .168.10.0/24 subnet. Users at the remote site belong
to the group remotedev, and occasionally visit the central office. Each subnet also has a
corresponding set of IPv6 addresses.

To ensure that members of the remotedewv group use the proxy while working at the remote site, but
do not use the proxy when visiting the local site, add the following lines to your protections table:

list group remotedev 192.168.10.0/24 =//...
list group remotedev [2001:db8:16:81::]/48 =//...
write group remotedev proxy-192.168.10.0/24 /] ...
write group remotedev proxy-[2001:db8:16:81::]1/48 //...
list group remotedev proxy-10.0.0.0/8 =//...
list group remotedev proxy—-[2001:db8:1008::]/32 -//...
write group remotedev 10.0.0.0/8 /...
write group remotedev proxy—-[2001:db8:1008::]/32 //...

107

Determining if specific files are being delivered from the proxy

The first line denies 1ist access to all users in the remotedew group if they attempt to access Helix
Server without using the proxy from their workstations inthe 192 .168.10.0/24 subnet. The second
line denies access in identical fashion when access is attempted from the IPV6
[2001:db8:16:81::] /48 subnet.

The third line grants wri te access to all users in the remotedew group if they are using a Helix Proxy

server and are working from the 192 .168 .10 . 0/24 subnet. Users of workstations at the remote site
must use the proxy. (The proxy server itself does not have to be in this subnet, for example, it could be at
192.168.20.0.)The fourth line grants access in identical fashion when access is attempted from the
IPV6 [2001:db8:16:81: :]/48 subnet.

Similarly, the fifth and sixth lines deny 1ist access to remotedev users when they attempt to use
the proxy from workstations on the central office’s subnets (10.0.0.0/8 and

[2001:db8:1008: :]/32). The seventh and eighth lines grant write access to remotedewv users
who access the Helix Server directly from workstations on the central office’s subnets. When visiting the
local site, users from the remotedewv group must access the Helix Server directly.

When the Perforce service evaluates protections table entries, the dm . proxy . protects
configurable is also evaluated.

dm.proxy.protects defaults to 1, which causes the proxy- prefix to be prepended to all client
host addresses that connect via an intermediary (proxy, broker, replica, or edge server), indicating that
the connection is not direct.

Settingdm . proxy . protects to 0 removes the proxy- prefix and allows you to write a single set
of protection entries that apply both to directly-connected clients as well as to those that connect via an
intermediary. This is more convenient but less secure if it matters that a connection is made using an
intermediary. If you use this setting, all intermediaries must be at release 2012.1 or higher.

Determining if specific files are being delivered from the
proxy

Use the -Zproxyverbose option with p4 to display messages indicating whether file revisions are
coming from the proxy (p4p) or the central server (p4d). For example:

$ p4 -Zproxyverbose sync noncached. txt

//depot/main/noncached.txt - refreshing /home/pd4adm/tmp/noncached.txt

$ p4 -Zproxyverbose sync cached. txt

//depot/main/cached.txt - refreshing /home/p4adm/tmp/cached.txt

File /home/p4adm/tmp/cached.txt delivered from proxy server

Case-sensitivity issues and the proxy

If you are running the proxy on a case-sensitive platform such as UNIX, and your users are submitting
files from case-insensitive platforms (such as Windows), the default behavior of the proxy is to fold case;
thatis, FILE . TXT canoverwrite File . txtor file. txt.

108

Maximizing performance improvement

In the case of text files and source code, the performance impact of this behavior is negligible. If,
however, you are dealing with large binaries such as . ISO images or . VOB video objects, there can be
performance issues associated with this behavior.)

Ibr.proxy.case Behavior

lbr.proxy.case=1 Proxy folds case; all files with the same name are assumed to be the
(default) same file, regardless of case.

lbr.proxy.case=2 Proxy folds caseif, and only if, the upstream server is case-insensitive
(that is, if the upstream serveris on Windows)

lbr.proxy.case=3 Proxy neverfolds case.

