
APIs for Scripting
2017.1

December 2017

Copyright © 1999-2018Perforce Software.

All rights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sell any documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Traffic in Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or support is provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.

All other brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 188.

https://www.perforce.com/

Contents

How to use this guide 7
Feedback 7

Other Helix Core documentation 7

Syntax conventions 7

P4Ruby 9
System Requirements and Release Notes 9

Installing P4Ruby 9

Programming with P4Ruby 10

Connecting to SSL-enabled servers 11
P4Ruby classes 11

P4 11
P4Exception 15
P4::DepotFile 15
P4::Revision 15
P4::Integration 16
P4::Map 16
P4::MergeData 17
P4::Message 18
P4::OutputHandler 18
P4::Progress 18
P4::Spec 19
Class P4 19
Class P4Exception 40
Class P4::DepotFile 41
Class P4::Revision 41
Class P4::Integration 43
Class P4::Map 43
Class P4::MergeData 46
Class P4::Message 48
Class P4::OutputHandler 49
Class P4::Progress 50
Class P4::Spec 51

P4Perl 53
System Requirements and Release Notes 53

3

Installing P4Perl 53

Programming with P4Perl 53

Connecting to Helix Core over SSL 55
P4Perl Classes 55

P4 55
P4::DepotFile 59
P4::Revision 60
P4::Integration 60
P4::Map 60
P4::MergeData 61
P4::Message 62
P4::OutputHandler 62
P4::Progress 62
P4::Resolver 63
P4::Spec 63
Class P4 63
Class P4::DepotFile 76
Class P4::Revision 76
Class P4::Integration 78
Class P4::Map 78
Class P4::MergeData 80
Class P4::Message 82
Class P4::OutputHandler 83
Class P4::Progress 84
Class P4::Resolver 85
Class P4::Spec 86

P4Python 88
Introduction 88

System Requirements and Release Notes 88

Installing P4Python 88

Programming with P4Python 89

Submitting a Changelist 90
Logging into Helix Core using ticket-based authentication 91
Connecting to Helix Core over SSL 91
Changing your password 91
Timestamp conversion 92
Working with comments in specs 92

4

P4Python Classes 93

P4 93
P4.P4Exception 97
P4.DepotFile 97
P4.Revision 97
P4.Integration 98
P4.Map 98
P4.MergeData 99
P4.Message 100
P4.OutputHandler 100
P4.Progress 100
P4.Resolver 101
P4.Spec 101
Class P4 101
Class P4.P4Exception 122
Class P4.DepotFile 122
Class P4.Revision 123
Class P4.Integration 124
Class P4.Map 125
Class P4.MergeData 127
Class P4.Message 128
Class P4.OutputHandler 129
Class P4.Progress 130
Class P4.Resolver 131
Class P4.Spec 132

P4PHP 134
Introduction 134

System Requirements and Release Notes 134

Installing P4PHP 134

Programming with P4PHP 134

Submitting a Changelist 136
Logging into Helix Core using ticket-based authentication 136
Connecting to Helix Core over SSL 137
Changing your password 137

P4PHP Classes 138

P4 138
P4_Exception 141

5

P4_DepotFile 141
P4_Revision 141
P4_Integration 142
P4_Map 142
P4_MergeData 143
P4_OutputHandlerAbstract 143
P4_Resolver 144
Class P4 144
Class P4_Exception 163
Class P4_DepotFile 163
Class P4_Revision 164
Class P4_Integration 165
Class P4_Map 166
Class P4_MergeData 168
Class P4_OutputHandlerAbstract 169
Class P4_Resolver 170

Glossary 172
License Statements 188

6

How to use this guide
This guide contains details about using the derived APIs for Perl, PHP, Python, and Ruby, to create
scripts that interact with Helix Core. You can download these APIs from the Perforce web site at
https://www.perforce.com/downloads:

 n Helix Core API for Perl (P4Perl) - https://www.perforce.com/downloads/helix-core-api-perl

 n Helix Core API for PHP (P4PHP) - https://www.perforce.com/downloads/helix-core-api-php

 n Helix Core API for Python (P4Python) - https://www.perforce.com/downloads/helix-core-api-
python

 n Helix Core API for Ruby (P4Ruby) - https://www.perforce.com/downloads/helix-core-api-ruby

These derived APIs depend on the Helix C/C++ API, details for which are at Helix C/C++ API User
Guide at https://www.perforce.com/perforce/doc.current/manuals/p4api/.

Feedback
How can we improve this manual? Email us at manual@perforce.com.

Other Helix Core documentation
See https://www.perforce.com/support/self-service-resources/documentation.

Syntax conventions
Helix documentation uses the following syntax conventions to describe command line syntax.

Notation Meaning
literal Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-f] The enclosed elements are optional. Omit the brackets when you compose
the command.

7

https://www.perforce.com/downloads
https://www.perforce.com/downloads/helix-core-api-perl
https://www.perforce.com/downloads/helix-core-api-php
https://www.perforce.com/downloads/helix-core-api-python
https://www.perforce.com/downloads/helix-core-api-python
https://www.perforce.com/downloads/helix-core-api-ruby
https://www.perforce.com/perforce/doc.current/manuals/p4api/
mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

Syntax conventions

Notation Meaning

... n Repeats as much as needed:

 l alias-name[[$(arg1)...
[$(argn)]]=transformation

 n Recursive for all directory levels:

 l clone perforce:1666 //depot/main/p4...
~/local-repos/main

 l p4 repos -e //gra.../rep...

element1 |
element2

Either element1 or element2 is required.

8

P4Ruby
P4Ruby is an extension to the Ruby programming language that allows you to run Helix Core commands
from within Ruby scripts, and get the results in a Ruby-friendly format.

The main features are:

 n Get Helix Core data and forms in hashes and arrays.

 n Edit Helix Core forms by modifying hashes.

 n Exception based error handling.

 n Controllable handling of warnings such as "File(s) up-to-date." on a sync.

 n Run as many commands on a connection as required.

 n The output of a command is returned as a Ruby array. For non-tagged output, the elements of the
array are strings. For tagged output, the elements of the array are Ruby hashes. For forms, the
output is an array of P4::Spec objects.

 n Thread-safe and thread-friendly; you can have multiple instances of the P4 class running in
different threads.

 n Exception-based error handling. Trap P4Exceptions for complete, high-level error handling.

System Requirements and Release Notes
P4Ruby is supported on Windows, Linux, Solaris, OS X, and FreeBSD.

For system requirements, see the release notes at
https://www.perforce.com/perforce/doc.current/user/p4rubynotes.txt.

Note
When passing arguments, make sure to omit the space between the argument and its value, such as
in the value pair -u and username in the following example:

anges = p4.run_changes("-uusername", "-m1").shift

If you include a space ("-u username"), the command fails.

Installing P4Ruby
As of version 2015.1, the recommended mechanism for installing P4Ruby is via gems.

Outside of Windows, the p4ruby gem installs must be compiled locally against your installation of
Ruby. If you can build the core Ruby distribution locally, you likely can install P4Ruby without incident.
On Windows, precompiled gems will be made available.

 $ gem install p4ruby -- --with-p4api-dir=__DIR__

9

https://www.perforce.com/perforce/doc.current/user/p4rubynotes.txt

Programming with P4Ruby

In the example above, the DIR is the path to a local copy of the Helix C/C++ API distribution. The Helix
C/C++ API should match the major and minor version of P4Ruby. If you omit the --with-p4api-
dir option, the gem attempts to download a version of the API itself from ftp.perforce.com.

Download from https://www.perforce.com/downloads/helix-core-api-ruby.

More installation options are described in the P4Ruby project in the Perforce Workshop:

https://swarm.workshop.perforce.com/projects/perforce-software-p4ruby

Programming with P4Ruby
The following example shows how to create a new client workspace based on an existing template:

 require "P4"

 template = "my-client-template"

 client_root = 'c:\p4-work'

 p4 = P4.new

 p4.connect

 begin

 # Run a "p4 client -t template -o" and convert it into a Ruby hash

 spec = p4.fetch_client("-t", template, "my-new-client")

 # Now edit the fields in the form

 spec["Root"] = client_root

 spec["Options"] = spec["Options"].sub("normdir", "rmdir")

 # Now save the updated spec

 p4.save_client(spec)

 # Point to the newly-created client

 p4.client="my-new-client"

 # And sync it.

 p4.run_sync

 rescue P4Exception

 # If any errors occur, we'll jump in here. Just log them

 # and raise the exception up to the higher level

10

https://www.perforce.com/downloads/helix-core-api-ruby
https://swarm.workshop.perforce.com/projects/perforce-software-p4ruby

Connecting to SSL-enabled servers

 p4.errors.each { |e| $stderr.puts(e) }

 raise

 end

Connecting to SSL-enabled servers
Scripts written with P4Ruby use any existing P4TRUST file present in their operating environment (by
default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file associated
with the script’s run-time environment, your script will (and should!) fail to connect to the server.

P4Ruby classes
The P4 module consists of several public classes:

 n P4

 n P4Exception

 n P4::DepotFile

 n P4::Revision

 n P4::Integration

 n P4::Map

 n P4::MergeData

 n P4::Message

 n P4::OutputHandler

 n P4::Progress

 n P4::Spec

The following tables provide brief details about each public class.

P4
The main class used for executing Perforce commands. Almost everything you do with P4Ruby will
involve this class.

11

P4

Method Description
identify Return the version of P4Ruby in use (class method).

new Construct a new P4 object (class method).

api_level= Set desired API compatibility level.

api_level Return current API compatibility level.

at_
exception_
level

Execute the associated block under a specific exception level, returning to
previous exception level when block returns.

charset= Set character set when connecting to Unicode servers.

charset Get character set when connecting to Unicode servers.

client= Set client workspace (P4CLIENT).

client Get current client workspace (P4CLIENT).

connect Connect to the Helix Versioning Engine, raise P4Exception on failure.

connected? Test whether or not session has been connected and/or has been dropped.

cwd= Set current working directory.

cwd Get current working directory.

delete_
<spectype>

Shortcut methods for deleting clients, labels, etc.

disconnect Disconnect from the Helix Versioning Engine.

each_
<spectype>

Shortcut methods for iterating through clients, labels, etc.

env Get the value of a Perforce environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user preferences.

errors Return the array of errors that occurred during execution of previous
command.

exception_
level=

Control which types of events give rise to exceptions (P4::RAISE_NONE,
RAISE_ERRORS, or RAISE_ALL).

exception_
level

Return the current exception level.

fetch_
<spectype>

Shortcut methods for retrieving the definitions of clients, labels, etc.

12

P4

Method Description
format_spec Convert fields in a hash containing the elements of a Perforce form (spec) into

the string representation familiar to users.

format_
<spectype>

Shortcut method; equivalent to:

 p4.format_spec("<spectype>", aHash)

handler= Set output handler.

handler Get output handler.

host= Set the name of the current host (P4HOST).

host Get the current hostname.

input= Store input for next command.

maxlocktime= Set MaxLockTime used for all following commands.

maxlocktime Get MaxLockTime used for all following commands.

maxresults= Set MaxResults used for all following commands.

maxresults Get MaxResults used for all following commands.

maxscanrows= Set MaxScanRows used for all following commands.

maxscanrows Get MaxScanRows used for all following commands.

messages Returns all messages from the server as P4::Message objects.

p4config_
file

Get the location of the configuration file used (P4CONFIG).

parse_
<spectype>

Shortcut method; equivalent to:

 p4.parse_spec("<spectype>", aString)

parse_spec Parses a Perforce form (spec) in text form into a Ruby hash using the spec
definition obtained from the server.

password= Set Perforce password (P4PASSWD).

password Get the current password or ticket.

port= Set host and port (P4PORT).

port Get host and port (P4PORT) of the current Perforce server.

prog= Set program name as shown by p4 monitor show -e.

prog Get program name as shown by p4 monitor show -e.

13

P4

Method Description
progress= Set progress indicator.

progress Get progress indicator.

run_cmd Shortcut method; equivalent to:

 p4.run("cmd", arguments...)

run Runs the specified Perforce command with the arguments supplied.

run_filelog Runs a p4 filelog on the fileSpec provided, returns an array of
P4::DepotFile objects.

run_login Runs p4 login using a password or ticket set by the user.

run_password A thin wrapper to make it easy to change your password.

run_resolve Interface to p4 resolve.

run_submit Submit a changelist to the server.

run_tickets Get a list of tickets from the local tickets file.

save_
<spectype>

Shortcut method; equivalent to:

 p4.input = hashOrString

 p4.run("<spectype>", "-i")

server_case_
sensitive?

Detects whether or not the server is case sensitive.

server_level Returns the current Perforce server level.

server_
unicode?

Detects whether or not the server is in unicode mode.

set_env On Windows or OS X, set a variable in the registry or user preferences.

streams= Enable or disable support for streams.

streams? Test whether or not the server supports streams

tagged Toggles tagged output (true or false). By default, tagged output is on.

tagged= Sets tagged output. By default, tagged output is on.

tagged? Detects whether or not tagged output is enabled.

ticketfile= Set the location of the P4TICKETS file.

ticketfile Get the location of the P4TICKETS file.

14

P4Exception

Method Description
track= Activate or disable server performance tracking.

track? Detect whether server performance tracking is active.

track_output Returns server tracking output.

user= Set the Perforce username (P4USER).

user Get the Perforce username (P4USER).

version= Set your script’s version as reported to the server.

version Get your script’s version as reported by the server.

warnings Returns the array of warnings that arose during execution of the last
command.

P4Exception
Used as part of error reporting and is derived from the Ruby RuntimeError class.

P4::DepotFile
Utility class allowing access to the attributes of a file in the depot. Returned by P4#run_filelog().

Method Description
depot_file Name of the depot file to which this object refers.

each_revision Iterates over each revision of the depot file.

revisions Returns an array of revision objects for the depot file.

P4::Revision
Utility class allowing access to the attributes of a revision P4::DepotFile object. Returned by
P4#run_filelog().

Method Description
action Action that created the revision.

change Changelist number.

client Client workspace used to create this revision.

depot_file Name of the file in the depot.

15

P4::Integration

Method Description
desc Short changelist description.

digest MD5 digest of this revision.

filesize Returns the size of this revision.

integrations Array of P4::Integration objects.

rev Revision number.

time Timestamp.

type Perforce file type.

user User that created this revision.

P4::Integration
Utility class allowing access to the attributes of an integration record for a P4::Revision object.
Returned by P4#run_filelog().

Method Description
how Integration method (merge/branch/copy/ignored).

file Integrated file.

srev Start revision.

erev End revision.

P4::Map
A class that allows users to create and work with Perforce mappings without requiring a connection to the
 Helix Versioning Engine.

Method Description
new Construct a new map object (class method).

join Joins two maps to create a third (class method).

clear Empties a map.

count Returns the number of entries in a map.

empty? Tests whether or not a map object is empty.

16

P4::MergeData

Method Description
insert Inserts an entry into the map.

translate Translate a string through a map.

includes? Tests whether a path is mapped.

reverse Returns a new mapping with the left and right sides reversed.

lhs Returns the left side as an array.

rhs Returns the right side as an array.

to_a Returns the map as an array.

P4::MergeData
Class encapsulating the context of an individual merge during execution of a p4 resolve command.
Passed as a parameter to the block passed to P4#run_resolve().

Method Description
your_
name

Returns the name of "your" file in the merge. (file in workspace)

their_
name

Returns the name of "their" file in the merge. (file in the depot)

base_
name

Returns the name of "base" file in the merge. (file in the depot)

your_
path

Returns the path of "your" file in the merge. (file in workspace)

their_
path

Returns the path of "their" file in the merge. (temporary file on workstation into which
their_name has been loaded)

base_
path

Returns the path of the base file in the merge. (temporary file on workstation into
which base_name has been loaded)

result_
path

Returns the path to the merge result. (temporary file on workstation into which the
automatic merge performed by the server has been loaded)

merge_
hint

Returns hint from server as to how user might best resolve merge.

run_
merge

If the environment variable P4MERGE is defined, run it and return a boolean based on
the return value of that program.

17

P4::Message

P4::Message
Utility class allowing access to the attributes of a message object returned by P4#messages().

Method Description
severity Returns the severity of the message.

generic Returns the generic class of the error.

msgid Returns the unique ID of the error message.

to_s Returns the error message as a string.

inspect Converts the error object into a string for debugging purposes.

P4::OutputHandler
Handler class that provides access to streaming output from the server; set P4#handler() to an
instance of a subclass of P4::OutputHandler to enable callbacks:

Method Description
outputBinary Process binary data.

outputInfo Process tabular data.

outputMessage Process information or errors.

outputStat Process tagged output.

outputText Process text data.

P4::Progress
Handler class that provides access to progress indicators from the server; set P4#progress() to an
instance of a subclass of P4::Progress with the following methods (even if the implementations are
empty) to enable callbacks:

Method Description
init Initialize progress indicator as designated type.

total Total number of units (if known).

description Description and type of units to be used for progress reporting.

update If non-zero, user has requested a cancellation of the operation.

done If non-zero, operation has failed.

18

P4::Spec

P4::Spec
Subclass of hash allowing access to the fields in a Perforce specification form. Also checks that the
fields that are set are valid fields for the given type of spec. Returned by P4#fetch__
<spectype>_().

Method Description
spec._fieldname Return the value associated with the field named fieldname.

spec._fieldname= Set the value associated with the field named fieldname.

spec.permitted_
fields

Returns an array containing the names of fields that are valid in this
spec object.

Class P4
Main interface to the Helix Core client API. Each P4 object provides you with a thread-safe API level
interface to Helix Core. The basic model is to:

 1. Instantiate your P4 object.

 2. Specify your Helix Core client environment.

 n client

 n host

 n password

 n port

 n user

 3. Set any options to control output or error handling:

 n exception_level

 4. Connect to the Perforce service.

The Helix Core protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including P4Ruby)
should ensure that a separate connection is used for each thread, or that only one thread may use
a shared connection at a time.

 5. Run your Helix Core commands.

 6. Disconnect from the Perforce service.

19

Class P4

Class Methods

P4.identify -> aString
Return the version of P4Ruby that you are using. Also reports the version of the OpenSSL library used for
building the underlying Helix C/C++ API with which P4Ruby was built.

 ruby -rP4 -e 'puts(P4.identify)'

Some of this information is already made available through the predefined constants P4::VERSION,
P4::OS, and P4::PATCHLEVEL.

P4.new -> aP4
Constructs a new P4 object.

 p4 = P4.new()

Instance Methods

p4.api_level= anInteger -> anInteger
Sets the API compatibility level desired. This is useful when writing scripts using Helix Core commands
that do not yet support tagged output. In these cases, upgrading to a later server that supports tagged
output for the commands in question can break your script. Using this method allows you to lock your
script to the output format of an older Helix Core release and facilitate seamless upgrades. This method
must be called prior to calling P4#connect().

 p4 = P4.new

 p4.api_level = 67 # Lock to 2010.1 format

 p4.connect

 ...

For the API integer levels that correspond to each Helix Core release, see:

http://kb.perforce.com/article/512

p4.api_level -> anInteger
Returns the current Helix C/C++ API compatibility level. Each iteration of the Helix Versioning Engine is
given a level number. As part of the initial communication, the client protocol level is passed between
client application and the Helix Versioning Engine. This value, defined in the Helix C/C++ API,
determines the communication protocol level that the Helix Core client will understand. All subsequent
responses from the Helix Versioning Engine can be tailored to meet the requirements of that client
protocol level.

For more information, see:

http://kb.perforce.com/article/512

20

http://kb.perforce.com/article/512
http://kb.perforce.com/article/512

Class P4

p4.at_exception_level(lev) { …​ } -> self
Executes the associated block under a specific exception level. Returns to the previous exception level
when the block returns.

 p4 = P4.new

 p4.client = "www"

 p4.connect

 p4.at_exception_level(P4::RAISE_ERRORS) do

 p4.run_sync

 end

 p4.disconnect

p4.charset= aString -> aString
Sets the character set to use when connect to a Unicode enabled server. Do not use when working with
non-Unicode-enabled servers. By default, the character set is the value of the P4CHARSET environment
 variable. If the character set is invalid, this method raises a P4Exception.

 p4 = P4.new

 p4.client = "www"

 p4.charset = "iso8859-1"

 p4.connect

 p4.run_sync

 p4.disconnect

p4.charset -> aString
Get the name of the character set in use when working with Unicode-enabled servers.

 p4 = P4.new

 p4.charset = "utf8"

 puts(p4.charset)

p4.client= aString -> aString
Set the name of the client workspace you wish to use. If not called, defaults to the value of P4CLIENT
taken from any P4CONFIG file present, or from the environment as per the usual Helix Core convention.
Must be called before connecting to the Helix server.

21

Class P4

 p4 = P4.new

 p4.client = "www"

 p4.connect

 p4.run_sync

 p4.disconnect

p4.client -> aString
Get the name of the Helix Core client currently in use.

 p4 = P4.new

 puts(p4.client)

p4.connect -> aBool
Connect to the Helix Versioning Engine. You must connect before you can execute commands. Raises a
 P4Exception if the connection attempt fails.

 p4 = P4.new

 p4.connect

p4.connected? -> aBool
Test whether or not the session has been connected, and if the connection has not been dropped.

 p4 = P4.newp4.connected?

p4.cwd= aString -> aString
Sets the current working directly. Can be called prior to executing any Helix Core command. Sometimes
necessary if your script executes a chdir() as part of its processing.

 p4 = P4.new

 p4.cwd = "/home/bruno"

p4.cwd -> aString
Get the current working directory.

 p4 = P4.new

 puts(p4.cwd)

22

Class P4

p4.delete_<spectype>([options], name) -> anArray
The delete methods are simply shortcut methods that allow you to quickly delete the definitions of
clients, labels, branches, etc. These methods are equivalent to:

 p4.run("<spectype>", '-d', [options], "spec name")

For example:

 require "P4"

 require "parsedate"

 include ParseDate

 now = Time.now

 p4 = P4.new

 begin

 p4.connect

 p4.run_clients.each do

 |client|

 atime = parsedate(client["Access"])

 if((atime + 24 * 3600 * 365) < now)

 p4.delete_client('-f', client["client"])

 end

 end

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.disconnect -> true
Disconnect from the Helix Versioning Engine.

 p4 = P4.new

 p4.connect

 p4.disconnect

23

Class P4

p4.each_<spectype<(arguments) -> anArray
The each_<spectype> methods are shortcut methods that allow you to quickly iterate through
clients, labels, branches, etc. Valid <spectype>s are clients, labels, branches, changes,
streams, jobs, users, groups, depots and servers. Valid arguments are any arguments
that would be valid for the corresponding run_<spectype> command.