After any change to 1br . proxy . case, you must clear the cache before restarting the proxy.

Maximizing performance improvement

In addition to the topics in this chapter, see the tuning tips on Proxy Performance in the Knowledge Base,
including how to minimize the syncing of small files.

Reducing server CPU usage by disabling file compression 109
Network topologies versus P4P .. 109
Preloading the cache directory for optimal initial performance 110
Distributing disk space consumption 111

Reducing server CPU usage by disabling file compression

By default, P4P compresses communication between itself and the Helix Server versioning service,
imposing additional overhead on the service. To disable compression, specify the —c option when you
invoke p4p. This option is particularly effective if you have excess network and disk capacity and are
storing large numbers of binary file revisions in the depot, because the proxy (rather than the upstream
versioning service) decompresses the binary files from its cache before sending them to Helix Server
users.

Network topologies versus P4P

If network bandwidth on the subnet with the Perforce service is nearly saturated, deploy the proxies on
the other side of a router so that the traffic from end users to the proxy is isolated to a subnet separate
from the subnet containing the Perforce service. You might split the subnet into multiple subnets and
deploy a proxy in each resulting subnet:

109

http://answers.perforce.com/articles/KB/2830/

Preloading the cache directory for optimal initial performance

192.168.1.0/24 192.168.30.0/24 192.168.22.0/24
(development subnet) (sales subnet) (artwork subnet)
pdp pdp
(router)

192.168.2.100/24

(server room)

Preloading the cache directory for optimal initial performance

Helix Proxy stores file revisions only when one of its users submits a new revision to the depot or
requests an existing revision from the depot. That is, file revisions are not prefetched. Performance gains
from P4P occur only after file revisions are cached.

After starting P4P, you can effectively prefetch the cache directory by creating a dedicated client
workspace and syncing it to the head revision. All other users who subsequently connect to the proxy
immediately obtain the performance improvements provided by P4P. For example, a development site
located in Asia with a P4P server targeting a Helix Server in North America can preload its cache
directory by using an automated job that runs ap4 sync against the entire Helix Server depot after
most work at the North American site has been completed, but before its own developers arrive for work.

110

Distributing disk space consumption

By default, p4 sync writes files to the client workspace. If you have a dedicated client workspace that
you use to prefetch files for the proxy, however, this step is redundant. If this machine has slower /O
performance than the machine running the Helix Proxy, it can also be time-consuming.

To preload the proxy’s cache without the redundant step of also writing the files to the client workspace,
use the —Zproxyload option when syncing. For example:

$ export PACLIENT=prefetch

$ p4 sync //depot/main/written.txt

//depot/main/written.txt - refreshing /home/prefetch/main/written.txt

$ p4 -Zproxyload sync //depot/main/nonwritten.txt
//depot/main/nonwritten.txt - file(s) up-to-date.

Both files are now cached, but nonwritten. txt is never written to the the prefetch client
workspace. When prefetching the entire depot, the time savings can be considerable.

Distributing disk space consumption

P4P stores revisions as if there were only one depot tree. If this approach stores too much file data onto
one filesystem, you can use symbolic links to spread the revisions across multiple filesystems.

For instance, if the P4P cache root is /diskl/proxy, and the Helix Server it supports has two depots
named //depot and //released, you can split data across disks, storing / /depot ondiskl
and //released ondisk2 as follows:

$ mkdir /disk2/proxy/released

$ ed /diskl/proxy

$ 1n -s /disk2/proxy/released released

The symbolic link means that when P4P attempts to cache files inthe / /released depot to
/diskl/proxy/released, thefiles are storedon /disk2/proxy/released.

111

Helix Core Server (p4d) Reference

Start the Perforce service or perform checkpoint/journaling (system administration) tasks.

Syntax

p4d [options]
pé4d.exe [options]
pi4s.exe [options]

p4d -3? [-z | -2] [args ...]

Description

The first three forms of the command invoke the background process that manages the Helix Server
versioning service. The fourth form of the command is used for system administration tasks involving
checkpointing and journaling.

On UNIX and Mac OS X, the executable is p4d.

On Windows, the executable is p4d . exe (running as a server) or p4s . exe (running as a service).

Exit Status

After successful startup, p4d does not normally exit. It merely outputs the following startup message:

Perforce server starting...
and runs in the background.
On failed startup, p4d returns a nonzero error code.

Also, if invoked with any of the —j checkpointing or journaling options, p4d exits with a nonzero error
code if any error occurs.

Options

Server options Meaning

=d Run as a daemon (in the background)

-f Run as a single-threaded (non-forking) process

112

Options

Server options Meaning

il Run from inetd on UNIX
-q Run quietly (no startup messages)
--pid-file[=file] Write the PID of the server to a file named

server.pid in the directory specified by
P4ROOT, or write the PID to the file specified
by f£ile. This makes it easier to identify a
server instance among many.

The £ile parameter can be a complete path
specification. The file does not have to reside in
P4ROOT.

--daemonsafe Is like —d and forks the p4d into the
background, but also closes the stdio
(standard input output) files.

-xi Irreversibly reconfigure the Helix Core Server
(and its metadata) to operate in Unicode mode.
Do not use this option unless you know you
require Unicode mode. For details, see the
Release Notes and the Internationalization
Notes .

-xXu Run database upgrades and exit.

This will no longer run automatically if there are
fewer than 1000 changelists. Upgrades must be
run manually unless the serveris aDVCS
personal server; in this case, any upgrade steps
are run automatically.

-XV Run low-level database validation and quit.

-xvU Run fast verification; do not lock database
tables, and verify only that the unlock count for
each table is zero.

-xD [serverID] Display (or set) the server's serverID
(stored inthe server. id file) and exit.

General options Meaning

-h, -7 Print help message.

-V Print version number.

-A auditlog Specify an audit log file. Overrides PAAUDIT setting. Default is null.

113

http://www.perforce.com/perforce/doc.current/user/relnotes.txt
http://www.perforce.com/perforce/doc.current/user/i18nnotes.txt
http://www.perforce.com/perforce/doc.current/user/i18nnotes.txt

Options

General options Meaning

-Id description Aserverdescriptionforusewithp4 server. Overrides

P4DESCRIPTION setting.

-In name A server name for use withp4 configure. Overrides PANAME
setting.

-J journal Specify ajournal file. Overrides P4AJOURNAL setting. Default is
journal. (Use -J off todisablejournaling.)

-L log Specify alog file. Overrides P4LOG setting. Default is STDERR.

-p port Specify a port to listen to. Overrides PAPORT. Default 1666.

-r root Specify the server root directory. Overrides P4AROOT. Default is current
working directory.

-v Set trace options. Overrides value PADEBUG setting. Default is null.

subsystem=level

-C1 Force the service to operate in case-insensitive mode on a normally case-
sensitive platform.

--pid-file Write the server's PID to the specified file.

[=name] Default name for the file is server . pid.

Checkpointing Meaning
options

-c command Lock database tables, run command, unlock the tables, and exit.
-jc [Journal-create; checkpoint and . md5 file, and save/truncate journal.
prefix]

In this case, your checkpoint and journal files are named prefix.ckp.n
and prefix.jnl . nrespectively, where prefixis as specified on the
command line and n is a sequence number. If no prefixis specified, the
default filenames checkpoint. nand journal. nare used. You can
store checkpoints and journals in the directory of your choice by specifying the
directory as part of the prefix.

Warning
If you use this option, it must be the last option on the command line.

-jd file Journal-checkpoint; create checkpoint and . md5 file without
saving/truncating journal.