For example, to iterate through clients:

 p4.each_clients do

 |c|

 # work with the retrieved client spec

 end

is equivalent to:

 clients = p4.run_clients

 clients.each do

 |c|

 client = p4.fetch_client(c['client'])

 # work with the retrieved client spec

 end

p4.env -> string
Get the value of a Helix Core environment variable, taking into account P4CONFIG files and (on
Windows and OS X) the registry or user preferences.

 p4 = P4.new

 puts p4.env("P4PORT")

p4.errors -> anArray
Returns the array of errors which occurred during execution of the previous command.

 p4 = P4.new

 begin

 p4.connect

 p4.exception_level(P4::RAISE_ERRORS) # ignore "File(s) up-to-date"

 files = p4.run_sync

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

24

Class P4

 p4.disconnect

 end

p4.exception_level= anInteger -> anInteger
Configures the events which give rise to exceptions. The following three levels are supported:

 n P4::RAISE_NONE disables all exception raising and makes the interface completely
procedural.

 n P4::RAISE_ERRORS causes exceptions to be raised only when errors are encountered.

 n P4::RAISE_ALL causes exceptions to be raised for both errors and warnings. This is the
default.

 p4 = P4.new

 p4.exception_level = P4::RAISE_ERRORS

 p4.connect # P4Exception on failure

 p4.run_sync # File(s) up-to-date is a warning so no exception is

raised

 p4.disconnect

p4.exception_level -> aNumber
Returns the current exception level.

p4.fetch_<spectype>([name]) -> aP4::Spec
The fetch_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 p4.run("<spectype>", '-o', ...).shift

For example:

 p4 = P4.new

 begin

 p4.connect

 client = p4.fetch_client()

 other_client = p4.fetch_client("other")

 label = p4.fetch_label("somelabel")

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

25

Class P4

 p4.disconnect

 end

p4.format_spec("<spectype>", aHash)-> aString
Converts the fields in a hash containing the elements of a Helix server form (spec) into the string
representation familiar to users.

The first argument is the type of spec to format: for example, client, branch, label, and so on.
The second argument is the hash to parse.

There are shortcuts available for this method. You can use:

 p4.format_<spectype>(hash)

instead of:

 p4.format_spec("<spectype>", hash)

where <spectype> is the name of a Helix server spec, such as client, label, etc.

p4.format_<spectype> aHash -> aHash
The format_<spectype> methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 p4.format_spec("<spectype>", aHash)

p4.graph= -> aBool
Enable or disable support for graph depots. By default, support for depots of type graph is enabled at
2017.1 or higher (P4#api_level() >= 82). Raises a P4Exception if you attempt to enable graph
depots on a pre-2017.1 server. You can enable or disable support for graph depots both before and after
connecting to the server.

 p4 = P4.new

 p4.graph = false

p4.graph? -> aBool
Detects whether or not support for Helix Core graph depots is enabled.

 p4 = P4.new

 puts (p4.graph?)

 p4.graph = false

 puts (p4.graph?)

26

Class P4

p4.handler= aHandler -> aHandler
Set the current output handler. This should be a subclass of P4::OutputHandler.

p4.handler -> aHandler
Get the current output handler.

p4.host= aString -> aString
Set the name of the current host. If not called, defaults to the value of P4HOST taken from any
P4CONFIG file present, or from the environment as per the usual Helix Core convention. Must be called
before connecting to the Helix server.

 p4 = P4.new

 p4.host = "workstation123.perforce.com"

 p4.connect

 ...

 p4.disconnect

p4.host -> aString
Get the current hostname.

 p4 = P4.new

 puts(p4.host)

p4.input= (aString|aHash|anArray) -> aString|aHash|anArray
Store input for the next command.

Call this method prior to running a command requiring input from the user. When the command requests
input, the specified data will be supplied to the command. Typically, commands of the form p4 cmd -
i are invoked using the P4#save_<spectype>() methods, which call P4#input() internally;
there is no need to call P4#input() when using the P4#save_<spectype>() shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user) an array of
strings or hashes. If you pass an array, note that the array will be shifted each time Helix Core asks the
user for input.

 p4 = P4.new

 p4.connect

 change = p4.run_change("-o").shift

 change["Description"] = "Autosubmitted changelist"

27

Class P4

 p4.input = change

 p4.run_submit("-i")

 p4.disconnect

p4.maxlocktime= anInteger -> anInteger
Limit the amount of time (in milliseconds) spent during data scans to prevent the server from locking
tables for too long. Commands that take longer than the limit will be aborted. The limit remains in force
until you disable it by setting it to zero. See p4 help maxlocktime for information on the
commands that support this limit.

 p4 = P4.new

 begin

 p4.connect

 p4.maxlocktime = 10000 # 10 seconds

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

 ensure

 p4.disconnectend

p4.maxlocktime -> anInteger
Get the current maxlocktime setting.

 p4 = P4.new

 puts(p4.maxlocktime)

p4.maxresults= anInteger -> anInteger
Limit the number of results Helix Core permits for subsequent commands. Commands that produce more
than this number of results will be aborted. The limit remains in force until you disable it by setting it to
zero. See p4 help maxresults for information on the commands that support this limit.

 p4 = P4.new

 begin

 p4.connect

 p4.maxresults = 100

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

28

Class P4

 ensure

 p4.disconnect

 end

p4.maxresults -> anInteger
Get the current maxresults setting.

 p4 = P4.new

 puts(p4.maxresults)

p4.maxscanrows= anInteger -> anInteger
Limit the number of database records Helix Core will scan for subsequent commands. Commands that
attempt to scan more than this number of records will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxscanrows for information on the commands that
support this limit.

 p4 = P4.new

 begin

 p4.connect

 p4.maxscanrows = 100

 files = p4.run_sync

 rescue P4Exception => ex

 p4.errors.each { |e| $stderr.puts(e) }

 ensure

 p4.disconnectend

p4.maxscanrows -> anInteger
Get the current maxscanrows setting.

 p4 = P4.new

 puts(p4.maxscanrows)

p4.messages -> aP4::Message
Returns a message from the Helix server in the form of a P4::Message object.

 p4 = P4.new

 p4.exception_level = P4::RAISE_NONE

 p4.run_sync

 p4.run_sync # this second sync should return "File(s) up-to-date."

29

Class P4

 w = p4.messages[0]

 puts (w.to_s)

p4.p4config_file -> aString
Get the path to the current P4CONFIG file.

 p4 = P4.new

 puts(p4.p4config_file)

p4.parse_<spectype>(aString) -> aP4::Spec
This is equivalent to:

 p4.parse_spec("<spectype>", aString)

p4.parse_spec("<spectype>", aString) -> aP4::Spec
Parses a Helix server form (spec) in text form into a Ruby hash using the spec definition obtained from
the server.

The first argument is the type of spec to parse: client, branch, label, and so on. The second
argument is the string buffer to parse.

Note that there are shortcuts available for this method. You can use:

 p4.parse_<spectype>(buf)

instead of:

 p4.parse_spec("<spectype>", buf)

Where <spectype> is one of client, branch, label, and so on.

p4.password= aString -> aString
Set your Helix Core password, in plain text. If not used, takes the value of P4PASSWD from any
P4CONFIG file in effect, or from the environment according to the normal Helix Core conventions. This
password will also be used if you later call p4.run_login to login using the 2003.2 and later ticket
system.

 p4 = P4.new

 p4.password = "mypass"

 p4.connect

 p4.run_login

30

Class P4

p4.password -> aString
Get the current password or ticket. This may be the password in plain text, or if you’ve used P4#run_
login(), it’ll be the value of the ticket you’ve been allocated by the server.

 p4 = P4.new

 puts(p4.password)

p4.port= aString -> aString
Set the host and port of the Helix server you want to connect to. If not called, defaults to the value of
P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from the environment.

 p4 = P4.new

 p4.port = "localhost:1666"

 p4.connect

 ...

 p4.disconnect

p4.port -> aString
Get the host and port of the current Helix server.

 p4 = P4.new

 puts(p4.port)

p4.prog= aString -> aString
Set the name of the program, as reported to Helix Core system administrators running p4 monitor
show -e in Helix Core 2004.2 or later releases.

 p4 = P4.new

 p4.prog = "sync-script"

 p4.connect

 ...

 p4.disconnect

p4.prog -> aString
Get the name of the program as reported to the Helix server.

 p4 = P4.new

 p4.prog = "sync-script"

 puts(p4.prog)

31

Class P4

p4.progress= aProgress -> aProgress
Set the current progress indicator. This should be a subclass of P4::Progress.

p4.progress -> aProgress
Get the current progress indicator.

p4.reset() -> anArray
Reset messages, warnings, and errors from a previous run() call. The returned array is always empty.

p4.run_<cmd>(arguments) -> anArray
This is equivalent to:

 p4.run("cmd", arguments...)

p4.run(aCommand, arguments…​) -> anArray
Base interface to all the run methods in this API. Runs the specified Helix Core command with the
arguments supplied. Arguments may be in any form as long as they can be converted to strings by to_
s. However, each command's options should be passed as quoted and comma-separated strings, with
no leading space. For example:

p4.run("print","-o","test-print","-q","//depot/Jam/MAIN/src/expand.c")

Failing to pass options in this way can result in confusing error messages.

The P4#run() method returns an array of results whether the command succeeds or fails; the array
may, however, be empty. Whether the elements of the array are strings or hashes depends on (a) server
support for tagged output for the command, and (b) whether tagged output was disabled by calling
p4.tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the time, P4#run()
will raise a P4Exception. If the current exception level is below the threshold for the error/warning,
P4#run() returns the output as normal and the caller must explicitly review P4#errors() and
P4#warnings() to check for errors or warnings.

 p4 = P4.new

 p4.connect

 spec = p4.run("client", "-o").shift

 p4.disconnect

Shortcuts are available for P4#run(). For example:

 p4.run_command(args)

is equivalent to:

 p4.run("command", args)

32

Class P4

There are also some shortcuts for common commands such as editing Helix server forms and
submitting. Consequently, this:

 p4 = P4.new

 p4.connect

 clientspec = p4.run_client("-o").shift

 clientspec["Description"] = "Build client"

 p4.input = clientspec

 p4.run_client("-i")

 p4.disconnect

may be shortened to:

 p4 = P4.new

 p4.connect

 clientspec = p4.fetch_client

 clientspec["Description"] = "Build client"

 p4.save_client(clientspec)

 p4.disconnect

The following are equivalent:

p4.delete_<spectype>() p4.run("<spectype>", "-d")

p4.fetch_<spectype>() p4.run("<spectype>", "-o").shift

p4.save_<spectype>(
spec)

p4.input = specp4.run("<spectype>",
"-i")

As the commands associated with P4#fetch_<spectype>() typically return only one item, these
methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by P4#fetch_change() can be
passed to P4#run_submit. For example:

 p4 = P4.new

 p4.connect

 spec = p4.fetch_changespec["Description"] = "Automated change"

 p4.run_submit(spec)

 p4.disconnect

33

Class P4

p4.run_filelog(fileSpec) -> anArray
Runs a p4 filelog on the fileSpec provided and returns an array of P4::DepotFile results
when executed in tagged mode, and an array of strings when executed in non-tagged mode. By default,
the raw output of p4 filelog is tagged; this method restructures the output into a more user-friendly
(and object-oriented) form.

 p4 = P4.new

 begin

 p4.connect

 p4.run_filelog("index.html").shift.each_revision do

 |r|

 r.each_integration do

 |i|

 # Do something

 end

 end

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.run_login(arg…​) -> anArray
Runs p4 login using a password or ticket set by the user.

p4.run_password(oldpass, newpass) -> anArray
A thin wrapper to make it easy to change your password. This method is (literally) equivalent to the
following code:

 p4.input([oldpass, newpass, newpass])

 p4.run("password")

For example:

 p4 = P4.new

 p4.password = "myoldpass"

 begin

 p4.connect

 p4.run_password("myoldpass", "mynewpass")

 rescue P4Exception

34

Class P4

 p4.errors.each { |e| puts(e) }

 ensure

 p4.disconnect

 end

p4.run_resolve(args) [block] -> anArray
Interface to p4 resolve. Without a block, simply runs a non-interactive resolve (typically an
automatic resolve).

 p4.run_resolve("-at")

When a block is supplied, the block is invoked once for each merge scheduled by Helix Core. For each
merge, a P4::MergeData object is passed to the block. This object contains the context of the
merge.

The block determines the outcome of the merge by evaluating to one of the following strings:

Block string Meaning
ay Accept Yours.

at Accept Theirs.

am Accept Merge result.

ae Accept Edited result.

s Skip this merge.

q Abort the merge.

For example:

 p4.run_resolve() do

 |md|

 puts("Merging...")

 puts("Yours: #{md.your_name}")

 puts("Theirs: #{md.their_name}")

 puts("Base: #{md.base_name}")

 puts("Yours file: #{md.your_path}")

 puts("Theirs file: #{md.their_path}")

 puts("Base file: #{md.base_path}")

 puts("Result file: #{md.result_path}")

 puts("Merge Hint: #{md.merge_hint}")

35

Class P4

 result = md.merge_hint

 if(result == "e")

 puts("Invoking external merge application")

 result = "s" # If the merge doesn't work, we'll skip

 result = "am" if md.run_merge()

 end

 result

 end

p4.run_submit([aHash], [arg…​]) -> anArray
Submit a changelist to the server. To submit a changelist, set the fields of the changelist as required and
supply any flags:.

 change = p4.fetch_change

 change._description = "Some description"

 p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the command line:

 p4.run_submit("-d", "Some description", "somedir/...")

p4.run_tickets() -> anArray
Get a list of tickets from the local tickets file. Each ticket is a hash object with fields for Host, User,
and Ticket.

p4.save_<spectype>(hashOrString, [options]) -> anArray
The save_<spectype> methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

 p4.input = hashOrStringp4.run("<spectype>", "-i")

For example:

 p4 = P4.new

 begin

 p4.connect

 client = p4.fetch_client()

 client["Owner"] = p4.user

 p4.save_client(client)

 rescue P4Exception

 p4.errors.each { |e| puts(e) }

36

Class P4

 ensure

 p4.disconnect

 end

p4.server_case_sensitive? -> aBool
Detects whether or not the server is case-sensitive.

p4.server_level -> anInteger
Returns the current Helix server level. Each iteration of the Helix server is given a level number. As part
of the initial communication this value is passed between the client application and the Helix server. This
value is used to determine the communication that the Helix server will understand. All subsequent
requests can therefore be tailored to meet the requirements of this Server level.

For more information, see:

http://kb.perforce.com/article/571

p4.server_unicode? -> aBool
Detects whether or not the server is in unicode mode.

p4.set_env= (aString, aString) -> aBool
On Windows or OS X, set a variable in the registry or user preferences. To unset a variable, pass an
empty string as the second argument. On other platforms, an exception is raised.

 p4 = P4.new

 p4.set_env = ("P4CLIENT", "my_workspace")

 p4.set_env = ("P4CLIENT", "")

p4.streams= -> aBool
Enable or disable support for streams. By default, streams support is enabled at 2011.1 or higher
(P4#api_level() >= 70). Raises a P4Exception if you attempt to enable streams on a pre-
2011.1 server. You can enable or disable support for streams both before and after connecting to the
server.

 p4 = P4.new

 p4.streams = false

p4.streams? -> aBool
Detects whether or not support for Helix Core Streams is enabled.

37

http://kb.perforce.com/article/571

Class P4

 p4 = P4.new

 puts (p4.streams?)

 p4.streams = false

 puts (p4.streams?)

p4.tagged(aBool) { block }
Temporarily toggles the use of tagged output for the duration of the block, and then resets it when the
block terminates.

p4.tagged= aBool -> aBool
Sets tagged output. By default, tagged output is on.

 p4 = P4.new

 p4.tagged = false

p4.tagged? -> aBool
Detects whether or not you are in tagged mode.

 p4 = P4.new

 puts (p4.tagged?)

 p4.tagged = false

 puts (p4.tagged?)

p4.ticketfile= aString -> aString
Sets the location of the P4TICKETS file.

 p4 = P4.new

 p4.ticketfile = "/home/bruno/tickets"

p4.ticketfile -> aString
Get the path to the current P4TICKETS file.

 p4 = P4.new

 puts(p4.ticketfile)

p4.track= -> aBool
Instruct the server to return messages containing performance tracking information. By default, server
tracking is disabled.

38

Class P4

 p4 = P4.new

 p4.track = true

p4.track? -> aBool
Detects whether or not performance tracking is enabled.

 p4 = P4.new

 p4.track = true

 puts (p4.track?)

 p4.track = false

 puts (p4.track?)

p4.track_output -> anArray
If performance tracking is enabled with p4.track=, returns a list of strings corresponding to the
performance tracking output for the most recently-executed command.

 p4 = P4.new

 p4.track = true

 p4.run_info

 puts (p4.track_output[0].slice(0,3)) # should be "rpc"

p4.user= aString -> aString
Set the Helix Core username. If not called, defaults to the value of P4USER taken from any P4CONFIG
file present, or from the environment as per the usual Helix Core convention. Must be called before
connecting to the Helix server.

 p4 = P4.new

 p4.user = "bruno"

 p4.connect

 ...

 p4.disconnect

p4.user -> aString
Returns the current Helix Core username.

 p4 = P4.new

 puts(p4.user)

39

Class P4Exception

p4.version= aString -> aString
Set the version of your script, as reported to the Helix server.

p4.version -> aString
Get the version of your script, as reported to the Helix server.

p4.warnings -> anArray
Returns the array of warnings that arose during execution of the last command.

 p4 = P4.new

 begin

 p4.connect

 p4.exception_level(P4::RAISE_ALL) # File(s) up-to-date is a warning

 files = p4.run_sync

 rescue P4Exception => ex

 p4.warnings.each { |w| puts(w) }

 ensure

 p4.disconnect

 end

Class P4Exception
Shallow subclass of RuntimeError to be used for catching Helix Core-specific errors. Doesn’t
contain any extra information. See P4#errors() and P4#warnings for details of the errors giving
rise to the exception.

Class Methods
None.

Instance Methods
None.

40

Class P4::DepotFile

Class P4::DepotFile

Description
Utility class providing easy access to the attributes of a file in a Helix Core depot. Each
P4::DepotFile object contains summary information about the file, and a list of revisions
(P4::Revision objects) of that file. Currently, only the P4#run_filelog() method returns an
array of P4::DepotFile objects.

Class Methods
None.

Instance Methods

df.depot_file -> aString
Returns the name of the depot file to which this object refers.

df.each_revision { |rev| block } -> revArray
Iterates over each revision of the depot file.

df.revisions -> aArray
Returns an array of revisions of the depot file.

Class P4::Revision

Description
Utility class providing easy access to the revisions of a file in a Helix Core depot. P4::Revision
objects can store basic information about revisions and a list of the integrations for that revision. Created
by P4#run_filelog().

Class Methods
None.

Instance Methods

rev.action -> aString
Returns the name of the action which gave rise to this revision of the file.

41

Class P4::Revision

rev.change -> aNumber
Returns the change number that gave rise to this revision of the file.

rev.client -> aString
Returns the name of the client from which this revision was submitted.

rev.depot_file -> aString
Returns the name of the depot file to which this object refers.

rev.desc -> aString
Returns the description of the change which created this revision. Note that only the first 31 characters
are returned unless you use p4 filelog -L for the first 250 characters, or p4 filelog -l for
the full text.

rev.digest -> aString
Returns the MD5 digest for this revision of the file.

rev.each_integration { |integ| block } -> integArray
Iterates over each the integration records for this revision of the depot file.

rev.filesize -> aNumber
Returns size of this revision.

rev.integrations -> integArray
Returns the list of integrations for this revision.

rev.rev -> aNumber
Returns the number of this revision of the file.

rev.time -> aTime
Returns the date/time that this revision was created.

rev.type -> aString
Returns this revision’s Helix Core filetype.

42

Class P4::Integration

rev.user -> aString
Returns the name of the user who created this revision.

Class P4::Integration

Description
Utility class providing easy access to the details of an integration record. Created by P4#run_
filelog().

Class Methods
None.

Instance Methods

integ.how -> aString
Returns the type of the integration record - how that record was created.

integ.file -> aPath
Returns the path to the file being integrated to/from.

integ.srev -> aNumber
Returns the start revision number used for this integration.

integ.erev -> aNumber
Returns the end revision number used for this integration.

Class P4::Map

Description
The P4::Map class allows users to create and work with Helix Core mappings, without requiring a
connection to aHelix server.

Class Methods

Map.new ([anArray]) -> aMap
Constructs a new P4::Map object.

43

Class P4::Map

Map.join (map1, map2) -> aMap
Join two P4::Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-hand side of the
second mapping. For example:

 # Map depot syntax to client syntax

 client_map = P4::Map.new

 client_map.insert("//depot/main/...", "//client/...")

 # Map client syntax to local syntax

 client_root = P4::Map.new

 client_root.insert("//client/...", "/home/bruno/workspace/...")

 # Join the previous mappings to map depot syntax to local syntax

 local_map = P4::Map.join(client_map, client_root)

 local_path = local_map.translate("//depot/main/www/index.html")

 # local_path is now /home/bruno/workspace/www/index.html

Instance Methods

map.clear -> true
Empty a map.

map.count -> anInteger
Return the number of entries in a map.

map.empty? -> aBool
Test whether a map object is empty.

map.insert(aString, [aString]) -> aMap
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

44

Class P4::Map

 # called with two arguments:

 map.insert("//depot/main/...", "//client/...")

 # called with one argument containing both halves of the mapping:

 map.insert("//depot/live/... //client/live/...")

 # called with one argument containing a half-map:

 # This call produces the mapping "depot/... depot/..."

 map.insert("depot/...")

map.translate (aString, [aBool])-> aString
Translate a string through a map, and return the result. If the optional second argument is true, translate
forward, and if it is false, translate in the reverse direction. By default, translation is in the forward
direction.

map.includes? (aString) -> aBool
Tests whether a path is mapped or not.

 if(map.includes?("//depot/main/..."))

 ...

 end

map.reverse -> aMap
Return a new P4::Map object with the left and right sides of the mapping swapped. The original object
is unchanged.

map.lhs -> anArray
Returns the left side of a mapping as an array.

map.rhs -> anArray
Returns the right side of a mapping as an array.

map.to_a -> anArray
Returns the map as an array.

45

Class P4::MergeData

Class P4::MergeData

Description
Class containing the context for an individual merge during execution of a p4 resolve.

Class Methods
None.

Instance Methods

md.your_name() -> aString
Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.

 p4.run_resolve() do

 |md|

 yours = md.your_name

 md.merge_hint # merge result

 end

md.their_name() -> aString
Returns the name of "their" file in the merge. This is typically a path to a file in the depot.

 p4.run_resolve() do

 |md|

 theirs = md.their_name

 md.merge_hint # merge result

 end

md.base_name() -> aString
Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.

 p4.run_resolve() do

 |md|

 base = md.base_name

 md.merge_hint # merge result

 end

46

Class P4::MergeData

md.your_path() -> aString
Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.

 p4.run_resolve() do

 |md|

 your_path = md.your_path

 md.merge_hint # merge result

 end

md.their_path() -> aString
Returns the path of "their" file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData#their_name() have been loaded.

 p4.run_resolve() do

 |md|

 their_name = md.their_name

 their_file = File.open(md.their_path)

 md.merge_hint # merge result

 end

md.base_path() -> aString
Returns the path of the base file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData#base_name() have been loaded.

 p4.run_resolve() do

 |md|

 base_name = md.base_name

 base_file = File.open(md.base_path)

 md.merge_hint # merge result

 end

md.result_path() -> aString
Returns the path to the merge result. This is typically a path to a temporary file on your local machine in
which the contents of the automatic merge performed by the server have been loaded.

 p4.run_resolve() do

 |md|

 result_file = File.open(md.result_path)

 md.merge_hint # merge resultend

47

Class P4::Message

md.merge_hint() -> aString
Returns the hint from the server as to how it thinks you might best resolve this merge.

 p4.run_resolve() do

 |md|

 puts (md.merge_hint) # merge result

 end

md.run_merge() -> aBool
If the environment variable P4MERGE is defined, P4::MergeData#run_merge() invokes the
specified program and returns a boolean based on the return value of that program.

 p4.run_resolve() do

 |md|

 if (md.run_merge())

 "am"

 else

 "s"

 end

 end

Class P4::Message

Description
P4::Message objects contain error or other diagnostic messages from the Helix Versioning Engine;
retrieve them by using the P4#messages() method.