=33 I Journal-only; save and truncate journal without checkpointing.
prefix]

114

Options

Checkpointing Meaning
options

-jr file

Journal-restore; restore metadata from a checkpoint and/or journal file.

If you specify the —r $P4ROOT option on the command line, the —xr option
must precede the —3j r option.

-jv file

Verify the integrity of the checkpoint or journal specified by £ile as follows:

m Can the checkpoint or journal be read from start to finish?
m Ifit's zipped can it be successfully unzipped?
m Ifit has an MD5 file with its MD5, does it match?

m Does it have the expected header and trailer?

This command does not replay the journal.

Use the -z option with the —jwv option to verify the integrity of compressed
journals or compressed checkpoints.

Compress (in gz ip format) checkpoints and journals.

When you use this option with the - jd option, Helix Server automatically
adds the . gz extension to the checkpoint file. So, the command:

p4d -jd -z myCheckpoint

creates two files: myCheckpoint . gz andmyCheckpoint .md5.

Compress (in gzip format) checkpoint, but leave journal uncompressed for
use by replica servers. That is, it applies to —=jc, not —jd.

Journal restore options Meaning

-jrc file Journal-restore with integrity-checking. Because
this option locks the database, this option is
intended only for use by replica servers started
withthep4 replicate command.

-jrF file Allow replaying a checkpoint over an existing

115

database. (Bypass the check done by the —=jr
option to see if a checkpoint is being replayed
into an existing database directory by mistake.)

Options

Journal restore options Meaning

-b bunch -jr file Read bunch lines of journal records, sorting
and removing duplicates before updating the
database. The defaultis 5000, but can be set
to 1 to force serial processing. This combination
of options is intended for use with replica
servers started withthe p4 replicate
command.

-f -jr file Ignore failures to delete records; this meaning of
- £ applies only when —jr is present. This
combination of options is intended for use with
replica servers started with the p4
replicate command. By default, journal
restoration halts if record deletion fails.

As with all journal-restore commands, if you
specify the -xr $P4ROOT option on the
command line, the —r option must precede the
-jr option.

-m -jr file Schedule new revisions for replica network
transfer. Required only in environments that use
P4 pull -uforarchived files, but p4
replicate for metadata. Not required in
replicated environments based solely on p4
pull.

-s -jr file Record restored journal records into regular
journal, so that the records can be propagated
from the server’s journal to any replicas
downstream of the server. This combination of
options is intended for use in conjunction with
Perforce Technical Support.

Replication Meaning

and multi-
server options

-a host:port Inmulti-server environments, specify an authentication server for licensing
and protections data. Overrides PAAUTH setting. Default is null.

-g host:port Inmulti-server environments, specify a changelist server from which to obtain
changelist numbers. Overrides PACHANGE setting. Default is null.

-t host:port Forreplicas, specify the target (master) server from which to pull data.
Overrides PATARGET setting. Default is null.

116

Options

Replication Meaning

and multi-

server options

-u For replicas, authenticate as the specified serviceuser when
serviceuser communicating with the master. The service user must have a valid ticket

before replica operations will succeed.

Journal Meaning

dump/restore

filtering

-jd file Dump db. table by creating a checkpoint £i1e that contains only the
db. table datastoredindb. table

This command can also be used with non-journaled tables.

-k Dump a set of named tables to a single dump file.
db.

tablel

,db.

table2,... -

jd file

-K Dump all tables except the named tables to the dump file.
db.

tablel

,db.

table2, ... -

jd file

-P serverid - Specify filter patterns forp4d -3jd by specifying a serverid from
jd file which toread filters (seep4 help server, oruse the older syntax
describedinp4 help export).

This option is useful for seeding a filtered replica.

-k Restore from £ile, including only journal records for the tables named in
db. the list specified by the —k option.

tablel

,db.

table2,... -

jr file

-K Restore from £ile, excluding all journal records for the tables named in
db. the list specified by the =K option.

tablel

,db.

table2,... -

jr file

117

Usage Notes

Certificate Meaning

Handling

-Gc Generate SSL credentials files for the server: create a private key and certificate file
in PASSLDIR, and then exit.

Requires that PASSLDIR be set to a directory that is owned by the user invoking
the command, and that is readable only by that user. If config. txt is presentin
P4SSLDIR, generate a self-signed certificate with specified characteristics.

-G£ Display the fingerprint of the server’'s public key, and exit.

Administrators can communicate this fingerprint to end users, who can then use the

p4

trust command to determine whether or not the fingerprint (of the server to

which they happen to be connecting) is accurate.

Configuration Meaning
options
-cshow Display the contents of db . config without starting the service. (That is, run
P4 configure show allservers, but without a running service.)
-cset Set a Helix Server configurable without starting the service, optionally
server specifying the server for which the configurable is to apply. For example,
#var=val
p4d -r . "-cset replica#P4JOURNAL=off"
p4d -r . "-cset replica#P4JOURNAL=0ff replica#server=3"
Itis best to include the entire variable=value expression in quotation
marks.
-cunset Unset the specified configurable.
serverivar

Usage Notes

= On all systems, journaling is enabled by default. If PAJOURNAL is unset when p4d starts, the
default location for the journal is $P4ROOT. If you want to manually disable journaling, you must
explicitly set PAJOURNAL toof £.

m Take checkpoints and truncate the journal often, preferably as part of your nightly backup process.

m Checkpointing and journaling preserve only your Helix Server metadata (data about your stored
files). The stored files themselves (the files containing your source code) reside under PAROOT
and must be also be backed up as part of your regular backup procedure.

m |tis best to keep journal files and checkpoints on a different hard drive or network location than the
Helix Server database.

118

Related Commands

m |f your users use triggers, don’t use the — £ (non-forking mode) option; the Perforce service needs
to be able to spawn copies of itself ("fork") in order to run trigger scripts.

m After a hardware failure, the options required for restoring your metadata from your checkpoint and
journal files can vary, depending on whether data was corrupted.

m Because restorations from backups involving loss of files under PAROOT often require the journal
file, we strongly recommend that the journal file reside on a separate filesystem from P4ROOT.
This way, in the event of corruption of the filesystem containing PAROOT, the journal is likely to
remain accessible.

m The database upgrade option (-xu) can require considerable disk space. For details, see the
Release Notes.

Related Commands

To start the service, listening to port 1999, with journaling p4d -d -p 1999 -J
enabled and writtento journalfile. /opt/p4d/journalfile
To checkpoint a server with a non-default journal file, the -J Checkpoint with:

option (or the environment variable P4JOURNAL) must match

. _ - p4d -J /p4d/jfile -
the journal file specified when the server was started.

jc
or

P4JOURNAL=/pdd/jfile
; export P4JOURNAL;

p4d -jc
To create a compressed checkpoint from a server with files in p4d -r $P4ROOT -z -
directory PAROOT. jc
To create a compressed checkpoint with a user-specified prefix p4d -r $P4ROOT -z -
of “ckp” from a server with files in directory P4AROOT. jc ckp

To restore metadata from a checkpoint named checkpoint.3 p4d -r $P4ROOT -jr
for a server with root directory P4AROOT. checkpoint.3

(The —x option must precede
the —jr option.)

To restore metadata from a compressed checkpoint named p4d -r $P4ROOT -z -
checkpoint. 3. gz fora server with root directory PAROOT. jr checkpoint.3.gz

(The —x option must precede
the —jr option.)

119

http://www.perforce.com/perforce/doc.current/user/relnotes.txt

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'‘protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

APC

The Alternative PHP Cache, a free, open, and robust framework for caching and optimizing PHP
intermediate code.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depotin which to copy the server data (versioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

avatar

A visual representation of a Swarm user or group. Avatars are used in Swarm to show involvementin
or ownership of projects, groups, changelists, reviews, comments, etc. See also the "Gravatar" entry
in this glossary.

base

The file revision, in conjunction with the source revision, used to help determine what integration
changes should be applied to the target revision.