Script writers can test the severity of the messages in order to determine if the server message consisted
of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED/E_FATAL).

Class methods
None.

Instance methods

message.severity() -> anInteger
Severity of the message, which is one of the following values:

48

Class P4::OutputHandler

Value Meaning
E_EMPTY No error

E_INFO Informational message only

E_WARN Warning message only

E_FAILED Command failed

E_FATAL Severe error; cannot continue.

message.generic() -> anInteger
Returns the generic class of the error.

message.msgid() -> anInteger
Returns the unique ID of the message.

message.to_s() -> aString
Converts the message into a string.

message.inspect() -> aString
To facilitate debugging, returns a string that holds a formatted representation of the entire
P4::Message object.

Class P4::OutputHandler

Description
The P4::OutputHandler class is a handler class that provides access to streaming output from
the server. After defining the output handler, set P4#handler() to an instance of a subclass of
P4::OutputHandler (or use a p4.with_handler(handler) block) to enable callbacks.

By default, P4::OutputHandler returns P4::REPORT for all output methods. The different return
 options are:

Value Meaning
P4::REPORT Messages added to output.

P4::HANDLED Output is handled by class (don’t add message to output).

P4::CANCEL Operation is marked for cancel, message is added to output.

49

Class P4::Progress

Class Methods

new P4::MyHandler.new -> aP4::OutputHandler
Constructs a new subclass of P4::OutputHandler.

Instance Methods

outputBinary -> int
Process binary data.

outputInfo -> int
Process tabular data.

outputMessage -> int
Process informational or error messages.

outputStat -> int
Process tagged data.

outputText -> int
Process text data.

Class P4::Progress

Description
The P4::Progress class is a handler class that provides access to progress indicators from the
server. After defining the output handler, set P4#progress() to an instance of a subclass of
P4::Progress (or use a p4.with_progress(progress) block) to enable callbacks.

You must implement all five of the following methods: init(), description(), update(),
total(), and done(), even if the implementation consists of trivially returning 0.

Class Methods

new P4::MyProgress.new -> aP4::Progress
Constructs a new subclass of P4::Progress.

50

Class P4::Spec

Instance Methods

init -> int
Initialize progress indicator.

description -> int
Description and type of units to be used for progress reporting.

update -> int
If non-zero, user has requested a cancellation of the operation.

total -> int
Total number of units expected (if known).

done -> int
If non-zero, operation has failed.

Class P4::Spec

Description
The P4::Spec class is a hash containing key/value pairs for all the fields in a Helix server form. It
provides two things over and above its parent class (Hash):

 n Fieldname validation. Only valid field names may be set in a P4::Spec object. Note that only
the field name is validated, not the content.

 n Accessor methods for easy access to the fields.

Class Methods

new P4::Spec.new(anArray) -> aP4::Spec
Constructs a new P4::Spec object given an array of valid fieldnames.

51

Class P4::Spec

Instance Methods

spec._<fieldname> -> aValue
Returns the value associated with the field named <fieldname>. This is equivalent to spec[
"<fieldname>"] with the exception that when used as a method, the fieldnames may be in
lowercase regardless of the actual case of the fieldname.

 client = p4.fetch_client()

 root = client._root

 desc = client._description

spec._<fieldname>= aValue -> aValue
Updates the value of the named field in the spec. Raises a P4Exception if the fieldname is not valid
for specs of this type.

 client = p4.fetch_client()

 client._root = "/home/bruno/new-client"

 client._description = "My new client spec"

 p4.save_client(client)

spec.permitted_fields -> anArray
Returns an array containing the names of fields that are valid in this spec object. This does not imply that
values for all of these fields are actually set in this object, merely that you may choose to set values for
any of these fields if you want to.

 client = p4.fetch_client()

 spec.permitted_fields.each do

 | field |

 printf ("%14s = %s\n", field, client[field])

 end

52

P4Perl
P4Perl is a Perl module that provides an object-oriented API to Helix Core. Using P4Perl is faster than
using the command-line interface in scripts, because multiple command can be executed on a single
connection, and because it returns Helix Core responses as Perl hashes and arrays.

The main features are:

 n Get Helix Core data and forms in hashes and arrays.

 n Edit Helix Core forms by modifying hashes.

 n Run as many commands on a connection as required.

 n The output of commands is returned as a Perl array.

 n The elements of the array returned are strings or, where appropriate, hash references.

System Requirements and Release Notes
P4Perl is supported on Windows, Linux, Solaris, OS X, and FreeBSD.

For system requirements, see the release notes at
https://www.perforce.com/perforce/doc.current/user/p4perlnotes.txt.

Note
When passing arguments, make sure to omit the space between the argument and its value, such as
in the value pair -u and username in the following example:

anges = p4.run_changes("-uusername", "-m1").shift

If you include a space ("-u username"), the command fails.

Installing P4Perl
You can download P4Perl from the Perforce web site at https://www.perforce.com/downloads/helix-
core-api-perl.

After downloading, you can either run the installer or build the interface from source, as described in the
release notes.

Programming with P4Perl
The following example shows how to connect to a Helix server, run a p4 info command, and open a
file for edit.

#!/opt/local/bin/perl -w

use strict;

53

https://www.perforce.com/perforce/doc.current/user/p4perlnotes.txt
https://www.perforce.com/downloads/helix-core-api-perl
https://www.perforce.com/downloads/helix-core-api-perl

Programming with P4Perl

use P4;

my $p4 = new P4;

$p4->SetClient('bruno_ws');

$p4->SetUser('smoon');

$p4->SetPort('localhost:20081');

$p4->SetVersion("EnvTest 1.0");

$p4->Connect() or die("Was not able to connect\n");

my $info = $p4->Run("info"); #passing array ref

print "\n\nP4 Info Output:\n\n";

foreach my $akey (@{$info}) {

my @infos = keys %$akey; # $akey is hash ref

foreach my $hkey (@infos) {

print "$hkey => $akey->{$hkey}\n";

}

}

my $client_name = $p4->FetchClient($p4->GetClient());

print "\n\nClient Specification:\n\n";

foreach my $chkey (keys %{$client_name}) {

if ($client_name->{$chkey} =~ /^ARRAY(.+)$/) {

my $avals = $client_name->{$chkey};

foreach my $achkey (@{$avals})

{ print "$chkey => $achkey\n"; }

} elsif($client_name->{$chkey} =~ /^HASH(.+)$/) {

my $hvals = $client_name->{$chkey};

foreach my $hchkey (keys %{$hvals}) {

print "$chkey => $hvals->{$hchkey}\n";

}

} else {

print "$chkey => $client_name->{$chkey}\n";

}

}

my $changes = $p4->Run("changes","-m2");

print "\n\nTwo Most Recent Changes:\n\n";

foreach my $each_chg (@{$changes}) {

my @chg_key = keys %$each_chg; # $each_chg is hash ref

foreach my $hchg (@chg_key) {

print "$hchg => $each_chg->{$hchg}\n";

54

Connecting to Helix Core over SSL

}

print "\n";

}

print "\n" . $p4->GetVersion() . "\n";

$p4->Disconnect();

Connecting to Helix Core over SSL
Scripts written with P4Perl use any existing P4TRUST file present in their operating environment (by
default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file associated
with the script’s run-time environment, your script will (and should!) fail to connect to the server.

P4Perl Classes
The P4 module consists of several public classes:

 n "P4" below

 n "P4::DepotFile" on page 59

 n "P4::Revision" on page 60

 n "P4::Integration" on page 60

 n "P4::Map" on page 60

 n "P4::MergeData" on page 61

 n "P4::Message" on page 62

 n "P4::OutputHandler" on page 62

 n "P4::Progress" on page 62

 n "P4::Spec" on page 63

The following tables provide brief details about each public class.

P4
The main class used for executing Helix Core commands. Almost everything you do with P4Perl will
involve this class.

Method Description
new() Construct a new P4 object.

55

P4

Method Description
Identify() Print build information including P4Perl version and

Helix C/C++ API version.

ClearHandler() Clear the output handler.

Connect() Initialize the Helix Core client and connect to the
Server.

Disconnect() Disconnect from the Helix Versioning Engine.

ErrorCount() Returns the number of errors encountered during
execution of the last command.

Errors() Returns a list of the error strings received during
execution of the last command.

Fetch_<Spectype>() Shorthand for running:

 $p4->Run("<spectype>", "-o");

Format_<Spectype>_() Shorthand for running:

 $p4->FormatSpec("<spectype>", hash

);

FormatSpec() Converts a Helix server form of the specified type
(client/label etc.) held in the supplied hash into its
string representation.

GetApiLevel() Get current API compatibility level.

GetCharset() Get character set when connecting to Unicode
servers.

GetClient() Get current client workspace (P4CLIENT).

GetCwd() Get current working directory.

GetEnv() Get the value of a Helix Core environment variable,
taking into account P4CONFIG files and (on Windows
or OS X) the registry or user preferences.

GetHandler() Get the output handler.

GetHost() Get the current hostname.

GetMaxLockTime() Get MaxLockTime used for all following
commands.

56

P4

Method Description
GetMaxResults() Get MaxResults used for all following commands.

GetMaxScanRows() Get MaxScanRows used for all following
commands.

GetPassword() Get the current password or ticket.

GetPort() Get host and port (P4PORT).

GetProg() Get the program name as shown by the p4
monitor show -e command.

GetProgress() Get the progress indicator.

GetTicketFile() Get the location of the P4TICKETS file.

GetUser() Get the current username (P4USER).

GetVersion() Get the version of your script, as reported to the Helix
Versioning Engine.

IsConnected() Test whether or not session has been connected
and/or has been dropped.

IsStreams() Test whether or not streams are enabled.

IsTagged() Test whether or not tagged output is enabled.

IsTrack() Test whether or not server performance tracking is
enabled.

Iterate_<Spectype>() Iterate through spec results.

Messages() Return an array of P4::Message objects, one for
each message sent by the server.

P4ConfigFile() Get the location of the configuration file used
(P4CONFIG).

Parse_<Spectype>() Shorthand for running:

 $p4-ParseSpec("<spectype>", buffer

);

ParseSpec() Converts a Helix server form of the specified type
(client, label, etc.) held in the supplied string
into a hash and returns a reference to that hash.

57

P4

Method Description
RunCmd() Shorthand for running:

 $p4-Run("cmd", arg, ...);

Run() Run a Helix Core command and return its results.
Check for errors with P4::ErrorCount().

RunFilelog() Runs a p4 filelog on the fileSpec provided
and returns an array of P4::DepotFile objects.

RunLogin() Runs p4 login using a password or ticket set by
the user.

RunPassword() A thin wrapper for changing your password.

RunResolve() Interface to p4 resolve.

RunSubmit() Submit a changelist to the server.

RunTickets() Get a list of tickets from the local tickets file.

Save_<Spectype>() Shorthand for running:

 $p4->SetInput($spectype);

 $p4->Run("<spectype>", "-i");

ServerCaseSensitive() Returns an integer specifying whether or not the server
is case-sensitive.

ServerLevel() Returns an integer specifying the server protocol level.

ServerUnicode() Returns an integer specifying whether or not the server
is in Unicode mode.

SetApiLevel() Specify the API compatibility level to use for this
script.

SetCharset() Set character set when connecting to Unicode
servers.

SetClient() Set current client workspace (P4CLIENT).

SetCwd() Set current working directory.

SetEnv() On Windows or OS X, set an environment variable in
the registry or user preferences.

SetHandler() Set the output handler.

SetHost() Set the name of the current host (P4HOST).

58

P4::DepotFile

Method Description
SetInput() Save the supplied argument as input to be supplied to

a subsequent command.

SetMaxLockTime() Set MaxLockTime used for all following commands.

SetMaxResults() Set MaxResults used for all following commands.

SetMaxScanRows() Set MaxScanRows used for all following commands.

SetPassword() Set Helix Core password (P4PASSWD).

SetPort() Set host and port (P4PORT).

SetProg() Set the program name as shown by the p4
monitor show -e command.

SetProgress() Set the progress indicator.

SetStreams() Enable or disable streams support.

SetTicketFile() Set the location of the P4TICKETS file.

SetTrack() Activate or deactivate server performance tracking. By
default, tracking is off (0).

SetUser() Set the Helix Core username (P4USER).

SetVersion() Set the version of your script, as reported to the Helix
Versioning Engine.

Tagged() Toggles tagged output (1 or 0). By default, tagged
output is on (1).

TrackOutput() If performance tracking is enabled with SetTrack
() returns an array of strings with tracking output.

WarningCount() Returns the number of warnings issued by the last
command.

Warnings() Returns a list of the warning strings received during
execution of the last command.

P4::DepotFile
Utility class allowing access to the attributes of a file in the depot. Returned by P4::RunFilelog().

Method Description
DepotFile() Name of the depot file to which this object refers.

Revisions() Returns an array of revision objects for the depot file.

59

P4::Revision

P4::Revision
Utility class allowing access to the attributes of a revision of a file in the depot. Returned by
P4::RunFilelog().

Method Description
Action() Returns the action that created the revision.

Change() Returns the changelist number that gave rise to this revision of the file.

Client() Returns the name of the client from which this revision was submitted.

DepotFile() Returns the name of the depot file to which this object refers.

Desc() Returns the description of the change which created this revision.

Digest() Returns the MD5 digest for this revision.

FileSize() Returns the size of this revision.

Integrations
()

Returns an array of P4::Integration objects representing all integration
records for this revision.

Rev() Returns the number of this revision.

Time() Returns date/time this revision was created.

Type() Returns the Helix Core filetype of this revision.

User() Returns the name of the user who created this revision.

P4::Integration
Utility class allowing access to the attributes of an integration record for a revision of a file in the depot.
Returned by P4::RunFilelog().

Method Description
How() Integration method (merge/branch/copy/ignored).

File() Integrated file.

SRev() Start revision.

ERev() End revision.

P4::Map
A class that allows users to create and work with Helix Core mappings without requiring a connection to
the Helix Versioning Engine.

60

P4::MergeData

Method Description
New() Construct a new Map object (class method).

Join() Joins two maps to create a third (class method).

Clear() Empties a map.

Count() Returns the number of entries in a map.

IsEmpty() Tests whether or not a map object is empty.

Insert() Inserts an entry into the map.

Translate() Translate a string through a map.

Includes() Tests whether a path is mapped.

Reverse() Returns a new mapping with the left and right sides reversed.

Lhs() Returns the left side as an array.

Rhs() Returns the right side as an array.

AsArray() Returns the map as an array.

P4::MergeData
Class encapsulating the context of an individual merge during execution of a p4 resolve command.
Passed to P4::RunResolve.

Method Description
YourName() Returns the name of "your" file in the merge. (file in workspace)

TheirName() Returns the name of "their" file in the merge. (file in the depot)

BaseName() Returns the name of "base" file in the merge. (file in the depot)

YourPath() Returns the path of "your" file in the merge. (file in workspace)

TheirPath() Returns the path of "their" file in the merge. (temporary file on workstation into
which TheirName() has been loaded)

BasePath() Returns the path of the base file in the merge. (temporary file on workstation
into which BaseName() has been loaded)

ResultPath() Returns the path to the merge result. (temporary file on workstation into which
the automatic merge performed by the server has been loaded)

MergeHint() Returns hint from server as to how user might best resolve merge.

RunMergeTool
()

If the environment variable P4MERGE is defined, run it and indicate whether or
not the merge tool successfully executed.

61

P4::Message

P4::Message
Class encapsulating the context of an individual error during execution of Helix Core commands. Passed
to P4::Messages().

Method Description
GetSeverity() Returns the severity class of the error.

GetGeneric() Returns the generic class of the error message.

GetId() Returns the unique ID of the error message.

GetText() Get the text of the error message.

P4::OutputHandler
Handler class that provides access to streaming output from the server; call P4::SetHandler()
with an implementation of P4::OutputHandler to enable callbacks:

Method Description
OutputBinary() Process binary data.

OutputInfo() Process tabular data.

OutputMessage() Process information or errors.

OutputStat() Process tagged output.

OutputText() Process text data.

P4::Progress
Handler class that provides access to progress indicators from the server; call P4::SetProgress
() with an implementation of P4::Progress to enable callbacks:

Method Description
Init() Initialize progress indicator as designated type.

Total() Total number of units (if known).

Description() Description and type of units to be used for progress reporting.

Update() If non-zero, user has requested a cancellation of the operation.

Done() If non-zero, operation has failed.

62

P4::Resolver

P4::Resolver
Class for handling resolves in Helix Core.

Method Description
Resolve() Perform a resolve and return the resolve decision as a string.

P4::Spec
Utility class allowing access to the attributes of the fields in a Helix server form.

Method Description
_fieldname() Return the value associated with the field named fieldname.

_fieldname() Set the value associated with the field named fieldname.

PermittedFields() Lists the fields that are permitted for specs of this type.

Class P4

Description
Main interface to the Helix Core client API.

This module provides an object-oriented interface to Helix Core, the Perforce version control system.
Data is returned in Perl arrays and hashes and input can also be supplied in these formats.

Each P4 object represents a connection to the Helix Versioning Engine, also called Helix server, and
multiple commands may be executed (serially) over a single connection.

The basic model is to:

 1. Instantiate your P4 object.

 2. Specify your Helix Core client environment.

 n SetClient()

 n SetHost()

 n SetPassword()

 n SetPort()

 n SetUser()

63

Class P4

 3. Connect to the Perforce service.

The Helix Core protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including P4Perl)
should ensure that a separate connection is used for each thread, or that only one thread may use
a shared connection at a time.

 4. Run your Helix Core commands.

 5. Disconnect from the Perforce service.

Class methods

P4::new() -> P4
Construct a new P4 object. For example:

 my $p4 = new P4;

P4::Identify() -> string
Print build information including P4Perl version and Helix C/C++ API version.

 print P4::Identify();

The constants OS, PATCHLEVEL and VERSION are also available to test an installation of P4Perl
without having to parse the output of P4::Identify(). Also reports the version of the OpenSSL
library used for building the underlying Helix C/C++ API with which P4Perl was built.

P4::ClearHandler() -> undef
Clear any configured output handler.

P4::Connect() -> bool
Initializes the Helix Core client and connects to the server. Returns false on failure and true on
success.

P4::Disconnect() -> undef
Terminate the connection and clean up. Should be called before exiting.

P4::ErrorCount() -> integer
Returns the number of errors encountered during execution of the last command.

P4::Errors() -> list
Returns a list of the error strings received during execution of the last command.

64

Class P4

P4::Fetch<Spectype>([name]) -> hashref
Shorthand for running:

 $p4->Run("<spectype>", "-o");

and returning the first element of the result array. For example:

 $label = $p4->FetchLabel($labelname);

 $change = $p4->FetchChange($changeno);

 $clientspec = $p4->FetchClient($clientname);

P4::Format<Spectype>(hash) -> string
Shorthand for running:

 $p4->FormatSpec("<spectype>", hash);

and returning the results. For example:

 $change = $p4->FetchChange();

 $change->{ 'Description' } = 'Some description';

 $form = $p4->FormatChange($change);

 printf("Submitting this change:\n\n%s\n", $form);

 $p4->RunSubmit($change);

P4::FormatSpec($spectype, $string) -> string
Converts a Helix server form of the specified type (client, label, etc.) held in the supplied hash into
its string representation. Shortcut methods are available that obviate the need to supply the type
argument. The following two examples are equivalent:

 my $client = $p4->FormatSpec("client", $hash);

 my $client = $p4->FormatClient($hash);

P4::GetApiLevel() -> integer
Returns the current API compatibility level. Each iteration of the Helix Versioning Engine is given a level
number. As part of the initial communication, the client protocol level is passed between client application
and the Helix Versioning Engine. This value, defined in the Helix C/C++ API, determines the
communication protocol level that the Helix Core client will understand. All subsequent responses from
the Helix Versioning Engine can be tailored to meet the requirements of that client protocol level.

For more information, see:

http://kb.perforce.com/article/512

65

http://kb.perforce.com/article/512

Class P4

P4::GetCharset() -> string
Return the name of the current charset in use. Applicable only when used withHelix servers running in
unicode mode.

P4::GetClient() -> string
Returns the current Helix Core client name. This may have previously been set by P4::SetClient
(), or may be taken from the environment or P4CONFIG file if any. If all that fails, it will be your
hostname.

P4::GetCwd() -> string
Returns the current working directory as your Helix Core client sees it.

P4::GetEnv($var) -> string
Returns the value of a Helix Core environment variable, taking into account the settings of Helix Core
variables in P4CONFIG files, and, on Windows or OS X, in the registry or user preferences.

P4::GetHandler() -> Handler
Returns the output handler.

P4::GetHost() -> string
Returns the client hostname. Defaults to your hostname, but can be overridden with P4::SetHost()

P4::GetMaxLockTime($value) -> integer
Get the current maxlocktime setting.

P4::GetMaxResults($value) -> integer
Get the current maxresults setting.

P4::GetMaxScanRows($value) -> integer
Get the current maxscanrows setting.

P4::GetPassword() -> string
Returns your Helix Core password. Taken from a previous call to P4::SetPassword() or extracted
from the environment ($ENV{P4PASSWD}), or a P4CONFIG file.

66

Class P4

P4::GetPort() -> string
Returns the current address for your Helix Core server. Taken from a previous call to P4::SetPort
(), or from $ENV{P4PORT} or a P4CONFIG file.

P4::GetProg() -> string
Get the name of the program as reported to the Helix Versioning Engine.

P4::GetProgress() -> Progress
Returns the progress indicator.

P4::GetTicketFile([$string]) -> string
Return the path of the current P4TICKETS file.

P4::GetUser() -> String
Get the current user name. Taken from a previous call to P4::SetUser(), or from $ENV{P4USER}
or a P4CONFIG file.

P4::GetVersion($string) -> string
Get the version of your script, as reported to the Helix Versioning Engine.

P4::IsConnected() -> bool
Returns true if the session has been connected, and has not been dropped.

P4::IsStreams() -> bool
Returns true if streams support is enabled on this server.

P4::IsTagged() -> bool
Returns true if Tagged mode is enabled on this client.

P4::IsTrack() -> bool
Returns true if server performance tracking is enabled for this connection.

P4::Iterate<Spectype>(arguments) -> object
Iterate over spec results. Returns an iterable object with next() and hasNext() methods.

67

Class P4

Valid <spectype>s are clients, labels, branches, changes, streams, jobs, users,
groups, depots and servers. Valid arguments are any arguments that would be valid for the
corresponding P4::RunCmd() command.

Arguments can be passed to the iterator to filter the results, for example, to iterate over only the first two
client workspace specifications:

 $p4->IterateClients("-m2");

You can also pass the spec type as an argument:

 $p4->Iterate("changes");

For example, to iterate through client specs:

 use P4;

 my $p4 = P4->new;

 $p4->Connect or die "Couldn't connect";

 my $i = $p4->IterateClients();

 while($i->hasNext) {

 my $spec = $i->next;

 print("Client: " . ($spec->{Client} or "<undef>") . "\n");

 }

P4::Messages() -> list
Returns an array of P4::Message() objects, one for each message (info, warning or error) sent by
the server.