120

Glossary

binary file type

A Helix Server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to thatlocation. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the '‘p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix Server and is able to run scripts
on the commands before sending them to the Helix Server.

Cc

change review

The process of sending email to users who have registered their interest in changelists thatinclude
specified files in the depot.

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix Server. The changes specified in the

121

Glossary

changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction and changelist number.

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

An integer that identifies a changelist. Submitted changelist numbers are ordinal (increasing), but not
necessarily consecutive. For example, 103, 105, 108, 109. A pending changelist number might be
assigned a different value upon submission.

check in

To submit a file to the Helix Server depot.

check out

To designate one or more files for edit.

checkpoint

A backup copy of the underlying metadata at a particular momentin time. A checkpoint can recreate
db.user, db.protect, and other db.” files. See also metadata.

classic depot

A repository of Helix Server files that is not streams-based. The default depot name is depot. See
also default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

122

Glossary

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

client workspace

Directories on your machine where you work on file revisions that are managed by Helix Server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist, review, job, or a file within a changelist or
review.

commit server

A server thatis part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix Server best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

123

Glossary

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

CSRF

Cross-Site Request Forgery, a form of web-based attack that exploits the trust that a site hasin a
user's web browser.

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix Server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix Server, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depotis the top-level unit of storage for versioned files (depot
files or source files) within a Helix Core Server. It contains all versions of all files ever submitted to
the depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix Server syntax for specifying the location of files in the depot. Depot syntax begins with: /depot/

124

Glossary

diff
(noun) A set of lines that do not match when two files are compared. A conflictis a pair of unequal

diffs between each of two files and a base. (verb) To compare the contents of files or file revisions.
See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

E

edge server

Areplica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate’, and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

F

file conflict
In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file thatis not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix Server command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix Server, this is called the depot.

125

Glossary

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

file type

An attribute that determines how Helix Server stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix Server commands. For example, you use the change form to
enter comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicate servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix Server users to collaborate on the same
projects using their preferred tools.

graph depot
A depot of type graph thatis used to store Git repos in the Helix Server. See also Helix4Git.

126

Glossary

Gravatar

gravatar.com is a third party service that you can subscribe to, gravatar enables you to upload an
image that you can use in Swarm. When configured, Swarm will attempt to fetch your avatar from
gravatar.com and use it within Swarm. If your avatar is not found on gravatar.com, Swarm will use
one of its own default avatars to represent your activity. See also the "avatar" entry in this glossary.

group

A feature in Helix Server that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix Server

The Helix Server depot and metadata; also, the program that manages the depot and metadata, also
called Helix Core Server.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4 Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix Server depots.

iconv

iconv is a PHP extension that performs character set conversion, and is an interface to the GNU
libiconv library.

127

Glossary

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one setapply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

job
A user-defined unit of work tracked by Helix Server. The job template determines what information is
tracked. The template can be modified by the Helix Server system administrator. A job describes

work to be done, such as a bug fix. Associating a job with a changelist records which changes fixed
the bug.

job daemon

A job daemon is a program that checks the Helix Server machine daily to determine if any jobs are
open. If so, the daemon sends an email message to interested users, informing them the number of
jobs in each category, the severity of each job, and more.

job specification

A form describing the fields and possible values for each job stored in the Helix Server machine.

job view

A syntax used for searching Helix Server jobs.

journal

A file containing a record of every change made to the Helix Server's metadata since the time of the
last checkpoint. This file grows as each Helix Server transaction is logged. The file should be
automatically truncated and renamed into a numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix Server's metadata.

128

Glossary

L

label
A named list of user-specified file revisions.

label view
The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy
A method used by Helix Server to make internal copies of files without duplicating file contentin the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file
A file that ensures that the number of Helix Server users on your site does not exceed the number for
which you have paid.

list access
A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot
Any depot located on the currently specified Helix Server.

local syntax
The syntax for specifying a filename that is specific to an operating system.

lock
1. Afile lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix Server. To specify a log file, set the P4ALOG environment variable or use
the p4d -L flag when starting the service.

129

Glossary

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix Server to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix Server from two conflicting file revisions.

metadata

The data stored by the Helix Server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata includes all the data stored in the
Perforce service except for the actual contents of the files.

modification time or modtime

The time a file was last changed.

MPM

Multi-Processing Module, a component of the Apache web server that is responsible for binding to
network ports, accepting requests, and dispatch operations to handle the request.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

130

Glossary

numbered changelist

A pending changelist to which Helix Server has assigned a number.

(0)

opened file
Afile that you are changing in your client workspace that is checked out. If the file is not checked out,
opening itin the file system does not mean anything to the versioning engineer.

owner
The Helix Server user who created a particular client, branch, or label.

P

p4
1. The Helix Core Server command line program. 2. The command you issue to execute commands
from the operating system command line.

p4d
The program that runs the Helix Server; p4d manages depot files and metadata.

P4PHP
The PHP interface to the Helix API, which enables you to write PHP code that interacts with a Helix
Server machine.

PECL

PHP Extension Community Library, a library of extensions that can be added to PHP to improve and
extend its functionality.

pending changelist

A changelist that has not been submitted.
project

In Helix Swarm, a group of Helix Server users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test

131

Glossary

integration, and automated deployment.

protections

The permissions stored in the Helix Server’s protections table.

proxy server

A Helix Server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix Server clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix Server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix Server but not
make any changes.

remote depot

A depotlocated on another Helix Server accessed by the current Helix Server.

replica

A Helix Server that contains a full or partial copy of metadata from a master Helix Server. Replica
servers are typically updated every second to stay synchronized with the master server.

repo

A graph depot contains one or more repos, and each repo contains files from Git users.

reresolve

The process of resolving a file after the file is resolved and before itis submitted.
resolve

The process you use to manage the differences between two revisions of a file. You can choose to
resolve conflicts by selecting the source or target file to be submitted, by merging the contents of

132

Glossary

conflicting files, or by making additional changes.

reverse delta storage

The method that Helix Server uses to store revisions of text files. Helix Server stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

review daemon

A review daemon is a program that periodically checks the Helix Server machine to determine if any
changelists have been submitted. If so, the daemon sends an email message to users who have
subscribed to any of the files included in those changelists, informing them of changes in files they
are interested in.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

RPM

RPM Package Manager is a tool, and package format, for managing the installation, updates, and
removal of software packages for Linux distributions such as Red Hat Enterprise Linux, the Fedora
Project, and the CentOS Project.

133

Glossary

S

server data
The combination of server metadata (the Helix Server database) and the depot files (your
organization's versioned source code and binary assets).

server root
The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the PAROOT environment variable or use the p4d -r
flag.

service
In the Helix Core Server, the shared versioning service that responds to requests from Helix Server
client applications. The Helix Server (p4d) maintains depot files and metadata describing the files
and also tracks the state of client workspaces.

shelve
The process of temporarily storing files in the Helix Server without checking in a changelist.

status
For a changelist, a value that indicates whether the changelistis new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix Server depot for processing.

134

Glossary

super access

An access level that gives the user permission to run every Helix Server command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix Server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix Server depot to a client workspace.

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix Server file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script automatically invoked by Helix Server when various conditions are met. (See "Helix
Versioning Engine Administrator Guide: Fundamentals" on "Using triggers to customize behavior")

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

135

Glossary

typemap

A table in Helix Server in which you assign file types to files.

U

user

The identifier that Helix Server uses to determine who is performing an operation.