P4::P4ConfigFile() -> string
Get the path to the current P4CONFIG file.

P4::Parse<Spectype>($string) -> hashref
Shorthand for running:

 $p4-ParseSpec("<spectype>", buffer);

and returning the results. For example:

 $p4 = new P4;

 $p4->Connect() or die("Failed to connect to server");

 $client = $p4->FetchClient();

 # Returns a hashref

68

Class P4

 $client = $p4->FormatClient($client);

 # Convert to string

 $client = $p4->ParseClient($client);

 # Convert back to hashref

Comments in forms are preserved. Comments are stored as a comment key in the spec hash and are
accessible. For example:

 my $spec = $pc->ParseGroup('my_group');

 print $spec->{'comment'};

P4::ParseSpec($spectype, $string) -> hashref
Converts a Helix server form of the specified type (client/label etc.) held in the supplied string into a hash
and returns a reference to that hash. Shortcut methods are available to avoid the need to supply the type
argument. The following two examples are equivalent:

 my $hash = $p4->ParseSpec("client", $clientspec);

 my $hash = $p4->ParseClient($clientspec);

Important
Custom specifications require that you call Fetch first so that the specDefs can be determined
by the API and later used by ParseSpec.

P4::Run<Cmd>([$arg…​]) -> list | arrayref
Shorthand for running:

 $p4-Run("cmd", arg, ...);

and returning the results.

P4::Run("<cmd>", [$arg…​]) -> list | arrayref
Run a Helix Core command and return its results. Because Helix Core commands can partially succeed
and partially fail, it is good practice to check for errors using P4::ErrorCount().

Results are returned as follows:

 n A list of results in array context

 n An array reference in scalar context

The AutoLoader enables you to treat Helix Core commands as methods:

 p4->RunEdit("filename.txt");

69

Class P4

is equivalent to:

 $p4->Run("edit", "filename.txt");

Note that the content of the array of results you get depends on (a) whether you’re using tagged mode, (b)
the command you’ve executed, (c) the arguments you supplied, and (d) your Helix server version.

Tagged mode and form parsing mode are turned on by default; each result element is a hashref, but this is
dependent on the command you ran and your server version.

In non-tagged mode, each result element is a string. In this case, because the Helix server sometimes
asks the client to write a blank line between result elements, some of these result elements can be
empty.

Note that the return values of individual Helix Core commands are not documented because they may
vary between server releases.

To correlate the results returned by the P4 interface with those sent to the command line client, try
running your command with RPC tracing enabled. For example:

Tagged mode: p4 -Ztag -vrpc=1 describe -s 4321

Non-Tagged mode: p4 -vrpc=1 describe -s 4321

Pay attention to the calls to client-FstatInfo(), client-OutputText(), client-
OutputData() and client-HandleError(). Each call to one of these functions results in
either a result element, or an error element.

P4::RunFilelog([$args …​], $fileSpec …​) -> list | arrayref
Runs a p4 filelog on the fileSpec provided and returns an array of P4::DepotFile objects
when executed in tagged mode.

P4::RunLogin(…​) -> list | arrayref
Runs p4 login using a password or ticket set by the user.

P4::RunPassword($oldpass, $newpass) -> list | arrayref
A thin wrapper for changing your password from $oldpass to $newpass. Not to be confused with
P4::SetPassword().

P4::RunResolve([$resolver], [$args …​]) -> string
Run a p4 resolve command. Interactive resolves require the $resolver parameter to be an
object of a class derived from P4::Resolver. In these cases, the P4::Resolve() method of
this class is called to handle the resolve. For example:

 $resolver = new MyResolver;

 $p4->RunResolve($resolver);

To perform an automated merge that skips whenever conflicts are detected:

70

Class P4

 use P4;

 package MyResolver;

 our @ISA = qw(P4::Resolver);

 sub Resolve($) {

 my $self = shift;

 my $mergeData = shift;

 # "s"kip if server-recommended hint is to "e"dit the file,

 # because such a recommendation implies the existence of a conflict

 return "s" if ($mergeData->Hint() eq "e");

 return $mergeData->Hint();

 }

 1;

 package main;

 $p4 = new P4;

 $resolver = new MyResolver;

 $p4->Connect() or die("Failed to connect to Perforce");

 $p4->RunResolve($resolver, ...);

In non-interactive resolves, no P4::Resolver object is required. For example:

 $p4->RunResolve("at");

P4::RunSubmit($arg | $hashref, …​) -> list | arrayref
Submit a changelist to the server. To submit a changelist, set the fields of the changelist as required and
supply any flags:

 $change = $p4->FetchChange();

 $change->{ 'Description' } = "Some description";

 $p4->RunSubmit("-r", $change);

You can also submit a changelist by supplying the arguments as you would on the command line:

 $p4->RunSubmit("-d", "Some description", "somedir/...");

71

Class P4

P4::RunTickets() -> list
Get a list of tickets from the local tickets file. Each ticket is a hash object with fields for Host, User,
and Ticket.

P4::Save<Spectype>() -> list | arrayref
Shorthand for running:

 $p4->SetInput($spectype);

 $p4->Run("<spectype>", "-i");

For example:

 $p4->SaveLabel($label);

 $p4->SaveChange($changeno);

 $p4->SaveClient($clientspec);

P4::ServerCaseSensitive() -> integer
Returns an integer specifying whether or not the server is case-sensitive.

P4::ServerLevel() -> integer
Returns an integer specifying the server protocol level. This is not the same as, but is closely aligned to,
the server version. To find out your server’s protocol level, run p4 -vrpc=5 info and look for the
server2 protocol variable in the output. For more information, see:

http://kb.perforce.com/article/571

P4::ServerUnicode() -> integer
Returns an integer specifying whether or not the server is in Unicode mode.

P4::SetApiLevel($integer) -> undef
Specify the API compatibility level to use for this script. This is useful when you want your script to
continue to work on newer server versions, even if the new server adds tagged output to previously
unsupported commands.

The additional tagged output support can change the server’s output, and confound your scripts. Setting
the API level to a specific value allows you to lock the output to an older format, thus increasing the
compatibility of your script.

Must be called before calling P4::Connect(). For example:

 $p4->SetApiLevel(67); # Lock to 2010.1 format

 $p4->Connect() or die("Failed to connect to Perforce");

 # etc.

72

http://kb.perforce.com/article/571

Class P4

P4::SetCharset($charset) -> undef
Specify the character set to use for local files when used with aHelix server running in unicode mode. Do
not use unless yourHelix serveris in unicode mode. Must be called before calling P4::Connect().
For example:

 $p4->SetCharset("winansi");

 $p4->SetCharset("iso8859-1");

 $p4->SetCharset("utf8");

 # etc.

P4::SetClient($client) -> undef
Sets the name of your Helix Core client workspace. If you don’t call this method, then the client
workspace name will default according to the normal Helix Core conventions:

 1. Value from file specified by P4CONFIG

 2. Value from $ENV{P4CLIENT}

 3. Hostname

P4::SetCwd($path) -> undef
Sets the current working directory for the client.

P4::SetEnv($var, $value) -> undef
On Windows or OS X, set a variable in the registry or user preferences. To unset a variable, pass an
empty string as the second argument. On other platforms, an exception is raised.

 $p4->SetEnv("P4CLIENT", "my_workspace");

 $P4->SetEnv("P4CLIENT", "");

P4::SetHandler(Handler) -> Handler
Sets the output handler.

P4::SetHost($hostname) -> undef
Sets the name of the client host, overriding the actual hostname. This is equivalent to p4 -H
hostname, and only useful when you want to run commands as if you were on another machine.

P4::SetInput($string | $hashref | $arrayref) -> undef
Save the supplied argument as input to be supplied to a subsequent command. The input may be a
hashref, a scalar string, or an array of hashrefs or scalar strings. If you pass an array, the array will be
shifted once each time the Helix Core command being executed asks for user input.

73

Class P4

P4::SetMaxLockTime($integer) -> undef
Limit the amount of time (in milliseconds) spent during data scans to prevent the server from locking
tables for too long. Commands that take longer than the limit will be aborted. The limit remains in force
until you disable it by setting it to zero. See p4 help maxresults for information on the
commands that support this limit.

P4::SetMaxResults($integer) -> undef
Limit the number of results for subsequent commands to the value specified. Helix Core will abort the
command if continuing would produce more than this number of results. Once set, this limit remains in
force unless you remove the restriction by setting it to a value of 0.

P4::SetMaxScanRows($integer) -> undef
Limit the number of records Helix Core will scan when processing subsequent commands to the value
specified. Helix Core will abort the command once this number of records has been scanned. Once set,
this limit remains in force unless you remove the restriction by setting it to a value of 0.

P4::SetPassword($password) -> undef
Specify the password to use when authenticating this user against the Helix Versioning Engine -
overrides all defaults. Not to be confused with P4::Password().

P4::SetPort($port) -> undef
Set the port on which your Helix server is listening. Defaults to:

 1. Value from file specified by P4CONFIG

 2. Value from $ENV{P4PORT}

 3. perforce:1666

P4::SetProg($program_name) -> undef
Set the name of your script. This value is displayed in the server log on 2004.2 or later servers.

P4::SetProgress(Progress) -> Progress
Sets the progress indicator.

P4::SetStreams(0 | 1) -> undef
Enable or disable support for streams. By default, streams support is enabled at 2011.1 or higher
(P4::GetApiLevel() >= 70). Streams support requires a server at 2011.1 or higher. You can
enable or disable support for streams both before and after connecting to the server.

74

Class P4

P4::SetTicketFile([$string]) -> string
Set the path to the current P4TICKETS file (and return it).

P4::SetTrack(0 | 1) -> undef
Enable (1) or disable (0) server performance tracking for this connection. By default, performance
tracking is disabled.

P4::SetUser($username) -> undef
Set your Helix Core username. Defaults to:

 1. Value from file specified by P4CONFIG

 2. Value from C<$ENV{P4USER}>

 3. OS username

P4::SetVersion($version) -> undef
Specify the version of your script, as recorded in the Helix server log file.

P4::Tagged(0 | 1 | $coderef) -> undef
Enable (1) or disable (0) tagged output from the server, or temporarily toggle it.

By default, tagged output is enabled, but can be disabled (or re-enabled) by calling this method. If you
provide a code reference, you can run a subroutine with the tagged status toggled for the duration of that
reference. For example:

 my $GetChangeCounter = sub{ $p4->RunCounter('change')->[0]);

 my $changeno = $p4->Tagged(0, $GetChangeCounter);

When running in tagged mode, responses from commands that support tagged output will be returned in
the form of a hashref. When running in non-tagged mode, responses from commands are returned in the
form of strings (that is, in plain text).

P4::TrackOutput() -> list
If performance tracking is enabled with P4::SetTrack(), returns a list of strings corresponding to
the performance tracking output of the most recently-executed command.

P4::WarningCount() -> integer
Returns the number of warnings issued by the last command.

 $p4->WarningCount();

75

Class P4::DepotFile

P4::Warnings() -> list
Returns a list of warning strings from the last command

 $p4->Warnings();

Class P4::DepotFile

Description
P4::DepotFile objects are used to present information about files in the Helix Core repository. They
are returned by P4::RunFilelog().

Class Methods
None.

Instance Methods

$df->DepotFile() -> string
Returns the name of the depot file to which this object refers.

$df->Revisions() -> array
Returns an array of P4::Revision objects, one for each revision of the depot file.

Class P4::Revision

Description
P4::Revision objects are represent individual revisions of files in the Helix Core repository. They
are returned as part of the output of P4::RunFilelog().

Class Methods

$rev->Integrations() -> array
Returns an array of P4::Integration objects representing all integration records for this revision.

76

Class P4::Revision

Instance Methods

$rev->Action() -> string
Returns the name of the action which gave rise to this revision of the file.

$rev->Change() -> integer
Returns the changelist number that gave rise to this revision of the file.

$rev->Client() -> string
Returns the name of the client from which this revision was submitted.

$rev->DepotFile() -> string
Returns the name of the depot file to which this object refers.

$rev->Desc() -> string
Returns the description of the change which created this revision. Note that only the first 31 characters
are returned unless you use p4 filelog -L for the first 250 characters, or p4 filelog -l for
the full text.

$rev->Digest() -> string
Returns the MD5 digest for this revision.

$rev->FileSize() -> string
Returns the size of this revision.

$rev->Rev() -> integer
Returns the number of this revision of the file.

$rev->Time() -> string
Returns the date/time that this revision was created.

$rev->Type() -> string
Returns this revision’s Helix Core filetype.

$rev->User() -> string
Returns the name of the user who created this revision.

77

Class P4::Integration

Class P4::Integration

Description
P4::Integration objects represent Helix Core integration records. They are returned as part of the
output of P4::RunFilelog().

Class Methods
None.

Instance Methods

$integ->How() -> string
Returns the type of the integration record - how that record was created.

$integ->File() -> string
Returns the path to the file being integrated to/from.

$integ->SRev() -> integer
Returns the start revision number used for this integration.

$integ->ERev() -> integer
Returns the end revision number used for this integration.

Class P4::Map

Description
The P4::Map class allows users to create and work with Helix Core mappings, without requiring a
connection to a Helix server.

Class Methods

$map = new P4::Map([array]) -> aMap
Constructs a new P4::Map object.

$map->Join(map1, map2) -> aMap
Join two P4::Map objects and create a third.

78

Class P4::Map

The new map is composed of the left-hand side of the first mapping, as joined to the right-hand side of the
second mapping. For example:

 # Map depot syntax to client syntax

 $client_map = new P4::Map;

 $client_map->Insert("//depot/main/...", "//client/...");

 # Map client syntax to local syntax

 $client_root = new P4::Map;

 $client_root->Insert("//client/...", "/home/bruno/workspace/...");

 # Join the previous mappings to map depot syntax to local syntax

 $local_map = P4::Map::Join($client_map, $client_root);

 $local_path = $local_map->Translate("//depot/main/www/index.html");

 # $local_path is now /home/bruno/workspace/www/index.html

Instance Methods

$map->Clear() -> undef
Empty a map.

$map->Count() -> integer
Return the number of entries in a map.

$map->IsEmpty() -> bool
Test whether a map object is empty.

$map->Insert(string …​) -> undef
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

 # called with two arguments:

 $map->Insert("//depot/main/...", "//client/...");

79

Class P4::MergeData

 # called with one argument containing both halves of the mapping:

 $map->Insert("//depot/live/... //client/live/...");

 # called with one argument containing a half-map:

 # This call produces the mapping "depot/... depot/..."

 $map->Insert("depot/...");

$map->Translate(string, [bool]) -> string
Translate a string through a map, and return the result. If the optional second argument is 1, translate
forward, and if it is 0, translate in the reverse direction. By default, translation is in the forward direction.

$map->Includes(string) -> bool
Tests whether a path is mapped or not.

 if ($map->Includes("//depot/main/...")) {

 ...

 }

$map->Reverse() -> aMap
Return a new P4::Map object with the left and right sides of the mapping swapped. The original object
is unchanged.

$map->Lhs() -> array
Returns the left side of a mapping as an array.

$map->Rhs() -> array
Returns the right side of a mapping as an array.

$map->AsArray() -> array
Returns the map as an array.

Class P4::MergeData

Description
Class containing the context for an individual merge during execution of a p4 resolve. Users may
not create objects of this class; they are created internally during P4::RunResolve(), and passed
down to the Resolve() method of a P4::Resolver subclass.

80

Class P4::MergeData

Class Methods
None.

Instance Methods

$md.YourName() -> string
Returns the name of "your" file in the merge, in client syntax.

$md.TheirName() -> string
Returns the name of "their" file in the merge, in client syntax, including the revision number.

$md.BaseName() -> string
Returns the name of the "base" file in the merge, in depot syntax, including the revision number.

$md.YourPath() -> string
Returns the path of "your" file in the merge. This is typically a path to a file in the client workspace.

$md.TheirPath() -> string
Returns the path of "their" file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData::TheirName() have been loaded.

$md.BasePath() -> string
Returns the path of the base file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of P4::MergeData::BaseName() have been loaded.

$md.ResultPath() -> string
Returns the path to the merge result. This is typically a path to a temporary file on your local machine in
which the contents of the automatic merge performed by the server have been loaded.

$md.MergeHint() -> string
Returns a string containing the hint from Helix Core’s merge algorithm, indicating the recommended
action for performing the resolve.

$md.RunMergeTool() -> integer
If the environment variable P4MERGE is defined, P4::MergeData::RunMergeTool() invokes
the specified program and returns true if the merge tool was successfully executed, otherwise returns
false.

81

Class P4::Message

$md.MergeType() -> string
Returns a string describing the merge type, such as Branch resolve.

$md.YourAction() -> string
Returns the name of "your" action, such as ignore.

$md.TheirAction() -> string
Returns the name of "their" action, such as branch.

$md.MergeAction() -> string
Returns the name of the action used in the merge. For example, if TheirAction is branch and
YourAction is ignore, then if you choose yours, you get an ignore, and if you choose theirs, you
get a branch.

$md.MergeInfo() -> string
Returns an object containing details about the resolve. For example:

'clientFile' => '/Users/jdoe/Workspaces/main.p4-

perl/test/resolve/action/file-88.txt',

'fromFile' => '//depot/projA/src/file-88.txt',

'startFromRev' => 'none',

'resolveType' => 'branch',

'resolveFlag' => 'b',

'endFromRev' => '2'

Class P4::Message

Description
P4::Message objects contain error or other diagnostic messages from the Helix Versioning Engine;
they are returned by P4::Messages().

Script writers can test the severity of the messages in order to determine if the server message consisted
of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED/E_FATAL).

Class methods
None.

82

Class P4::OutputHandler

Instance methods

$message.GetSeverity() -> int
Severity of the message, which is one of the following values:

Value Meaning
E_EMPTY No error.

E_INFO Informational message only.

E_WARN Warning message only.

E_FAILED Command failed.

E_FATAL Severe error; cannot continue.

$message.GetGeneric() -> int
Returns the generic class of the error.

$message.GetId() -> int
Returns the unique ID of the message.

$message.GetText() -> int
Converts the message into a string.

Class P4::OutputHandler

Description
The P4::OutputHandler class provides access to streaming output from the server. After defining
the output handler, call P4::SetHandler() with your implementation of P4::OutputHandler.

Because P4Perl does not provide a template or superclass, your output handler must implement all five
of the following methods: OutputMessage(), OutputText(), OutputInfo(),
OutputBinary(), and OutputStat(), even if the implementation consists of trivially returning 0
(report only: don’t handle output, don’t cancel operation).

These methods must return one of the following four values:

Value Meaning
0 Messages added to output (don’t handle, don’t cancel).

83

Class P4::Progress

Value Meaning
1 Output is handled by class (don’t add message to output).

2 Operation is marked for cancel, message is added to output.

3 Operation is marked for cancel, message not added to output.

Class Methods
None.

Instance Methods

$handler.OutputBinary() -> int
Process binary data.

$handler.OutputInfo() -> int
Process tabular data.

$handler.OutputMessage() -> int
Process informational or error messages.

$handler.OutputStat()-> int
Process tagged data.

$handler.OutputText() -> int
Process text data.

Class P4::Progress

Description
The P4::Progress provides access to progress indicators from the server. After defining the
progress class, call P4::SetProgress() with your implementation of P4::Progress.

Because P4Perl does not provide a template or superclass, you must implement all five of the following
methods: Init(), Description(), Update(), Total(), and Done(), even if the
implementation consists of trivially returning 0.

84

Class P4::Resolver

Class Methods
None.

Instance Methods

$progress.Init() -> int
Initialize progress indicator.

$progress.Description(string, int) -> int
Description and type of units to be used for progress reporting.

$progress.Update() -> int
If non-zero, user has requested a cancellation of the operation.

$progress.Total()-> int
Total number of units expected (if known).

$progress.Done() -> int
If non-zero, operation has failed.

Class P4::Resolver

Description
P4::Resolver is a class for handling resolves in Helix Core. It is intended to be subclassed, and for
subclasses to override the Resolve() method. When P4::RunResolve() is called with a
P4::Resolver object, it calls the P4::Resolver::Resolve() method of the object once for
each scheduled resolve.

Class Methods

$actionResolve() -> string
Enables support for resolves of branches, deletes, and file types. This method is invoked if an action
resolve is required. It lets you add a callback in your Resolver implementation to determine what the
resolve action should be after the automatic resolver has evaluated it. This is similar to resolves in P4V,
when you are prompted to select what you want to do, given what the automatic resolver suggested. The
$resolver->ActionResolve() method receives an argument (mergeData) and lets you
return a string that specifies what to do. See $resolver.Resolve() for available strings.

85

Class P4::Spec

The following example counts the number of times it has been called (line 5), stores the mergeData
from the autoresolver (type, hint, and info) and returns what the automatic resolver suggested
(hint) on line 10 as the answer.

sub ActionResolve($) {

 my $self = shift;

 my $mergeData = shift;

 $self->{'ActionResolve'} += 1;

 $self->{'type'} = $mergeData->Type();

 $self->{'hint'} = $mergeData->MergeHint();

 $self->{'info'} = $mergeData->MergeInfo();

 return $mergeData->MergeHint();

}

Instance Methods

$resolver.Resolve() -> string
Returns the resolve decision as a string. The standard Helix Core resolve strings apply:

String Meaning
ay Accept Yours.

at Accept Theirs.

am Accept Merge result.

ae Accept Edited result.

s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The
P4::Resolver::Resolve() method is called with a single parameter, which is a reference to a
P4::MergeData object.

Class P4::Spec

Description
P4::Spec objects provide easy access to the attributes of the fields in a Helix server form.

86

Class P4::Spec

The P4::Spec class uses Perl’s AutoLoader to simplify form manipulation. Form fields can be
accessed by calling a method with the same name as the field prefixed by an underscore (_).

Class Methods

$spec = new P4::Spec($fieldMap) -> array
Constructs a new P4::Spec object for a form containing the specified fields. (The object also contains
a fields member that stores a list of field names that are valid in forms of this type.)

Instance Methods

$spec->_<fieldname> -> string
Returns the value associated with the field named <fieldname>.

 $client = $p4->FetchClient($clientname);

 $client->_Root(); # Get client root

$spec->_<fieldname>($string)-> string
Updates the value of the named field in the spec.

 $client = $p4->FetchClient($clientname);

 $client->_Root($newroot); # Set client root

$spec->PermittedFields() -> array
Returns an array containing the names of fields that are valid in this spec object. This does not imply that
values for all of these fields are actually set in this object, merely that you may choose to set values for
any of these fields if you want to.

my $client = $p4->FetchClient($clientname);

my @permitted = $client->PermittedFields();

foreach $field (@permitted) {

print "$field\n";

}

87

P4Python

Introduction
P4Python, the Python interface to the Helix C/C++ API, enables you to write Python code that interacts
with aHelix server. P4Python enables your Python scripts to:

 n Get Helix Core data and forms in dictionaries and lists.

 n Edit Helix Core forms by modifying dictionaries.

 n Provide exception-based error handling and optionally ignore warnings.

 n Issue multiple commands on a single connection (performs better than spawning single
commands and parsing the results).

System Requirements and Release Notes
P4Python is supported on Windows, Linux, Solaris, OS X, and FreeBSD.

For system requirements, see the release notes at
https://www.perforce.com/perforce/doc.current/user/p4pythonnotes.txt.

Note
When passing arguments, make sure to omit the space between the argument and its value, such as
in the value pair -u and username in the following example:

anges = p4.run_changes("-uusername", "-m1").shift

If you include a space ("-u username"), the command fails.

Installing P4Python

Important
Before installing P4Python, any previously installed versions should be uninstalled.

As of P4Python 2015.1, the recommended mechanism for installing P4Python is via pip. For example:

 $ pip install p4python

pip installs binary versions of P4Python where possible, otherwise it attempts to automatically build
P4Python from source.

Windows users can download an installer containing pre-built packages for P4Python from the Perforce
web site at https://www.perforce.com/downloads/helix-core-api-python.

88

https://www.perforce.com/perforce/doc.current/user/p4pythonnotes.txt
https://www.perforce.com/downloads/helix-core-api-python

Programming with P4Python

Note
When P4Python is built without the --apidir option, setup attempts to connect to
ftp.perforce.com to download the correct version of the P4API binary. If the P4API download is
successful, it is unpacked into a temporary directory.

When P4Python is built and the --ssl is provided without a path, setup attempts to determine the
correct path of the installed OpenSSL libraries by executing openssl version.

Programming with P4Python
P4Python provides an object-oriented interface to Helix Core that is intended to be intuitive for Python
programmers. Data is loaded and returned in Python arrays and dictionaries. Each P4 object represents
a connection to the Helix server.

When instantiated, the P4 instance is set up with the default environment settings just as the command
line client p4, that is, using environment variables, the registry or user preferences (on Windows and OS
X) and, if defined, the P4CONFIG file. The settings can be checked and changed before the connection
to the server is established with the P4.connect() method. After your script connects, it can send
multiple commands to the Helix server with the same P4 instance. After the script is finished, it should
disconnect from the server by calling the P4.disconnect() method.

The following example illustrates the basic structure of a P4Python script. The example establishes a
connection, issues a command, and tests for errors resulting from the command.

 from P4 import P4,P4Exception # Import the module

 p4 = P4() # Create the P4 instance

 p4.port = "1666"

 p4.user = "fred"

 p4.client = "fred-ws" # Set some environment variables

 try: # Catch exceptions with try/except

 p4.connect() # Connect to the Perforce server

 info = p4.run("info") # Run "p4 info" (returns a dict)

 for key in info[0]: # and display all key-value pairs

 print key, "=", info[0][key]

 p4.run("edit", "file.txt") # Run "p4 edit file.txt"

 p4.disconnect() # Disconnect from the server

 except P4Exception:

 for e in p4.errors: # Display errors

 print e

This example creates a client workspace from a template and syncs it:.

89

ftp://ftp.perforce.com/

Submitting a Changelist

 from P4 import P4, P4Exception

 template = "my-client-template"

 client_root = "C:\work\my-root"

 p4 = P4()

 try:

 p4.connect()

 # Retrieve client spec as a Python dictionary

 client = p4.fetch_client("-t", template)

 client._root = client_root

 p4.save_client(client)

 p4.run_sync()

 except P4Exception:

 # If any errors occur, we'll jump in here. Just log them

 # and raise the exception up to the higher level

Note
When extending the P4 class, be sure to match the method signatures used in the default class.
P4Python uses both variable length arguments (*args) and keyword arguments (**kwargs).
Review the P4.py in the source bundle for specifics. Example code:

class MyP4(P4.P4):

 def run(self, *args, **kargs):

 P4.P4.run(self, *args, **kargs)

Submitting a Changelist
This example creates a changelist, modifies it and then submits it:.

 from P4 import P4

 p4 = P4()

 p4.connect()

 change = p4.fetch_change()

 # Files were opened elsewhere and we want to

90

Logging into Helix Core using ticket-based authentication

 # submit a subset that we already know about.

 myfiles = ['//depot/some/path/file1.c', '//depot/some/path/file1.h']

 change._description = "My changelist\nSubmitted from P4Python\n"

 change._files = myfiles # This attribute takes a Python list

 p4.run_submit(change)

Logging into Helix Core using ticket-based authentication
On some servers, users might need to log in to Helix Core before issuing commands. The following
example illustrates login using Helix Core tickets.

 from P4 import P4

 p4 = P4()

 p4.user = "bruno"

 p4.password = "my_password"

 p4.connect()

 p4.run_login()

 opened = p4.run_opened()

 ...

Connecting to Helix Core over SSL
Scripts written with P4Python use any existing P4TRUST file present in their operating environment (by
default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file associated
with the script’s run-time environment, your script will (and should!) fail to connect to the server.

Changing your password
You can use P4Python to change your password, as shown in the following example:

 from P4 import P4

 p4 = P4()

 p4.user = "bruno"

 p4.password = "MyOldPassword"

91

Timestamp conversion

 p4.connect()

 p4.run_password("MyOldPassword", MyNewPassword")

 # p4.password is automatically updated with the encoded password

Timestamp conversion
Timestamp information in P4Python is normally represented as seconds since Epoch (with the exception
of P4.Revision). To convert this data to a more useful format, use the following procedure:

 import datetime

 ...

 myDate = datetime.datetime.utcfromtimestamp(int(timestampValue))

Working with comments in specs
As of P4Python 2012.3, comments in specs are preserved in the parse_<spectype>() and
format_<spectype>() methods. This behavior can be circumvented by using parse_spec(
'<spectype>', spec) and format_spec('<spectype>', spec) instead of
parse_<spectype>(spec) and format_<spectype>(spec). For example:

 p4 = P4()

 p4.connect()

 ...

 # fetch a client spec in raw format, no formatting:

 specform = p4.run('client', '-o', tagged=False)[0]

 # convert the raw document into a spec

 client1 = p4.parse_client(specform)

 # comments are preserved in the spec as well

 print(client1.comment)

 # comments can be updated

92

P4Python Classes

 client1.comment += "# ... and now for something completely different"

 # the comment is prepended to the spec ready to be sent to the user

 formatted1 = p4.format_client(client1)

 # or you can strip the comments

 client2 = p4.parse_spec('client', specform)

 formatted2 = p4.format_spec('client', specform)

P4Python Classes
The P4 module consists of several public classes:

 n P4

 n P4.P4Exception

 n P4.DepotFile

 n P4.Revision

 n P4.Integration

 n P4.Map

 n P4.MergeData

 n P4.Message

 n P4.OutputHandler

 n P4.Progress

 n P4.Resolver

 n P4.Spec

The following tables provide more details about each public class, including methods and attributes.
Attributes are readable and writable unless indicated otherwise. They can be strings, objects, or integers.

You can set attributes in the P4() constructor or by using their setters and getters. For example:

import P4

p4 = P4.P4(client="myclient", port="1666")

p4.user = 'me'

P4
Helix Core client class. Handles connection and interaction with the Helix server. There is one instance
of each connection.

93

P4

The following table lists attributes of the class P4 in P4Python.

Attribute Description
api_level API compatibility level. (Lock server output to a specified server level.)

charset Charset for Unicode servers.

client P4CLIENT, the name of the client workspace to use.

cwd Current working directory.

disable_
tmp_cleanup

Disable cleanup of temporary objects.

encoding Encoding to use when receiving strings from a non-Unicode server. If unset,
use UTF8. Can be set to a legal Python encoding, or to raw to receive Python
bytes instead of Unicode strings. Requires Python 3.

errors An array containing the error messages received during execution of the last
command.

exception_
level

The exception level of the P4 instance. Values can be:

 n 0 : no exceptions are raised.

 n 1 : only errors are raised as exceptions.

 n 2 : warnings are also raised as exceptions.

The default value is 2.

handler An output handler.

host P4HOST, the name of the host used.

ignore_file The path of the ignore file, P4IGNORE.

input Input for the next command. Can be a string, a list or a dictionary.

maxlocktime MaxLockTime used for all following commands

maxresults MaxResults used for all following commands

maxscanrows MaxScanRows used for all following commands.

messages An array of P4.Message objects, one for each message sent by the server.

p4config_
file

The location of the configuration file used (P4CONFIG). This attribute is read-
only.

password P4PASSWD, the password used.

port P4PORT, the port used for the connection.

prog The name of the script.

94

P4

Attribute Description
progress A progress indicator.

server_
case_
insensitive

Detect whether or not the server is case sensitive.

server_
level

Returns the current Helix server level.

server_
unicode

Detect whether or not the server is in Unicode mode.

streams To disable streams support, set the value to 0 or False. By default, streams
output is enabled for servers at 2011.1 or higher.

tagged To disable tagged output for the following commands, set the value to 0 or
False. By default, tagged output is enabled.

track To enable performance tracking for the current connection, set the value to 1 or
True. By default, server tracking is disabled.

track_
output

If performance tracking is enabled, returns an array containing performance
tracking information received during execution of the last command.

ticket_file P4TICKETS, the ticket file location used.

user P4USER, the user under which the connection is run.

version The version of the script.

warnings An array containing the warning messages received during execution of the last
command.

The following table lists all public methods of the class P4. Many methods are wrappers around
P4.run(), which sends a command to Helix server. Such methods are provided for your convenience.

Method Description
at_
exception_
level()

In the context of a with statement, temporarily set the exception level for the
duration of a block.

clone() Clones from another Perforce service into a local Perforce service, and returns a
new P4 object.

connect() Connects to the Helix server.

connected
()

Returns True if connected and the connection is alive, otherwise False.

95

P4

Method Description
delete_
<spectype>
()

Deletes the spec <spectype>. Equivalent to:

 P4.run("<spectype>", "-d")

disconnect
()

Disconnects from the Helix server.

env() Get the value of a Helix Core environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user preferences.

fetch_
<spectype>
()

Fetches the spec <spectype>. Equivalent to:

 p4.run("<spectype>", "-o").pop(0)

format_
<spectype>
()

Converts the spec <spectype> into a string.

identify() Returns a string identifying the P4Python module.

init() Initializes a new personal (local) Helix server, and returns a new P4 object.

is_ignored
()

Determines whether a particular file is ignored via the P4IGNORE feature.

iterate_
<spectype>
()

Iterate through specs of form <spectype>.

P4() Returns a new P4 object.

parse_
<spectype>
()

Parses a string representation of the spec <spectype> and returns a dictionary.

run() Runs a command on the server. Needs to be connected, or an exception is
raised.

run_cmd() Runs the command cmd. Equivalent to:

 P4.run("command")

run_
filelog()

This command returns a list of P4.DepotFile objects. Specialization for the
P4.run() method.

run_login
()

Logs in using the specified password or ticket.

run_
password()

Convenience method: updates the password. Takes two arguments:
oldpassword, newpassword

96

P4.P4Exception

Method Description
run_
resolve()

Interface to p4 resolve.

run_submit
()

Convenience method for submitting changelists. When invoked with a change
spec, it submits the spec. Equivalent to:

 p4.input = myspecp4.run("submit", "-i")

run_
tickets()

Interface to p4 tickets.

save_
<spectype>
()

Saves the spec <spectype>. Equivalent to:

 P4.run("<spectype>", "-i")

set_env() On Windows or OS X, set a variable in the registry or user preferences.

temp_
client()

Creates a temporary client.

while_
tagged()

In the context of a with statement, temporarily toggle tagged behavior for the
duration of a block.

P4.P4Exception
Exception class. Instances of this class are raised when errors and/or (depending on the exception_
level setting) warnings are returned by the server. The exception contains the errors in the form of a
string. P4Exception is a subclass of the standard Python Exception class.

P4.DepotFile
Container class returned by P4.run_filelog(). Contains the name of the depot file and a list of
P4.Revision objects.

Attribute Description
depotFile Name of the depot file.

revisions List of P4.Revision objects

P4.Revision
Container class containing one revision of a P4.DepotFile object.

97

P4.Integration

Attribute Description
action Action that created the revision.

change Changelist number

client Client workspace used to create this revision.

desc Short change list description.

depotFile The name of the file in the depot.

digest MD5 digest of the revision.

fileSize File size of this revision.

integrations List of P4.Integration objects.

rev Revision.

time Timestamp (as datetime.datetime object)

type File type.

user User that created this revision.

P4.Integration
Container class containing one integration for a P4.Revision object.

Attribute Description
how Integration method (merge/branch/copy/ignored).

file Integrated file.

srev Start revision.

erev End revision.

P4.Map
A class that allows users to create and work with Helix Core mappings without requiring a connection to
the Helix server.

Method Description
P4.Map() Construct a new Map object (class method).

join() Joins two maps to create a third (class method).

98

P4.MergeData

Method Description
clear() Empties a map.

count() Returns the number of entries in a map.

is_empty() Tests whether or not a map object is empty.

insert() Inserts an entry into the map.

translate() Translate a string through a map.

includes() Tests whether a path is mapped.

reverse() Returns a new mapping with the left and right sides reversed.

lhs() Returns the left side as an array.

rhs() Returns the right side as an array.

as_array() Returns the map as an array

P4.MergeData
Class encapsulating the context of an individual merge during execution of a p4 resolve command.
Passed to P4.run_resolve().

Attribute Description
your_
name

Returns the name of "your" file in the merge. (file in workspace)

their_
name

Returns the name of "their" file in the merge. (file in the depot)

base_
name

Returns the name of "base" file in the merge. (file in the depot)

your_
path

Returns the path of "your" file in the merge. (file in workspace)

their_
path

Returns the path of "their" file in the merge. (temporary file on workstation into which
their_name has been loaded)

base_
path

Returns the path of the base file in the merge. (temporary file on workstation into
which base_name has been loaded)

result_
path

Returns the path to the merge result. (temporary file on workstation into which the
automatic merge performed by the server has been loaded)

merge_
hint

Returns hint from server as to how user might best resolve merge.

99

P4.Message

The P4.MergeData class also has one method:

run_
merge()

If the environment variable P4MERGE is defined, run it and return a boolean based on
the return value of that program.

P4.Message
Class for handling error messages in Helix Core.

Method Description
severity Returns the severity of the message.

generic Returns the generic class of the error.

msgid Returns the unique ID of the error message.

P4.OutputHandler
Handler class that provides access to streaming output from the server; set P4.handler to an
instance of a subclass of P4.OutputHandler to enable callbacks:

Method Description
outputBinary Process binary data.

outputInfo Process tabular data.

outputMessage Process information or errors.

outputStat Process tagged output.

outputText Process text data.

P4.Progress
Handler class that provides access to progress indicators from the server; set P4.progress to an
instance of a subclass of P4.Progress to enable callbacks:

Method Description
init() Initialize progress indicator as designated type.

setTotal() Total number of units (if known).

setDescription() Description and type of units to be used for progress reporting.

100

P4.Resolver

Method Description
update() If non-zero, user has requested a cancellation of the operation.

done() If non-zero, operation has failed.

P4.Resolver
Class for handling resolves in Helix Core.

Method Description
resolve() Perform a resolve and return the resolve decision as a string.

P4.Spec
Class allowing access to the fields in a Helix server specification form.

Attribute Description
_fieldname Value associated with the field named fieldname.

comments Array containing comments in a spec object.

permitted_
fields

Array containing the names of the fields that are valid for this spec
object.

Class P4

Description
Main interface to the Python client API.

This module provides an object-oriented interface to Helix Core, the Perforce version constrol system.
Data is returned in Python arrays and dictionaries (hashes) and input can also be supplied in these
formats.

Each P4 object represents a connection to the Helix server, and multiple commands may be executed
(serially) over a single connection (which of itself can result in substantially improved performance if
executing long sequences of Helix Core commands).

101

Class P4

 1. Instantiate your P4 object.

 2. Specify your Helix Core client environment:

 n client

 n host

 n password

 n port

 n user

 3. Set any options to control output or error handling:

 n exception_level

 4. Connect to the Perforce service.

The Helix Core protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including P4Python)
should ensure that a separate connection is used for each thread, or that only one thread may use
a shared connection at a time.

 5. Run your Helix Core commands.

 6. Disconnect from the Perforce service.

Instance Attributes

p4.api_level -> int
Contains the API compatibility level desired. This is useful when writing scripts using Helix Core
commands that do not yet support tagged output. In these cases, upgrading to a later server that
supports tagged output for the commands in question can break your script. Using this method allows
you to lock your script to the output format of an older Helix Core release and facilitate seamless
upgrades. Must be called before calling P4.connect().

 from P4 import P4

 p4 = P4()

 p4.api_level = 67 # Lock to 2010.1 format

 p4.connect()

 ...

 p4.disconnect

For the API integer levels that correspond to each Helix Core release, see:

http://kb.perforce.com/article/512

102

http://kb.perforce.com/article/512

Class P4

p4.charset -> string
Contains the character set to use when connecting to a Unicode enabled server. Do not use when
working with non-Unicode-enabled servers. By default, the character set is the value of the
P4CHARSET environment variable. If the character set is invalid, this method raises a
P4Exception.

 from P4 import P4

 p4 = P4()

 p4.client = "www"

 p4.charset = "iso8859-1"

 p4.connect()

 p4.run_sync()

 p4.disconnect()

p4.client -> string
Contains the name of your client workspace. By default, this is the value of the P4CLIENT taken from
any P4CONFIG file present, or from the environment according to the normal Helix Core conventions.

p4.cwd -> string
Contains the current working directly. Can be set prior to executing any Helix Core command.
Sometimes necessary if your script executes a chdir() as part of its processing.

 from P4 import P4

 p4 = P4()

 p4.cwd = "/home/bruno"

p4.disable_tmp_cleanup -> string
Invoke this prior to connecting if you need to use multiple P4 connections in parallel in a multi-threaded
Python application.

 from P4 import P4

 p4 = P4()

 p4.disable_tmp_cleanup()

 p4.connect()

 ...

 p4.disconnect()

103

Class P4

p4.encoding -> string
When decoding strings from a non-Unicode server, strings are assumed to be encoded in UTF8. To use
another encoding, set p4.encoding to a legal Python encoding, or raw to receive Python bytes
instead of a Unicode string. Available only when compiled with Python 3.

p4.errors -> list (read-only)
Returns an array containing the error messages received during execution of the last command.

 from P4 import P4, P4Exceptionp4 = P4()

 try:

 p4.connect()

 p4.exception_level = 1

 # ignore "File(s) up-to-date"s

 files = p4.run_sync()

 except P4Exception:

 for e in p4.errors:

 print e

 finally:

 p4.disconnect()

p4.exception_level -> int
Configures the events which give rise to exceptions. The following three levels are supported:

 n 0 : disables all exception handling and makes the interface completely procedural; you are
responsible for checking the p4.errors and p4.warnings arrays.

 n 1 : causes exceptions to be raised only when errors are encountered.

 n 2 : causes exceptions to be raised for both errors and warnings. This is the default.

For example:

 from P4 import P4

 p4 = P4()

 p4.exception_level = 1

 p4.connect() # P4Exception on failure

 p4.run_sync() # File(s) up-to-date is a warning - no exception raised

 p4.disconnect()

104

Class P4

p4.handler -> handler
Set the output handler to a subclass of P4.OutputHandler.

p4.host -> string
Contains the name of the current host. It defaults to the value of P4HOST taken from any P4CONFIG
file present, or from the environment as per the usual Helix Core convention. Must be called before
connecting to the Helix server.

 from P4 import P4

 p4 = P4()

 p4.host = "workstation123.perforce.com"

 p4.connect()

 ...

 p4.disconnect()

p4.ignore_file -> string
Contains the path of the ignore file. It defaults to the value of P4IGNORE. Set P4.ignore_file
prior to calling P4.is_ignored().

 from P4 import P4

 p4 = P4()

 p4.connect()

 p4.ignore_file = "/home/bruno/workspace/.ignore"

 p4.disconnect()

p4.input -> string | dict | list
Contains input for the next command.

Set this attribute prior to running a command that requires input from the user. When the command
requests input, the specified data is supplied to the command. Typically, commands of the form p4
cmd -i are invoked using the P4.save_<spectype>() methods, which retrieve the value from
p4.input internally; there is no need to set p4.input when using the P4.save_<spectype>
() shortcuts.

You may pass a string, a hash, or (for commands that take multiple inputs from the user) an array of
strings or hashes. If you pass an array, note that the first element of the array will be popped each time
Helix Core asks the user for input.

For example, the following code supplies a description for the default changelist and then submits it to the
depot:

 from P4 import P4

 p4 = P4()

105

Class P4

 p4.connect()

 change = p4.run_change("-o")[0]

 change["Description"] = "Autosubmitted changelist"

 p4.input = change

 p4.run_submit("-i")

 p4.disconnect()

p4.maxlocktime -> int
Limit the amount of time (in milliseconds) spent during data scans to prevent the server from locking
tables for too long. Commands that take longer than the limit will be aborted. The limit remains in force
until you disable it by setting it to zero. See p4 help maxlocktime for information on the
commands that support this limit.

p4.maxresults -> int
Limit the number of results Helix Core permits for subsequent commands. Commands that produce more
than this number of results will be aborted. The limit remains in force until you disable it by setting it to
zero. See p4 help maxresults for information on the commands that support this limit.

p4.maxscanrows -> int
Limit the number of database records Helix Core scans for subsequent commands. Commands that
attempt to scan more than this number of records will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxscanrows for information on the commands that
support this limit.

p4.messages -> list (read-only)
Returns a list of P4.Message objects, one for each message (info, warning or error) sent by the server.

p4.p4config_file -> string (read-only)
Contains the name of the current P4CONFIG file, if any. This attribute cannot be set.

p4.password -> string
Contains your Helix Core password or login ticket. If not used, takes the value of P4PASSWD from any
P4CONFIG file in effect, or from the environment according to the normal Helix Core conventions.

This password is also used if you later call p4.run_login() to log in using the 2003.2 and later
ticket system. After running p4.run_login(), the attribute contains the ticket allocated by the
server.

 from P4 import P4

 p4 = P4()

106

Class P4

 p4.password = "mypass"

 p4.connect()

 p4.run_login()

p4.port -> string
Contains the host and port of the Helix server to which you want to connect. It defaults to the value of
P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from the environment.

 from P4 import P4

 p4 = P4()

 p4.port = "localhost:1666"

 p4.connect()

 ...

p4.prog -> string
Contains the name of the program, as reported to Helix Core system administrators running p4
monitor show -e. The default is unnamed p4-python script.

 from P4 import P4

 p4 = P4()

 p4.prog = "sync-script"

 print p4.prog

 p4.connect

 ...

p4.progress -> progress
Set the progress indicator to a subclass of P4.Progress.

p4.server_case_insensitive -> boolean
Detects whether or not the server is case-sensitive.

p4.server_level -> int (read-only)
Returns the current Helix server level. Each iteration of the Helix server is given a level number. As part
of the initial communication this value is passed between the client application and the Helix server. This
value is used to determine the communication that the Helix server will understand. All subsequent
requests can therefore be tailored to meet the requirements of this server level.

This attribute is 0 before the first command is run, and is set automatically after the first communication
with the server.

107

Class P4

For the API integer levels that correspond to each Helix Core release, see:

http://kb.perforce.com/article/571

p4.server_unicode -> boolean
Detects whether or not the server is in Unicode mode.

p4.streams -> int
If 1 or True, p4.streams enables support for streams. By default, streams support is enabled at
2011.1 or higher (api_level >= 70). Raises a P4Exception if you attempt to enable streams on a
pre-2011.1 server. You can enable or disable support for streams both before and after connecting to the
server.

 from P4 import P4

 p4 = P4()

 p4.streams = False

 print p4.streams

p4.tagged -> int
If 1 or True, p4.tagged enables tagged output. By default, tagged output is on.

 from P4 import P4

 p4 = P4()

 p4.tagged = False

 print p4.tagged

p4.ticket_file -> string
Contains the location of the P4TICKETS file.

p4.track -> boolean
If set to 1 or True, p4.track indicates that server performance tracking is enabled for this connection.
By default, performance tracking is disabled.

p4.track_output -> list (read-only)
If performance tracking is enabled with p4.track, returns an array containing the performance data
received during execution of the last command.

 from P4 import P4

 p4 = P4()

 p4.track = 1

108

http://kb.perforce.com/article/571

Class P4

 p4.run_info()

 print p4.track_output

p4.user -> string
Contains the Helix Core username. It defaults to the value of P4USER taken from any P4CONFIG file
present, or from the environment as per the usual Helix Core convention.

 from P4 import P4

 p4 = P4()

 p4.user = "bruno"

 p4.connect()

 ...

 p4.disconnect()

p4.version -> string
Contains the version of the program, as reported to Helix Core system administrators in the server log.

 from P4 import P4

 p4 = P4()

 p4.version = "123"

 print p4.version

 p4.connect()

 ...

 p4.disconnect()

p4.warnings -> list (read-only)
Contains the array of warnings that arose during execution of the last command.

 from P4 import P4, P4Exception

 p4 = P4()

 try:

 p4.connect()

 p4.exception_level = 2 # File(s) up-to-date is a warning

 files = p4.run_sync()

 except P4Exception, ex:

 for w in p4.warnings:

109

Class P4

 print w

 finally:

 p4.disconnect()

Class Methods

P4.P4()
Construct a new P4 object. For example:

 import P4

 p4 = P4.P4()

P4.clone(arguments…​)
Clone from another Perforce service into a local Helix server, and returns a new P4 object.

P4.clone() requires specification of the port of the source Perforce service from which files and
version history should be cloned from, and either a remotespec or a filespec that specify which files and
history to clone. For example, to clone using a remotespec:

 import P4

 p4 = P4.clone("-p", "port", "-r", "remotespec")

or to clone using a filespec:

 import P4

 p4 = P4.clone("-p", "port", "-f", "filespec")

The cloned instance inherits the case sensitivity and Unicode settings from the source Perforce service.

Note
All of the additional DVCS commands, such as p4 push or p4 switch, are available
automatically in the usual fashion. For example: p4.run_push(). See p4.run_<cmd>() for
details.

P4.identify()
Return the version of P4Python that you are using.

 python -c "from P4 import P4; print P4.identify()"

The read-only string attributes PATCHLEVEL and OS are also available to test an installation of
P4Python without having to parse the output of P4.identify().

110

Class P4

If applicable, P4.identify() also reports the version of the OpenSSL library used for building the
underlying Helix C/C++ API with which P4Python was built.

P4.init([arguments])
Initializes a new, personal (local) Helix server, and returns a new P4 object.

Without any arguments, P4.init() creates a new DVCS server in the current working directory,
using the settings for case sensitivity and Unicode support from current environment variables.

P4.init() accepts the following keyword arguments:

Keyword Explanation Example
client Workspace and server name client="sknop-dvcs"

user Helix Core username used for pushing user="sven_erik_knop"

directory local path of the root directory for the
new server

directory="/tmp/test-
dvcs"

casesensitive specify case sensitivity casesensitive=False

unicode specify whether Unicode is enabled unicode=True

 import P4

 p4 = P4.init(directory="/Users/sknop/dvcs/")

 p4.connect()

 # ...

 p4.disconnect()

The P4 instance returned by P4.init() has the port, user, and client workspace already set; all that
is required for you is to connect to the server to perform any commands. Connection is not automatic, to
give you an opportunity to set any protocol parameters; these parameters can only be set once before a
connection is established.

Note
All of the additional DVCS commands, such as p4 push or p4 switch, are available
automatically in the usual fashion. For example: p4.run_push(). See p4.run_<cmd>() for
details.

p4.iterate_<spectype>(arguments) -> P4.Spec
The iterate_<spectype>() methods are shortcut methods that allow you to quickly iterate
through clients, labels, branches, etc. Valid <spectypes> are clients, labels, branches,
changes, streams, jobs, users, groups, depots and servers. Valid arguments are any
arguments that would be valid for the corresponding run_<spectype>() command.

For example:

111

Class P4

 for client in p4.iterate_clients():

 # do something with the client spec

is equivalent to:

 for c in p4.run_clients():

 client = p4.fetch_client(c['client'])

Instance Methods

p4.at_exception_level()
In the context of a with statement, temporarily set the exception level for a block. For example:

 from P4 import P4

 p4 = P4()

 p4.connect()

 with p4.at_exception_level(P4.RAISE_ERRORS):

 # no exceptions for warnings

 p4.run_sync("//depot/main/...")

 # exceptions back to normal...

p4.connect()
Initializes the Helix Core client and connects to the server.

If the connection is successfully established, returns None. If the connection fails and
P4.exception_level is 0, returns False, otherwise raises a P4Exception. If already
connected, prints a message.

 from P4 import P4

 p4 = P4()

 p4.connect()

 ...

 p4.disconnect()

P4.connect() returns a context management object that is usable with a with statement within a
block; after the block is finished, the connection is automatically disconnected:

 import P4

 p4 = P4.P4()

 with p4.connect():

 # block in context of connection

112

Class P4

 ...

 # p4 is disconnected outside the block

 ...

p4.connected() -> boolean
Returns true if connected to the Helix server and the connection is alive, otherwise false.

 from P4 import P4

 p4 = P4()

 print p4.connected()

 p4.connect()

 print p4.connected()

p4.delete_<spectype>([options], name) -> list
The delete_<spectype>() methods are shortcut methods that allow you to delete the definitions
of clients, labels, branches, etc. These methods are equivalent to:

 p4.run("<spectype>", '-d', [options], "spec name")

The following code uses P4.delete_client() to delete client workspaces that have not been
accessed in more than 365 days:

 from P4 import P4, P4Exception

 from datetime import datetime, timedelta

 now = datetime.now()

 p4 = P4()

 try:

 p4.connect()

 for client in p4.run_clients():

 atime = datetime.utcfromtimestamp(int(client["Access"]))

 # If the client has not been accessed for a year, delete it

 if (atime + timedelta(365)) < now :

 p4.delete_client('-f', client["client"])

 except P4Exception:

113

Class P4

 for e in p4.errors:

 print e

 finally:

 p4.disconnect()

p4.disconnect()
Disconnect from the Helix server. Call this method before exiting your script.

 from P4 import P4

 p4 = P4()

 p4.connect()

 ...

 p4.disconnect()

p4.env(var)
Get the value of a Helix Core environment variable, taking into account P4CONFIG files and (on
Windows or OS X) the registry or user preferences.

 from P4 import P4

 p4 = P4()

 print p4.env("P4PORT")

p4.fetch_<spectype>() -> P4.Spec
The fetch_<spectype>() methods are shortcuts for running p4.run("<spectype>",
"-o").pop(0). For example:

 label = p4.fetch_label("labelname")

 change = p4.fetch_change(changeno)

 clientspec = p4.fetch_client("clientname")

are equivalent to:

 label = p4.run("label", "-o", "labelname")[0]

 change = p4.run("change", "-o", changeno)[0]

 clientspec = p4.run("client", "-o", "clientname")[0]

114

Class P4

p4.format_spec("<spectype>", dict) -> string
Converts the fields in the dict containing the elements of a Helix server form (spec) into the string
representation familiar to users. The first argument is the type of spec to format: for example, client,
branch, label, and so on. The second argument is the hash to parse.

There are shortcuts available for this method. You can use p4.format_<spectype>(dict)
instead of p4.format_spec("<spectype>", dict), where <spectype> is the name of a
Helix server spec, such as client, label, etc.

p4.format_<spectype>(dict) -> string
The format_<spectype>() methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 p4.format_spec("<spectype>", dict)

p4.is_ignored("<path>") -> boolean
Returns true if the <path> is ignored via the P4IGNORE feature. The <path> can be a local relative or
absolute path.

 from P4 import P4

 p4 = P4()

 p4.connect()

 if (p4.is_ignored("/home/bruno/workspace/file.txt"):

 print "Ignored."

 else:

 print "Not ignored."

 p4.disconnect()

p4.parse_spec("<spectype>", string) -> P4.Spec
Parses a Helix server form (spec) in text form into a Python dict using the spec definition obtained from
the server. The first argument is the type of spec to parse: client, branch, label, and so on. The
second argument is the string buffer to parse.

There are shortcuts available for this method. You can use:

 p4.parse_<spectype>(buf)

instead of:

 p4.parse_spec("<spectype>", buf)

where <spectype> is one of client, branch, label, and so on.

115

Class P4

p4.parse_<spectype>(string) -> P4.Spec
This is equivalent to:

 p4.parse_spec("<spectype>", string)

For example, parse_job(myJob) converts the String representation of a job spec into a Spec
object.

To parse a spec, P4 needs to have the spec available. When not connected to the Helix server, P4
assumes the default format for the spec, which is hardcoded. This assumption can fail for jobs if the
server’s jobspec has been modified. In this case, your script can load a job from the server first with the
command p4.fetch_job('somename'), and P4 will cache and use the spec format in
subsequent p4.parse_job() calls.

p4.run("<cmd>", [arg, …​])
Base interface to all the run methods in this API. Runs the specified Helix Core command with the
arguments supplied. Arguments may be in any form as long as they can be converted to strings by str
(). However, each command's options should be passed as quoted and comma-separated strings, with
no leading space. For example:

p4.run("print","-o","test-print","-q","//depot/Jam/MAIN/src/expand.c")

Failing to pass options in this way can result in confusing error messages.

The p4.run() method returns a list of results whether the command succeeds or fails; the list may,
however, be empty. Whether the elements of the array are strings or dictionaries depends on:

 1. server support for tagged output for the command, and

 2. whether tagged output was disabled by calling p4.tagged = False.

In the event of errors or warnings, and depending on the exception level in force at the time, p4.run()
raises a P4Exception. If the current exception level is below the threshold for the error/warning,
p4.run() returns the output as normal and the caller must explicitly review p4.errors and
p4.warnings to check for errors or warnings.

 from P4 import P4

 p4 = P4()

 p4.connect()

 spec = p4.run("client", "-o")[0]

 p4.disconnect()

Shortcuts are available for p4.run(). For example:

 p4.run_command(args)

is equivalent to:

 p4.run("command", args)

116

Class P4

There are also some shortcuts for common commands such as editing Helix server forms and
submitting. For example, this:

 from P4 import P4

 p4 = P4()

 p4.connect()

 clientspec = p4.run_client("-o").pop(0)

 clientspec["Description"] = "Build client"

 p4.input = clientspec

 p4.run_client("-i")

 p4.disconnect()

…​may be shortened to:

 from P4 import P4

 p4 = P4()

 p4.connect()

 clientspec = p4.fetch_client()

 clientspec["Description"] = "Build client"

 p4.save_client(clientspec)

 p4.disconnect()

The following are equivalent:

Shortcut Equivalent to
p4.delete_<spectype>() p4.run("<spectype>", "-d ")

p4.fetch_<spectype>() p4.run("<spectype>", "-o ").shift

p4.save_<spectype>(spec) p4.input = spec

p4.run("<spectype>", "-i")

As the commands associated with p4.fetch_<spectype>() typically return only one item, these
methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by p4.fetch_change() can be
passed to p4.run_submit(). For example:

 from P4 import P4

 p4 = P4()

 p4.connect()

 spec = p4.fetch_change()

 spec["Description"] = "Automated change"

117

Class P4

 p4.run_submit(spec)

 p4.disconnect()

p4.run_<cmd>()
Shorthand for:

 p4.run("<cmd>", arguments...)

p4.run_filelog(<fileSpec>) -> list
Runs a p4 filelog on the fileSpec provided and returns an array of P4.DepotFile results (when
 executed in tagged mode), or an array of strings when executed in nontagged mode. By default, the raw
output of p4 filelog is tagged; this method restructures the output into a more user-friendly (and
object-oriented) form.

For example:

 from P4 import P4, P4Exception

 p4 = P4()

 try:

 p4.connect()

 for r in p4.run_filelog("index.html")[0].revisions:

 for i in r.integrations:

 # Do something

 except P4Exception:

 for e in p4.errors:

 print e

 finally:

 p4.disconnect()

p4.run_login(<arg>…​) -> list
Runs p4 login using a password or ticket set by the user.

p4.run_password(oldpass, newpass) -> list
A thin wrapper to make it easy to change your password. This method is (literally) equivalent to the
following:

118

Class P4

 p4.input([oldpass, newpass, newpass])

 p4.run("password")

For example:

 from P4 import P4, P4Exception

 p4 = P4()

 p4.password = "myoldpass"

 try:

 p4.connect()

 p4.run_password("myoldpass", "mynewpass")

 except P4Exception:

 for e in p4.errors:

 print e

 finally:

 p4.disconnect()

p4.run_resolve([<resolver>], [arg…​]) -> list
Run a p4 resolve command. Interactive resolves require the <resolver> parameter to be an object of
a class derived from P4.Resolver. In these cases, the P4.Resolver.resolve() method is called to
handle the resolve. For example:

 p4.run_resolve (resolver=MyResolver())

To perform an automated merge that skips whenever conflicts are detected:

 class MyResolver(P4.Resolver):

 def resolve(self, mergeData):

 if not mergeData.merge_hint == "e":

 return mergeData.merge_hint

 else:

 return "s" # skip the resolve, there is a conflict

In non-interactive resolves, no P4.Resolver object is required. For example:

 p4.run_resolve ("-at")

119

Class P4

p4.run_submit([hash], [arg…​]) -> list
Submit a changelist to the server. To submit a changelist, set the fields of the changelist as required and
supply any flags:

 change = p4.fetch_change()

 change._description = "Some description"

 p4.run_submit("-r", change)

You can also submit a changelist by supplying the arguments as you would on the command line:

 p4.run_submit("-d", "Some description", "somedir/...")

p4.run_tickets() -> list
p4.run_tickets() returns an array of lists of the form (p4port, user, ticket) based on the
contents of the local tickets file.

p4.save_<spectype>()>
The save_<spectype>() methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

 p4.input = dictOrString

 p4.run("<spectype>", "-i")

For example:

 from P4 import P4, P4Exception

 p4 = P4()

 try:

 p4.connect()

 client = p4.fetch_client()

 client["Owner"] = p4.user

 p4.save_client(client)

 except P4Exception:

 for e in p4.errors:

 print e

 finally:

 p4.disconnect()

120

Class P4

p4.set_env(var, value)
On Windows or OS X, set a variable in the registry or user preferences. To unset a variable, pass an
empty string as the second argument. On other platforms, an exception is raised.

 p4.set_env = ("P4CLIENT", "my_workspace")

 p4.set_env = ("P4CLIENT", "")

p4.temp_client("<prefix>", "<template>")
Creates a temporary client, using the prefix <prefix> and based upon a client template named
<template>, then switches P4.client to the new client, and provides a temporary root directory. The
prefix makes is easy to exclude the workspace from the spec depot.

This is intended to be used with a with statement within a block; after the block is finished, the temp
client is automatically deleted and the temporary root is removed.

For example:

 from P4 import P4

 p4 = P4()

 p4.connect()

 with p4.temp_client("temp", "my_template") as t:

 p4.run_sync()

 p4.run_edit("foo")

 p4.run_submit("-dcomment")

p4.while_tagged(boolean)
In the context of a with statement, enable or disable tagged behavior for the duration of a block. For
example:

 from P4 import P4

 p4 = P4()

 p4.connect()

 with p4.while_tagged(False):

 # tagged output disabled for this block

 print p4.run_info()

 # tagged output back to normal

 ...

121

Class P4.P4Exception

Class P4.P4Exception

Description
Instances of this class are raised when P4 encounters an error or a warning from the server. The
exception contains the errors in the form of a string. P4Exception is a shallow subclass of the
standard Python Exception class.

Class Attributes
None.

Class Methods
None.

Class P4.DepotFile

Description
Utility class providing easy access to the attributes of a file in a Helix Core depot. Each
P4.DepotFile object contains summary information about the file and a list of revisions
(P4.Revision objects) of that file. Currently, only the P4.run_filelog() method returns a list
of P4.DepotFile objects.

Instance Attributes

df.depotFile -> string
Returns the name of the depot file to which this object refers.

df.revisions -> list
Returns a list of P4.Revision objects, one for each revision of the depot file.

Class Methods
None.

Instance Methods
None.

122

Class P4.Revision

Class P4.Revision

Description
Utility class providing easy access to the revisions of P4.DepotFile objects. Created by P4.run_
filelog().

Instance Attributes

rev.action -> string
Returns the name of the action which gave rise to this revision of the file.

rev.change -> int
Returns the change number that gave rise to this revision of the file.

rev.client -> string
Returns the name of the client from which this revision was submitted.

rev.depotFile -> string
Returns the name of the depot file to which this object refers.

rev.desc -> string
Returns the description of the change which created this revision. Note that only the first 31 characters
are returned unless you use p4 filelog -L for the first 250 characters, or p4 filelog -l for
the full text.

rev.digest -> string
Returns the MD5 digest of this revision.

rev.fileSize -> string
Returns this revision’s size in bytes.

rev.integrations -> list
Returns the list of P4.Integration objects for this revision.

rev.rev -> int
Returns the number of this revision of the file.

123

Class P4.Integration

rev.time -> datetime
Returns the date/time that this revision was created.

rev.type -> string
Returns this revision’s Helix Core filetype.

rev.user -> string
Returns the name of the user who created this revision.

Class Methods
None.

Instance Methods
None.

Class P4.Integration

Description
Utility class providing easy access to the details of an integration record. Created by P4.run_
filelog().

Instance Attributes

integ.how -> string
Returns the type of the integration record - how that record was created.

integ.file -> string
Returns the path to the file being integrated to/from.

integ.srev -> int
Returns the start revision number used for this integration.

integ.erev -> int
Returns the end revision number used for this integration.

124

Class P4.Map

Class Methods
None.

Instance Methods
None.

Class P4.Map

Description
The P4.Map class allows users to create and work with Helix Core mappings, without requiring a
connection to a Helix server.

Instance Attributes
None.

Class Methods

P4.Map([list]) -> P4.Map
Constructs a new P4.Map object.

P4.Map.join (map1, map2) -> P4.Map
Join two P4.Map objects and create a third.

The new map is composed of the left-hand side of the first mapping, as joined to the right-hand side of the
second mapping. For example:

 # Map depot syntax to client syntax

 client_map = P4.Map()

 client_map.insert("//depot/main/...", "//client/...")

 # Map client syntax to local syntax

 client_root = P4.Map()

 client_root.insert("//client/...", "/home/bruno/workspace/...")

 # Join the previous mappings to map depot syntax to local syntax

 local_map = P4.Map.join(client_map, client_root)

 local_path = local_map.translate("//depot/main/www/index.html")

125

Class P4.Map

 # local_path is now /home/bruno/workspace/www/index.html

Instance Methods

map.clear()
Empty a map.

map.count() -> int
Return the number of entries in a map.

map.is_empty() -> boolean
Test whether a map object is empty.

map.insert(string …​)
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

 # called with two arguments:

 map.insert("//depot/main/...", "//client/...")

 # called with one argument containing both halves of the mapping:

 map.insert("//depot/live/... //client/live/...")

 # called with one argument containing a half-map:

 # This call produces the mapping "depot/... depot/..."

 map.insert("depot/...")

map.translate (string, [boolean]) -> string
Translate a string through a map, and return the result. If the optional second argument is 1, translate
forward, and if it is 0, translate in the reverse direction. By default, translation is in the forward direction.

map.includes(string) -> boolean
Tests whether a path is mapped or not.

126

Class P4.MergeData

 if map.includes("//depot/main/..."):

 ...

map.reverse() -> P4.Map
Return a new P4.Map object with the left and right sides of the mapping swapped. The original object is
unchanged.

map.lhs() -> list
Returns the left side of a mapping as an array.

map.rhs() -> list
Returns the right side of a mapping as an array.

map.as_array() -> list
Returns the map as an array.

Class P4.MergeData

Description
Class containing the context for an individual merge during execution of a p4 resolve.

Instance Attributes

md.your_name -> string
Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.

md.their_name -> string
Returns the name of "their" file in the merge. This is typically a path to a file in the depot.

md.base_name -> string
Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.

md.your_path -> string
Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.

127

Class P4.Message

md.their_path -> string
Returns the path of "their" file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of their_name have been loaded.

md.base_path -> string
Returns the path of the base file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of base_name have been loaded.

md.result_path -> string
Returns the path to the merge result. This is typically a path to a temporary file on your local machine in
which the contents of the automatic merge performed by the server have been loaded.

md.merge_hint -> string
Returns the hint from the server as to how it thinks you might best resolve this merge.

Instance Methods

md.run_merge() -> boolean
If the environment variable P4MERGE is defined, md.run_merge() invokes the specified program
and returns a boolean based on the return value of that program.

Class P4.Message

Description
P4.Message objects contain error or other diagnostic messages from the Helix server; they are
returned in P4.messages.

Script writers can test the severity of the messages in order to determine if the server message consisted
of command output (E_INFO), warnings, (E_WARN), or errors (E_FAILED /E_FATAL).

Class Methods
None.

Instance Attributes

message.severity -> int
Severity of the message, which is one of the following values:

128

Class P4.OutputHandler

Value Meaning
E_EMPTY No error.

E_INFO Informational message only.

E_WARN Warning message only.

E_FAILED Command failed.

E_FATAL Severe error; cannot continue.

message.generic -> int
Returns the generic class of the error.

message.msgid -> int
Returns the unique ID of the message.

Class P4.OutputHandler

Description
The P4.OutputHandler class is a handler class that provides access to streaming output from the
server. After defining the output handler, set p4.handler to an instance of a subclass of
P4.OutputHandler, use p4.using_handler(MyHandler()), or pass the handler as a
 named parameter for one statement only.

By default, P4.OutputHandler returns REPORT for all output methods. The different return options
 are:

Value Meaning
REPORT Messages added to output (don’t handle, don’t cancel)

HANDLED Output is handled by class (don’t add message to output).

REPORT|CANCEL Operation is marked for cancel, message is added to output.

HANDLED|CANCEL Operation is marked for cancel, message not added to output.

Class Methods

class MyHandler(P4.OutputHandler)
Constructs a new subclass of P4.OutputHandler.

129

Class P4.Progress

Instance Methods

outputBinary -> int
Process binary data.

outputInfo -> int
Process tabular data.

outputMessage -> int
Process informational or error messages.

outputStat -> int
Process tagged data.

outputText -> int
Process text data.

Class P4.Progress

Description
The P4.Progress class is a handler class that provides access to progress indicators from the
server. After defining the progress class, set P4.progress to an instance of a subclass of
P4.Progress, use p4.using_progress(MyProgress()), or pass the progress
indicator as a named parameter for one statement only.

You must implement all five of the following methods: init(), setDescription(), update(),
setTotal(), and done(), even if the implementation consists of trivially returning 0.

Instance Attributes
None.

Class Methods

class MyProgress(P4.Progress)
Constructs a new subclass of P4.Progress.

130

Class P4.Resolver

Instance Methods

progress.init() -> int
Initialize progress indicator.

progress.setDescription(string, int) -> int
Description and type of units to be used for progress reporting.

progress.update() -> int
If non-zero, user has requested a cancellation of the operation.

progress.setTotal(<total>) -> int
Total number of units expected (if known).

progress.done() -> int
If non-zero, operation has failed.

Class P4.Resolver

Description
P4.Resolver is a class for handling resolves in Helix Core. It is intended to be subclassed, and for
subclasses to override the resolve() method. When P4.run_resolve() is called with a
P4.Resolver object, it calls the P4.Resolver.resolve() method of the object once for each
scheduled resolve.

Instance Attributes
None.

Class Methods
None.

Instance Methods

resolver.resolve(self, mergeData) -> string
Returns the resolve decision as a string. The standard Helix Core resolve strings apply:

131

Class P4.Spec

String Meaning
ay Accept Yours.

at Accept Theirs.

am Accept Merge result.

ae Accept Edited result.

s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The
P4.Resolver.resolve() method is called with a single parameter, which is a reference to a
P4.MergeData object.

Class P4.Spec

Description
Utility class providing easy access to the attributes of the fields in a Helix server form.

Only valid field names may be set in a P4.Spec object. Only the field name is validated, not the
content. Attributes provide easy access to the fields.

Instance Attributes

spec._<fieldname> -> string
Contains the value associated with the field named <fieldname>.

spec.comment -> dict
Contains an array containing the comments associated with the spec object.

spec.permitted_fields -> dict
Contains an array containing the names of fields that are valid in this spec object. This does not imply
that values for all of these fields are actually set in this object, merely that you may choose to set values
for any of these fields if you want to.

Class Methods

P4.Spec.new(dict) -> P4.Spec
Constructs a new P4.Spec object given an array of valid fieldnames.

132

Class P4.Spec

Instance Methods
None.

133

P4PHP

Introduction
P4PHP, the PHP interface to the Helix C/C++ API, enables you to write PHP code that interacts with a
Helix server. P4PHP enables your PHP scripts to:

 n Get Helix Core data and forms in arrays.

 n Edit Helix Core forms by modifying arrays.

 n Provide exception-based error handling and optionally ignore warnings.

 n Issue multiple commands on a single connection (performs better than spawning single
commands and parsing the results).

System Requirements and Release Notes
P4PHP is supported on Windows, Linux, FreeBSD, and OS X.

For system requirements, see the release notes at
https://www.perforce.com/perforce/doc.current/user/p4phpnotes.txt.

Note
When passing arguments, make sure to omit the space between the argument and its value, such as
in the value pair -u and username in the following example:

anges = p4.run_changes("-uusername", "-m1").shift

If you include a space ("-u username"), the command fails.

Installing P4PHP
You can download P4PHP from the Perforce web site at https://www.perforce.com/downloads/helix-
core-api-php.

You must build the interface from source, as described in the release notes packaged with P4PHP.

Programming with P4PHP
The following example illustrates the basic structure of a P4PHP script. The example establishes a
connection, issues a command, and tests for errors resulting from the command.

 <?php

134

https://www.perforce.com/perforce/doc.current/user/p4phpnotes.txt
https://www.perforce.com/downloads/helix-core-api-php
https://www.perforce.com/downloads/helix-core-api-php

Programming with P4PHP

 $p4 = new P4();

 $p4->port = "1666";

 $p4->user = "fred";

 $p4->client = "fred-ws";

 try {

 $p4->connect();

 $info = $p4->run("info");

 foreach ($info[0] as $key => $val) {

 print "$key = $val\n";

 }

 $p4->run("edit", "file.txt");

 $p4->disconnect();

 } catch (P4_Exception $e) {

 print $e->getMessage() . "\n";

 foreach ($p4->errors as $error) {

 print "Error: $error\n";

 }

 }

 ?>

This example creates a client workspace from a template and syncs it:

 <?php

 $template = "my-client-template";

 $client_root = "/home/user/work/my-root";

 $p4 = new P4();

 try {

 $p4->connect();

 // Convert client spec into an array

 $client = $p4->fetch_client("-t", $template);

 $client['Root'] = $client_root;

 $p4->save_client($client);

 $p4->run_sync();

135

Submitting a Changelist

 } catch (P4_Exception $e) {

 // If any errors occur, we'll jump in here. Just log them

 // and raise the exception up to the higher level

 }

 ?>

Submitting a Changelist
This example creates a changelist, modifies it, and then submits it:.

 <?php

 $p4 = new P4();

 $p4->connect();

 $change = $p4->fetch_change();

 // Files were opened elsewhere and we want to

 // submit a subset that we already know about.

 $myfiles = array(

 '//depot/some/path/file1.c',

 '//depot/some/path/file1.h'

);

 $change['description'] = "My changelist\nSubmitted from P4PHP\n";

 $change['files'] = $myfiles;

 $p4->run_submit($change);

 ?>

Logging into Helix Core using ticket-based authentication
On some servers, users might need to log in to Helix Core before issuing commands. The following
example illustrates login using Helix Core tickets.

136

Connecting to Helix Core over SSL

 <?php

 $p4 = new P4();

 $p4->user = "bruno";

 $p4->connect();

 $p4->run_login('my_password');

 $opened = $p4->

 run_opened();

 ?>

Connecting to Helix Core over SSL
Scripts written with P4PHP use any existing P4TRUST file present in their operating environment (by
default, .p4trust in the home directory of the user that runs the script).

If the fingerprint returned by the server fails to match the one installed in the P4TRUST file associated
with the script’s run-time environment, your script will (and should!) fail to connect to the server.

Changing your password
You can use P4PHP to change your password, as shown in the following example:

 <?php

 $p4 = new P4();

 $p4->user = "bruno";

 $p4->password = "MyOldPassword";

 $p4->connect();

 $p4->run_password("MyOldPassword", "MyNewPassword");

 // $p4->password is automatically updated with the encoded password

 ?>

137

P4PHP Classes

P4PHP Classes
The P4 module consists of several public classes:

 n P4

 n P4_Exception

 n P4_DepotFile

 n P4_Revision

 n P4_Integration

 n P4_Map

 n P4_MergeData

 n P4_OutputHandlerAbstract

 n P4_Resolver

The following tables provide more details about each public class.

P4
Helix Core client class. Handles connection and interaction with the Helix server. There is one instance
of each connection.

The following table lists properties of the class P4 in P4PHP. The properties are readable and writable
unless indicated otherwise. The properties can be strings, arrays, or integers.

Property Description
api_level API compatibility level. (Lock server output to a specified server level.)

charset Charset for Unicode servers.

client P4CLIENT, the name of the client workspace to use.

cwd Current working directory.

errors A read-only array containing the error messages received during execution of
the last command.

exception_
level

The exception level of the P4 instance. Values can be:

 n 0 : no exceptions are raised

 n 1 : only errors are raised as exceptions

 n 2 : warnings are also raised as exceptions

The default value is 2.

138

P4

Property Description
expand_
sequences

Control whether keys with trailing numbers are expanded into arrays; by default,
true, for backward-compatibility.

handler An output handler.

host P4HOST, the name of the host used.

input Input for the next command. Can be a string, or an array.

maxlocktime MaxLockTime used for all following commands.

maxresults MaxResults used for all following commands.

maxscanrows MaxScanRows used for all following commands.

p4config_
file

The location of the configuration file used (P4CONFIG). This property is read-
only.

password P4PASSWD, the password used.

port P4PORT, the port used for the connection

prog The name of the script.

server_
level

Returns the current Helix server level. This property is read only.

streams Enable or disable support for streams.

tagged To disable tagged output for the following commands, set the value to 0 or
False. By default, tagged output is enabled.

ticket_file P4TICKETS, the ticket file location used.

user P4USER, the user under which the connection is run.

version The version of the script.

warnings A read-only array containing the warning messages received during execution of
the last command.

The following table lists all public methods of the class P4.

Method Description
connect() Connects to the Helix server.

connected
()

Returns True if connected and the connection is alive, otherwise False.

139

P4

Method Description
delete_
<spectype>
()

Deletes the spec <spectype>. Equivalent to the command:

 P4::run("<spectype>", "-d");

disconnect
()

Disconnects from the Helix server.

env() Get the value of a Helix Core environment variable, taking into account
P4CONFIG files and (on Windows or OS X) the registry or user preferences.

identify() Returns a string identifying the P4PHP module. (This method is static.)

fetch_
<spectype>
()

Fetches the spec <spectype>. Equivalent to the command:

 P4::run("<spectype>", "-o");

format_
<spectype>
()

Converts the spec <spectype> into a string.

parse_
<spectype>
()

Parses a string representation of the spec <spectype> and returns an array.

run() Runs a command on the server. Needs to be connected, or an exception is
raised.

run_cmd() Runs the command cmd. Equivalent to:

 P4::run("cmd");

run_
filelog()

This command returns an array of P4_DepotFile objects. Specialization for
the run() command.

run_login
()

Logs in using the specified password or ticket.

run_
password()

Convenience method: updates the password. Takes two arguments:
oldpassword, newpassword.

run_
resolve()

Interface to p4 resolve.

run_submit
()

Convenience method for submitting changelists. When invoked with a change
spec, it submits the spec. Equivalent to:

 p4::input = myspec;

 p4::run("submit", "-i");

140

P4_Exception

Method Description
save_
<spectype>
()

Saves the spec <spectype>. Equivalent to the command:

 P4::run("<spectype>", "-i");

P4_Exception
Exception class. Instances of this class are raised when errors and/or (depending on the exception_
level setting) warnings are returned by the server. The exception contains the errors in the form of a
string. P4_Exception extends the standard PHP Exception class.

P4_DepotFile
Container class returned by P4::run_filelog(). Contains the name of the depot file and an array
of P4_Revision objects.

Property Description
depotFile Name of the depot file

revisions Array of Revision objects.

P4_Revision
Container class containing one revision of a P4_DepotFile object.

Property Description
action Action that created the revision.

change Changelist number.

client Client workspace used to create this revision.

desc Short changelist description.

depotFile The name of the file in the depot.

digest MD5 digest of the revision.

fileSize File size of this revision.

integrations Array of P4_Integration objects.

rev Revision.

time Timestamp.

141

P4_Integration

Property Description
type File type.

user User that created this revision.

P4_Integration
Container class containing one integration for a P4_Revision object.

Property Description
how Integration method (merge/branch/copy/ignored).

file Integrated file.

srev Start revision.

erev End revision.

P4_Map
A class that allows users to create and work with Helix Core mappings without requiring a connection to
the Helix server.

Method Description
__construct() Construct a new Map object.

join() Joins two maps to create a third (static method).

clear() Empties a map.

count() Returns the number of entries in a map.

is_empty() Tests whether or not a map object is empty.

insert() Inserts an entry into the map.

translate() Translate a string through a map.

includes() Tests whether a path is mapped.

reverse() Returns a new mapping with the left and right sides reversed.

lhs() Returns the left side as an array.

rhs() Returns the right side as an array.

as_array() Returns the map as an array.

142

P4_MergeData

P4_MergeData
Class encapsulating the context of an individual merge during execution of a p4 resolve command.
Passed to P4::run_resolve().

Property Description
your_
name

Returns the name of "your" file in the merge. (file in workspace)

their_
name

Returns the name of "their" file in the merge. (file in the depot)

base_
name

Returns the name of "base" file in the merge. (file in the depot)

your_
path

Returns the path of "your" file in the merge. (file in workspace)

their_
path

Returns the path of "their" file in the merge. (temporary file on workstation into which
their_name has been loaded)

base_
path

Returns the path of the base file in the merge. (temporary file on workstation into
which base_name has been loaded)

result_
path

Returns the path to the merge result. (temporary file on workstation into which the
automatic merge performed by the server has been loaded.)

merge_
hint

Returns hint from server as to how user might best resolve merge.

P4_OutputHandlerAbstract
Handler class that provides access to streaming output from the server; set $p4->handler to an
instance of a subclass of P4_OutputHandlerAbstract to enable callbacks:

Method Description
outputBinary() Process binary data.

outputInfo() Process tabular data.

outputMessage() Process information or errors.

outputStat() Process tagged output.

outputText() Process text data.

143

P4_Resolver

P4_Resolver
Abstract class for handling resolves in Perforce. This class must be subclassed in order to be used.

Method Description
resolve() Perform a resolve and return the resolve decision as a string.

Class P4

Description
Main interface to the PHP client API.

This module provides an object-oriented interface to Helix Core, the Perforce version control system.
Data is returned in arrays and input can also be supplied in these formats.

Each P4 object represents a connection to the Helix server, and multiple commands may be executed
(serially) over a single connection (which of itself can result in substantially improved performance if
executing long sequences of Helix Core commands).

 1. Instantiate your P4 object.

 2. Specify your Helix Core client environment:

 n client

 n host

 n password

 n port

 n user

 3. Set any options to control output or error handling:

 n exception_level

 4. Connect to the Perforce service.

The Helix Core protocol is not designed to support multiple concurrent queries over the same
connection. Multithreaded applications that use the C++ API or derived APIs (including P4PHP)
should ensure that a separate connection is used for each thread, or that only one thread may use
a shared connection at a time.

 5. Run your Helix Core commands.

 6. Disconnect from the Perforce service.

144

Class P4

Properties

P4::api_level -> int
Contains the API compatibility level desired. This is useful when writing scripts using Helix Core
commands that do not yet support tagged output. In these cases, upgrading to a later server that
supports tagged output for the commands in question can break your script. Using this method allows
you to lock your script to the output format of an older Helix Core release and facilitate seamless
upgrades. Must be called before calling P4::connect().

 <?php

 $p4 = new P4();

 $p4->api_level = 57; // Lock to 2005.1 format

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

For the API integer levels that correspond to each Helix Core release, see:

http://kb.perforce.com/article/512

P4::charset -> string
Contains the character set to use when connect to a Unicode enabled server. Do not use when working
with non-Unicode-enabled servers. By default, the character set is the value of the P4CHARSET
environment variable. If the character set is invalid, this method raises a P4_Exception.

 <?php

 $p4 = new P4();

 $p4->client = "www";

 $p4->charset = "iso8859-1";

 $p4->connect();

 $p4->run_sync();

 $p4->disconnect();

 ?>

145

http://kb.perforce.com/article/512

Class P4

P4::client -> string
Contains the name of your client workspace. By default, this is the value of the P4CLIENT taken from
any P4CONFIG file present, or from the environment according to the normal Helix Core conventions.

P4::cwd -> string
Contains the current working directly. Can be called prior to executing any Helix Core command.
Sometimes necessary if your script executes a chdir() as part of its processing.

 <?php

 $p4 = new P4();

 $p4->cwd = "/home/bruno"

 ?>

P4::errors -> array (read-only)
Returns an array containing the error messages received during execution of the last command.

 <?php

 $p4 = new P4();

 $p4->connect();

 $p4->exception_level = 1;

 $p4->connect(); // P4_Exception on failure

 $p4->run_sync(); // File(s) up-to-date is a warning; no exception raised

 $err = $p4->errors;

 print_r($err);

 $p4->disconnect();

 ?>

P4::exception_level -> int
Configures the events which give rise to exceptions. The following three levels are supported:

146

Class P4

 n 0 : disables all exception handling and makes the interface completely procedural; you are
responsible for checking the P4::errors and P4::warnings arrays.

 n 1 : causes exceptions to be raised only when errors are encountered.

 n 2 : causes exceptions to be raised for both errors and warnings. This is the default.

For example:

 <?php

 $p4 = new P4();

 $p4->exception_level = 1;

 $p4->connect(); // P4_Exception on failure

 $p4->run_sync(); // File(s) up-to-date is a warning; no exception raised

 $p4->disconnect();

 ?>

P4::expand_sequences -> bool
Controls whether keys with trailing numbers are expanded into arrays when using tagged output. By
default, expand_sequences is true to maintain backwards compatibility. Expansion can be
enabled and disabled on a per-command basis.

For example:

 <?php

 $p4 = new P4();

 $p4->connect();

 $p4->expand_sequences = false; // disables sequence expansion.

 $result = $p4->run('fstat', '-Oa', '//depot/path/...');

 var_dump($result);

 ?>

P4::handler -> handler
Contains the output handler.

147

Class P4

P4::host -> string
Contains the name of the current host. It defaults to the value of P4HOST taken from any P4CONFIG
file present, or from the environment as per the usual Helix Core convention. Must be called before
connecting to the Helix server.

 <?php

 $p4 = new P4();

 $p4->host = "workstation123.perforce.com";

 $p4->connect();

 ?>

P4::input -> string | array
Contains input for the next command.

Set this property prior to running a command that requires input from the user. When the command
requests input, the specified data is supplied to the command. Typically, commands of the form p4
cmd -i are invoked using the P4::save_<spectype>() methods, which retrieve the value from
P4::input internally; there is no need to set P4::input when using the P4::save_
<spectype>() shortcuts.

You may pass a string, an array, or (for commands that take multiple inputs from the user) an array of
strings or arrays. If you pass an array, note that the first element of the array will be popped each time
Helix Core asks the user for input.

For example, the following code supplies a description for the default changelist and then submits it to the
depot:

 <?php

 $p4 = new P4();

 $p4->connect();

 $change = $p4->run_change("-o")[0];

 $change['Description'] = "Autosubmitted changelist";

 $p4->input = $change;

 $p4->run_submit("-i");

 $p4->disconnect();

 ?>

148

Class P4

P4::maxlocktime -> int
Limit the amount of time (in milliseconds) spent during data scans to prevent the server from locking
tables for too long. Commands that take longer than the limit will be aborted. The limit remains in force
until you disable it by setting it to zero. See p4 help maxlocktime for information on the
commands that support this limit.

P4::maxresults -> int
Limit the number of results Helix Core permits for subsequent commands. Commands that produce more
than this number of results will be aborted. The limit remains in force until you disable it by setting it to
zero. See p4 help maxresults for information on the commands that support this limit.

P4::maxscanrows -> int
Limit the number of database records Helix Core scans for subsequent commands. Commands that
attempt to scan more than this number of records will be aborted. The limit remains in force until you
disable it by setting it to zero. See p4 help maxscanrows for information on the commands that
support this limit.

P4::p4config_file -> string (read-only)
Contains the name of the current P4CONFIG file, if any. This property cannot be set.

P4::password -> string
Contains your Helix Core password or login ticket. If not used, takes the value of P4PASSWD from any
P4CONFIG file in effect, or from the environment according to the normal Helix Core conventions.

This password is also used if you later call P4::run_login() to log in using the 2003.2 and later
ticket system. After running P4::run_login(), the property contains the ticket the allocated by the
server.

 <?php

 $p4 = new P4();

 $p4->password = "mypass";

 $p4->connect();

 $p4->run_login();

 ...

 $p4->disconnect();

 ?>

149

Class P4

P4::port -> string
Contains the host and port of the Helix server to which you want to connect. It defaults to the value of
P4PORT in any P4CONFIG file in effect, and then to the value of P4PORT taken from the environment.

 <?php

 $p4 = new P4();

 $p4->port = "localhost:1666";

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

P4::prog -> string
Contains the name of the program, as reported to Helix Core system administrators running p4
monitor show -e. The default is unnamed p4-php script

 <?php

 $p4 = new P4();

 $p4->prog = "sync-script";

 print $p4->prog;

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

P4::server_level -> int (read-only)
Returns the current Helix serverlevel. Each iteration of the Helix server is given a level number. As part of
the initial communication this value is passed between the client application and the Helix server. This
value is used to determine the communication that the Helix server will understand. All subsequent
requests can therefore be tailored to meet the requirements of this server level.

150

Class P4

This property is 0 before the first command is run, and is set automatically after the first communication
with the server.

For the API integer levels that correspond to each Helix Core release, see:

http://kb.perforce.com/article/571

P4::streams -> bool
If true, P4::streams enables support for streams. By default, streams support is enabled at 2011.1
or higher (api_level >= 70). Raises a P4Exception if you attempt to enable streams on a pre-
2011.1 server. You can enable or disable support for streams both before and after connecting to the
server.

 <?php

 $p4 = new P4();

 $p4->streams = false;

 print $p4->streams;

 ?>

P4::tagged -> bool
If true, P4::tagged enables tagged output. By default, tagged output is on.

 <?php

 $p4 = new P4();

 $p4->tagged = false;

 print $p4->tagged;

 ?>

P4::ticket_file -> string
Contains the location of the P4TICKETS file.

P4::user -> string
Contains the Helix Core username. It defaults to the value of P4USER taken from any P4CONFIG file
present, or from the environment as per the usual Helix Core convention.

 <?php

151

http://kb.perforce.com/article/571

Class P4

 $p4 = new P4();

 $p4->user = "bruno";

 $p4->connect();

 ...

 P4::disconnect();

 ?>

P4::version -> string
Contains the version of the program, as reported to Helix Core system administrators in the server log.

 <?php

 $p4 = new P4();

 $p4->version = "123";

 print $p4->version;

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

P4::warnings -> array (read-only)
Contains the array of warnings that arose during execution of the last command.

 <?php

 $p4 = new P4();

 $p4->connect(); // P4_Exception on failure

 $p4->exception_level = 2;

 $files = $p4->run_sync();

 $warn = $p4->warnings;

 print_r($warn);

 $p4->disconnect();

152

Class P4

 ?>

Constructor

P4::__construct
Construct a new P4 object. For example:

 <?php

 $p4 = new P4();

 ?>

Static Methods

P4::identify() -> string
Return the version of P4PHP that you are using, and, if applicable, the version of the OpenSSL library
used for building the underlying Helix C/C++ API with which P4PHP was built).

 <?php

 print P4::identify();

 ?>

produces output similar to the following:

 Perforce - The Fast Software Configuration Management System.

 Copyright 1995-2013 Perforce Software. All rights reserved.

 Rev. P4PHP/LINUX26X86/2013.1/644389 (2013.1 API) (2013/05/21).

Instance Methods

P4::connect() -> bool
Initializes the Helix Core client and connects to the server.

If the connection is successfully established, returns None. If the connection fails and exception_
level is 0, returns False, otherwise raises a P4_Exception. If already connected, prints a
message.

153

Class P4

 <?php

 $p4 = new P4();

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

P4::connected() -> bool
Returns true if connected to the Helix server and the connection is alive, otherwise false.

 <?php

 $p4 = new P4();

 if (!$p4->connected()) {

 print "Not Connected\n";

 }

 $p4->connect();

 if ($p4->connected()) {

 print "Connected\n";

 }

 $p4->disconnect();

 ?>

P4::delete_<spectype>([options], name) -> array
The delete_<spectype>() methods are shortcut methods that allow you to delete the definitions
of clients, labels, branches, etc. These methods are equivalent to:

 P4::run("<spectype>", '-d', [options], "spec name");

The following code uses P4::delete_client() to delete client workspaces that have not been
accessed in more than 365 days:

 <?php

154

Class P4

 $p4 = new P4();

 try {

 $p4->connect();

 foreach ($p4->run_clients() as $client) {

 $atime = int($client['Access']);

 // If the client has not been accessed for a year, delete it

 if ((time() - $atime) > 31536000) { // seconds in 365 days

 $p4->delete_client("-f", $client["Client"]);

 }

 }

 } catch (P4_Exception $e) {

 print $e->getMessage() . "\n";

 foreach ($p4->errors as $error) {

 print "Error: $error\n";

 }

 }

 ?>

P4::disconnect() -> void
Disconnect from the Helix server. Call this method before exiting your script.

 <?php

 $p4 = new P4();

 $p4->connect();

 ...

 $p4->disconnect();

 ?>

P4::env(var) -> string
Get the value of a Helix Core environment variable, taking into account P4CONFIG files and (on
Windows or OS X) the registry or user preferences.

 <?php

 $p4 = new P4();

155

Class P4

 print $p4->env("P4PORT");

 ?>

P4::fetch_<spectype>() -> array
The fetch_<spectype>() methods are shortcuts for running $p4->run("<spectype>",
"-o") and returning the first element of the array. For example:

 $label = $p4->fetch_label("labelname");

 $change = $p4->fetch_change(changeno);

 $clientspec = $p4->fetch_client("clientname");

are equivalent to:

 $label = $p4->run("label", "-o", "labelname");

 $change = $p4->run("change", "-o", changeno);

 $clientspec = $p4->run("client", "-o", clientname);

P4::format_spec("<spectype>", array) -> string
Converts the fields in the array containing the elements of a Helix server form (spec) into the string
representation familiar to users. The first argument is the type of spec to format: for example, client,
branch, label, and so on. The second argument is the hash to parse.

There are shortcuts available for this method. You can use $p4->format_<spectype>(
array) instead of $p4->format_spec("<spectype>", array), where <spectype> is
the name of a Helix server spec, such as client, label, etc.

P4::format_<spectype>(array) -> string
The format_<spectype>() methods are shortcut methods that allow you to quickly fetch the
definitions of clients, labels, branches, etc. They’re equivalent to:

 $p4->format_spec("<spectype>", array);

P4::parse_spec("<spectype>", string) -> array
Parses a Helix server form (spec) in text form into an array using the spec definition obtained from the
server. The first argument is the type of spec to parse: client, branch, label, and so on. The
second argument is the string buffer to parse.

There are shortcuts available for this method. You can use:

 $p4->parse_<spectype>(buf);

instead of:

156

Class P4

 $p4->parse_spec("<spectype>", buf);

where <spectype> is one of client, branch, label, and so on.

P4::parse_<spectype>(string) -> array
This is equivalent to:

 $p4->parse_spec("<spectype>", string)

For example:

 $p4->parse_job(myJob);

converts the String representation of a job spec into an array.

To parse a spec, P4 needs to have the spec available. When not connected to the Helix server, P4
assumes the default format for the spec, which is hardcoded. This assumption can fail for jobs if the
server’s jobspec has been modified. In this case, your script can load a job from the server first with the
command fetch_job("somename"), andP4 will cache and use the spec format in subsequent
P4::parse_job() calls.

P4::run(<cmd>, [arg, …​]) -> mixed
Base interface to all the run methods in this API. Runs the specified Helix Core command with the
arguments supplied. Arguments may be in any form as long as they can be converted to strings.
However, each command's options should be passed as quoted and comma-separated strings, with no
leading space. For example:

p4::run("print","-o","test-print","-q","//depot/Jam/MAIN/src/expand.c")

Failing to pass options in this way can result in confusing error messages.

The P4::run() method returns an array of results whether the command succeeds or fails; the array
may, however, be empty. Whether the elements of the array are strings or arrays depends on:

 1. server support for tagged output for the command, and

 2. whether tagged output was disabled by calling $p4->tagged = false.

In the event of errors or warnings, and depending on the exception level in force at the time, P4::run
() raises a P4_Exception. If the current exception level is below the threshold for the error/warning,
P4::run() returns the output as normal and the caller must explicitly review P4::errors and
P4::warnings to check for errors or warnings.

 <?php

 $p4 = new P4();

 print $p4->env("P4PORT");

 $p4->connect();

157

Class P4

 $spec = $p4->run("client", "-o")[0];

 $p4->disconnect();

 ?>

Shortcuts are available for P4::run. For example:

 $p4->run_command("args");

is equivalent to:

 $p4->run("command", args);

There are also some shortcuts for common commands such as editing Helix server forms and
submitting. For example, this:

 <?php

 $p4 = new P4();

 $p4->connect();

 $clientspec = array_pop($p4->run_client("-o"));

 $clientspec["Description"] = "Build Client";

 $p4->input = $clientspec;

 $p4->run_client("-i");

 $p4->disconnect();

 ?>

may be shortened to:

 <?php

 $p4 = new P4();

 $p4->connect();

 $clientspec = $p4->fetch_spec();

 $clientspec["Description"] = "Build client";

 $p4->save_client($clientspec);

158

Class P4

 $p4->disconnect();

 ?>

The following are equivalent:

Shortcut Equivalent to
$p4->delete_<spectype>
();

$p4->run("<spectype>", "-d ");

$p4->fetch_<spectype>
();

array_shift($p4->run("<spectype>", "-
o "));

$p4->save_<spectype>(
spec);

$p4->input = $spec; $p4->run(
"<spectype>", "-i");

As the commands associated with P4::fetch_<spectype>() typically return only one item,
these methods do not return an array, but instead return the first result element.

For convenience in submitting changelists, changes returned by P4::fetch_change() can be
passed to P4::run_submit(). For example:

 <?php

 $p4 = new P4();

 $p4->connect();

 $spec = $p4->fetch_change();

 $spec["Description"] = "Automated change";

 $p4->run_submit($spec);

 $p4->disconnect();

 ?>

P4::run_<cmd>() -> mixed
Shorthand for:

 P4::run("cmd", arguments...);

159

Class P4

P4::run_filelog(<fileSpec>) -> array
Runs a p4 filelog on the fileSpec provided and returns an array of P4_DepotFile results (when
 executed in tagged mode), or an array of strings when executed in nontagged mode. By default, the raw
output of p4 filelog is tagged; this method restructures the output into a more user-friendly (and
object-oriented) form.

For example:

 <?php

 $p4 = new P4();

 try {

 $p4->connect();

 $filelog = $p4->run_filelog("index.html");

 foreach ($filelog->revisions as $revision) {

 // do something

 }

 } catch (P4_Exception $e) {

 print $e->getMessage() . "\n";

 foreach ($p4->errors as $error) {

 print "Error: $error\n";

 }

 }

 ?>

P4::run_login(arg…​) -> array
Runs p4 login using a password or ticket set by the user.

P4::run_password(oldpass, newpass) -> array
A thin wrapper to make it easy to change your password. This method is equivalent to the following:

 <?php

 $p4->input = array($oldpass, $newpass, $newpass);

 $p4->run("password");

 ?>

For example:

160

Class P4

 <?php

 $p4 = new P4();

 $p4->password = "myoldpass";

 try {

 $p4->connect();

 $p4->run_password("myoldpass", "mynewpass");

 $p4->disconnect();

 } catch (P4_Exception $e) {

 print $e->getMessage() . "\n";

 foreach ($p4->errors as $error) {

 print "Error: $error\n";

 }

 }

 ?>

P4::run_resolve([<resolver>], [arg…​]) -> array
Run a p4 resolve command. Interactive resolves require the <resolver> parameter to be an object of
a class derived from P4_Resolver. In these cases, the P4::Resolver::resolve() method
is called to handle the resolve. For example:

 <?php

 $p4->run_resolve(new MyResolver());

 ?>

To perform an automated merge that skips whenever conflicts are detected:

 <?php

 class MyResolver extends P4_Resolver {

 public function resolve($merge_data) {

 if ($merge_data->merge_hint != 'e') {

 return $merge_data->merge_hint;

 } else {

 return "s"; // skip, there's a conflict

 }

161

Class P4

 }

 }

 ?>

In non-interactive resolves, no P4_Resolver object is required. For example:

 $p4->run_resolve ("-at");

P4::run_submit([array], [arg…​]) -> array
Submit a changelist to the server. To submit a changelist, set the fields of the changelist as required and
supply any flags:

 $p4->change = $p4->fetch_change();

 $change["Description"] = "Some description";

 $p4->run_submit("-r", $change);

You can also submit a changelist by supplying the arguments as you would on the command line:

 $p4->run_submit("-d", "Some description", "somedir/...");

P4::save_<spectype>()>
The save_<spectype>() methods are shortcut methods that allow you to quickly update the
definitions of clients, labels, branches, etc. They are equivalent to:

 $p4->input = $arrayOrString;

 $p4->run("<spectype> ", "-i");

For example:

 <?php

 $p4 = new P4();

 try {

 $p4->connect();

 $client = $p4->fetch_client();

 $client["Owner"] = $p4->user;

 $p4->save_client($client);

 $p4->disconnect();

 } catch (P4_Exception $e) {

 print $e->getMessage() . "\n";

 foreach ($p4->errors as $error) {

 print "Error: $error\n";

162

Class P4_Exception

 }

 }

 ?>

Class P4_Exception

Description
Instances of this class are raised when P4 encounters an error or a warning from the server. The
exception contains the errors in the form of a string. P4_Exception is an extension of the standard
Exception class.

Class Attributes
None.

Static Methods
None.

Class P4_DepotFile

Description
Utility class providing easy access to the attributes of a file in a Helix Core depot. Each P4_
DepotFile object contains summary information about the file and an array of revisions (P4_
Revision objects) of that file. Currently, only the P4::run_filelog() method returns an array
of P4_DepotFile objects.

Properties

$df->depotFile -> string
Returns the name of the depot file to which this object refers.

$df->revisions -> array
Returns an array of P4_Revision objects, one for each revision of the depot file.

Static Methods
None.

163

Class P4_Revision

Instance Methods
None.

Class P4_Revision

Description
Utility class providing easy access to the revisions of P4_DepotFile objects. Created by
P4::run_filelog().

Properties

$rev->action -> string
Returns the name of the action which gave rise to this revision of the file.

$rev->change -> long
Returns the change number that gave rise to this revision of the file.

$rev->client -> string
Returns the name of the client from which this revision was submitted.

$rev->depotFile -> string
Returns the name of the depot file to which this object refers.

$rev->desc -> string
Returns the description of the change which created this revision. Note that only the first 31 characters
are returned unless you use p4 filelog -L for the first 250 characters, or p4 filelog -l for
the full text.

$rev->digest -> string
Returns the MD5 digest of this revision.

$rev->fileSize -> long
Returns this revision’s size in bytes.

$rev->integrations -> array
Returns the array of P4_Integration objects for this revision.

164

Class P4_Integration

$rev->rev -> long
Returns the number of this revision of the file.

$rev->time -> string
Returns the date/time that this revision was created.

$rev->type -> string
Returns this revision’s Helix Core filetype.

$rev->user -> string
Returns the name of the user who created this revision.

Static Methods
None.

Instance Methods
None.

Class P4_Integration

Description
Utility class providing easy access to the details of an integration record. Created by P4::run_
filelog().

Properties

$integ->how -> string
Returns the type of the integration record - how that record was created.

$integ->file -> string
Returns the path to the file being integrated to/from.

$integ->srev -> int
Returns the start revision number used for this integration.

165

Class P4_Map

$integ->erev -> int
Returns the end revision number used for this integration.

Static Methods
None.

Instance Methods
None.

Class P4_Map

Description
The P4_Map class allows users to create and work with Helix Core mappings, without requiring a
connection to a Helix server.

Properties
None.

Constructor

P4_Map::__construct([array]) -> P4_Map
Constructs a new P4_Map object.

Static Methods

P4_Map::join (map1, map2) -> P4_Map
Join two P4_Map objects and create a third P4_Map. The new map is composed of the left-hand side of
the first mapping, as joined to the right-hand side of the second mapping. For example:

 // Map depot syntax to client syntax

 $client_map = new P4_Map();

 $client_map->insert("//depot/main/...", "//client/...");

 // Map client syntax to local syntax

 $client_root = new P4_Map();

 $client_root->insert("//client/...", "/home/bruno/workspace/...");

166

Class P4_Map

 // Join the previous mappings to map depot syntax to local syntax

 $local_map = P4_Map::join($client_map, $client_root);

 $local_path = $local_map->translate("//depot/main/www/index.html");

 // local_path is now /home/bruno/workspace/www/index.html

Instance Methods

$map->clear() -> void
Empty a map.

$map->count() -> int
Return the number of entries in a map.

$map->is_empty() -> bool
Test whether a map object is empty.

$map->insert(string …​) -> void
Inserts an entry into the map.

May be called with one or two arguments. If called with one argument, the string is assumed to be a string
containing either a half-map, or a string containing both halves of the mapping. In this form, mappings
with embedded spaces must be quoted. If called with two arguments, each argument is assumed to be
half of the mapping, and quotes are optional.

 // called with two arguments:

 $map->insert("//depot/main/...", "//client/...");

 // called with one argument containing both halves of the mapping:

 $map->insert("//depot/live/... //client/live/...");

 // called with one argument containing a half-map:

 // This call produces the mapping "depot/... depot/..."

 $map->insert("depot/...");

$map->translate (string, [bool])-> string
Translate a string through a map, and return the result. If the optional second argument is 1, translate
forward, and if it is 0, translate in the reverse direction. By default, translation is in the forward direction.

167

Class P4_MergeData

$map->includes(string) -> bool
Tests whether a path is mapped or not.

 if $map->includes("//depot/main/...") {

 ...

 }

$map->reverse() -> P4_Map
Return a new P4_Map object with the left and right sides of the mapping swapped. The original object is
unchanged.

$map->lhs() -> array
Returns the left side of a mapping as an array.

$map->rhs() -> array
Returns the right side of a mapping as an array.

$map->as_array() -> array
Returns the map as an array.

Class P4_MergeData

Description
Class containing the context for an individual merge during execution of a p4 resolve.

Properties

$md->your_name -> string
Returns the name of "your" file in the merge. This is typically a path to a file in the workspace.

$md->their_name -> string
Returns the name of "their" file in the merge. This is typically a path to a file in the depot.

$md->base_name -> string
Returns the name of the "base" file in the merge. This is typically a path to a file in the depot.

168

Class P4_OutputHandlerAbstract

$md->your_path -> string
Returns the path of "your" file in the merge. This is typically a path to a file in the workspace.

$md->their_path -> string
Returns the path of "their" file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of their_name have been loaded.

$md->base_path -> string
Returns the path of the base file in the merge. This is typically a path to a temporary file on your local
machine in which the contents of base_name have been loaded.

$md->result_path -> string
Returns the path to the merge result. This is typically a path to a temporary file on your local machine in
which the contents of the automatic merge performed by the server have been loaded.

$md->merge_hint -> string
Returns the hint from the server as to how it thinks you might best resolve this merge.

Class P4_OutputHandlerAbstract

Description
The P4_OutputHandlerAbstract class is a handler class that provides access to streaming
output from the server. After defining the output handler, set $p4->handler to an instance of a
subclass of P4_OutputHandlerAbstract.

By default, P4_OutputHandlerAbstract returns HANDLER_REPORT for all output methods.
The different return options are:

Value Meaning
HANDLER_REPORT Messages added to output (don’t handle, don’t cancel).

HANDLER_HANDLED Output is handled by class (don’t add message to output).

HANDLER_CANCEL Operation is marked for cancel, message is added to output.

Class Methods

class MyHandler extends P4_OutputHandlerAbstract
Constructs a new subclass of P4_OutputHandlerAbstract.

169

Class P4_Resolver

Instance Methods

$handler->outputBinary -> int
Process binary data.

$handler->outputInfo -> int
Process tabular data.

$handler->outputMessage -> int
Process informational or error messages.

$handler->outputStat -> int
Process tagged data.

$handler->outputText -> int
Process text data.

Class P4_Resolver

Description
P4_Resolver is a class for handling resolves in Helix Core. It must be subclassed, to be used;
subclasses can override the P4::resolve() method. When P4::run_resolve() is called
with a P4_Resolver object, it calls the P4_Resolver::resolve() method of the object once
for each scheduled resolve.

Properties
None.

Static Methods
None.

Instance Methods

$resolver->resolve(self, mergeData) -> string
Returns the resolve decision as a string. The standard Helix Core resolve strings apply:

170

Class P4_Resolver

String Meaning
ay Accept Yours.

at Accept Theirs.

am Accept Merge result.

ae Accept Edited result.

s Skip this merge.

q Abort the merge.

By default, all automatic merges are accepted, and all merges with conflicts are skipped. The P4_
Resolver::resolve() method is called with a single parameter, which is a reference to a P4_
MergeData object.

171

Glossary

A

access level

A permission assigned to a user to control which commands the user can execute. See also the
'protections' entry in this glossary and the 'p4 protect' command in the P4 Command Reference.

admin access

An access level that gives the user permission to privileged commands, usually super privileges.

apple file type

Helix server file type assigned to files that are stored using AppleSingle format, permitting the data
fork and resource fork to be stored as a single file.

archive

1. For replication, versioned files (as opposed to database metadata). 2. For the 'p4 archive'
command, a special depot in which to copy the server data (ersioned files and metadata).

atomic change transaction

Grouping operations affecting a number of files in a single transaction. If all operations in the
transaction succeed, all the files are updated. If any operation in the transaction fails, none of the files
are updated.

B

base

The file revision, in conjunction with the source revision, used to help determine what integration
changes should be applied to the target revision.

binary file type

A Helix server file type assigned to a non-text file. By default, the contents of each revision are stored
in full, and file revision is stored in compressed format.

172

Glossary

branch

(noun) A set of related files that exist at a specific location in the Perforce depot as a result of being
copied to that location, as opposed to being added to that location. A group of related files is often
referred to as a codeline. (verb) To create a codeline by copying another codeline with the 'p4
integrate', 'p4 copy', or 'p4 populate' command.

branch form

The form that appears when you use the 'p4 branch' command to create or modify a branch
specification.

branch mapping

Specifies how a branch is to be created or integrated by defining the location, the files, and the
exclusions of the original codeline and the target codeline. The branch mapping is used by the
integration process to create and update branches.

branch view

A specification of the branching relationship between two codelines in the depot. Each branch view
has a unique name and defines how files are mapped from the originating codeline to the target
codeline. This is the same as branch mapping.

broker

Helix Broker, a server process that intercepts commands to the Helix server and is able to run scripts
on the commands before sending them to the Helix server.

C

change review

The process of sending email to users who have registered their interest in changelists that include
specified files in the depot.

changelist

A list of files, their version numbers, the changes made to the files, and a description of the changes
made. A changelist is the basic unit of versioned work in Helix Core. The changes specified in the
changelist are not stored in the depot until the changelist is submitted to the depot. See also atomic
change transaction.

173

Glossary

changelist form

The form that appears when you modify a changelist using the 'p4 change' command.

changelist number

The unique numeric identifier of a changelist. By default, changelists are sequential.

check in

To submit a file to the Helix Core depot.

check out

To designate one or more files for edit.

checkpoint

A backup copy of the underlying metadata at a particular moment in time. A checkpoint can recreate
db.user, db.protect, and other db.* files. See also metadata.

classic depot

A repository of Helix Core files that is not streams-based. The default depot name is depot. See also
default depot and stream depot.

client form

The form you use to define a client workspace, such as with the 'p4 client' or 'p4 workspace'
commands.

client name

A name that uniquely identifies the current client workspace. Client workspaces, labels, and branch
specifications cannot share the same name.

client root

The topmost (root) directory of a client workspace. If two or more client workspaces are located on
one machine, they should not share a client root directory.

client side

The right-hand side of a mapping within a client view, specifying where the corresponding depot files
are located in the client workspace.

174

Glossary

client workspace

Directories on your machine where you work on file revisions that are managed by Helix server. By
default, this name is set to the name of the machine on which your client workspace is located, but it
can be overridden. Client workspaces, labels, and branch specifications cannot share the same
name.

code review

A process in Helix Swarm by which other developers can see your code, provide feedback, and
approve or reject your changes.

codeline

A set of files that evolve collectively. One codeline can be branched from another, allowing each set
of files to evolve separately.

comment

Feedback provided in Helix Swarm on a changelist or a file within a change.

commit server

A server that is part of an edge/commit system that processes submitted files (checkins), global
workspaces, and promoted shelves.

conflict

1. A situation where two users open the same file for edit. One user submits the file, after which the
other user cannot submit unless the file is resolved. 2. A resolve where the same line is changed
when merging one file into another. This type of conflict occurs when the comparison of two files to a
base yields different results, indicating that the files have been changed in different ways. In this
case, the merge cannot be done automatically and must be resolved manually. See file conflict.

copy up

A Helix Core best practice to copy (and not merge) changes from less stable lines to more stable
lines. See also merge.

counter

A numeric variable used to track variables such as changelists, checkpoints, and reviews.

175

Glossary

D

default changelist

The changelist used by a file add, edit, or delete, unless a numbered changelist is specified. A
default pending changelist is created automatically when a file is opened for edit.

deleted file

In Helix server, a file with its head revision marked as deleted. Older revisions of the file are still
available. in Helix Core, a deleted file is simply another revision of the file.

delta

The differences between two files.

depot

A file repository hosted on the server. A depot is the top-level unit of storage for versionsed files
(depot files or source files) within a Helix Versioning Engine. It contains all versions of all files ever
submitted to the depot. There can be multiple depots on a single installation.

depot root

The topmost (root) directory for a depot.

depot side

The left side of any client view mapping, specifying the location of files in a depot.

depot syntax

Helix server syntax for specifying the location of files in the depot. Depot syntax begins with: //depot/

diff

(noun) A set of lines that do not match when two files are compared. A conflict is a pair of unequal
diffs between each of two files and a base. (verb) To compare the contents of files or file revisions.
See also conflict.

donor file

The file from which changes are taken when propagating changes from one file to another.

176

Glossary

E

edge server

A replica server that is part of an edge/commit system that is able to process most read/write
commands, including 'p4 integrate', and also deliver versioned files (depot files).

exclusionary access

A permission that denies access to the specified files.

exclusionary mapping

A view mapping that excludes specific files or directories.

F

file conflict

In a three-way file merge, a situation in which two revisions of a file differ from each other and from
their base file. Also, an attempt to submit a file that is not an edit of the head revision of the file in the
depot, which typically occurs when another user opens the file for edit after you have opened the file
for edit.

file pattern

Helix Core command line syntax that enables you to specify files using wildcards.

file repository

The master copy of all files, which is shared by all users. In Helix Core, this is called the depot.

file revision

A specific version of a file within the depot. Each revision is assigned a number, in sequence. Any
revision can be accessed in the depot by its revision number, preceded by a pound sign (#), for
example testfile#3.

file tree

All the subdirectories and files under a given root directory.

177

Glossary

file type

An attribute that determines how Helix Core stores and diffs a particular file. Examples of file types
are text and binary.

fix

A job that has been closed in a changelist.

form

A screen displayed by certain Helix Core commands. For example, you use the change form to enter
comments about a particular changelist to verify the affected files.

forwarding replica

A replica server that can process read-only commands and deliver versioned files (depot files). One
or more replicat servers can significantly improve performance by offloading some of the master
server load. In many cases, a forwarding replica can become a disaster recovery server.

G

Git Fusion

A Perforce product that integrates Git with Helix, offering enterprise-ready Git repository
management, and workflows that allow Git and Helix Core users to collaborate on the same projects
using their preferred tools.

graph depot

A depot of type graph that is used to store Git repos in the Helix server. See also Helix4Git.

group

A feature in