\

versioned file

Source files stored in the Helix Server depot, including one or more revisions. Also known as a depot
file or source file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch

view.

w

wildcard
A special character used to match other characters in strings. The following wildcards are available
in Helix Server: * matches anything except a slash; ... matches anything including slashes; % %0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

136

Glossary

X

XSS

Cross-Site Scripting, a form of web-based attack that injects malicious code into a user's web
browser.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

137

License Statements

Perforce Software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce Software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce Software includes software developed by the OpenLDAP Foundation
(http://www.openldap.org/).

Perforce Software includes software developed Computing Services at Camegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

138

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

	How to use this guide
	Feedback
	Other documentation
	Syntax conventions

	What’s new in this guide
	2018.1 release
	2017.2 release
	Complete replication for graph depot archives
	 Helix Core Server Control (p4dctl) has moved

	Introduction to federated services
	Other types of federated architecture
	Setting up federated services
	General guidelines
	Authenticating users
	Connecting services

	Backing up and upgrading services
	Backing up services
	Upgrading services

	Configuring centralized authorization and changelist servers
	Centralized authorization server (P4AUTH)
	Centralized changelist server (P4CHANGE)

	Verifying shelved files

	Helix Server replication
	System requirements
	Replication basics
	The p4 pull command
	Identifying your server
	Service users
	Server options to control metadata and depot access
	P4TARGET
	Server startup commands
	p4 pull vs. p4 replicate
	Enabling SSL support
	Replication and protections

	How replica types handle requests
	Configuring a read-only replica
	Master server setup
	Creating the replica
	Starting the replica
	Testing the replica
	Using the replica
	Upgrading replica servers

	Configuring a forwarding replica
	Configuring the master server
	Configuring the forwarding replica

	Configuring a build farm server
	Configuring the master server
	Configuring the build farm replica
	Binding workspaces to the build farm replica

	Configuring a replica with shared archives
	Filtering metadata during replication
	Verifying replica integrity
	Configuration

	Warnings, notes, and limitations

	Commit-edge
	Setting up a commit/edge configuration
	Create a service user account for the edge server
	Create commit and edge server configurations
	Create and start the edge server

	Shortcuts to configuring the server
	Setting global client views
	Creating a client from a template
	Migrating from existing installations
	Replacing existing proxies and replicas
	Deploying commit and edge servers incrementally
	Hardware, sizing, and capacity
	Migration scenarios

	Managing distributed installations
	Moving users to an edge server
	Promoting shelved changelists
	Locking and unlocking files
	Triggers
	Backup and high availability/disaster recovery (HA/DR) planning
	Other considerations

	Validation
	Supported deployment configurations
	Backups

	Helix Broker
	System requirements
	Installing the broker
	Running the broker
	Enabling SSL support
	Broker information
	Broker and protections

	P4Broker options
	Configuring the broker
	Format of broker configuration files
	Specifying hosts
	Global settings
	Command handler specifications
	Alternate server definitions

	Using the broker as a load-balancing router
	Configuring the broker as a router
	Routing policy and behavior

	Helix Proxy
	System requirements
	Installing P4P
	UNIX
	Windows

	Running P4P
	Running P4P as a Windows service

	P4P options
	Administering P4P
	No backups required
	Stopping P4P
	Upgrading P4P
	Enabling SSL support
	Defending from man-in-the-middle attacks
	Localizing P4P
	Managing disk space consumption
	Determining if your Helix Server applications are using the proxy
	P4P and protections
	Determining if specific files are being delivered from the proxy
	Case-sensitivity issues and the proxy

	Maximizing performance improvement
	Reducing server CPU usage by disabling file compression
	Network topologies versus P4P
	Preloading the cache directory for optimal initial performance
	Distributing disk space consumption

	Helix Core Server (p4d) Reference
	Syntax
	Description
	Exit Status
	Options
	Usage Notes
	Related Commands

	Glossary
	License Statements

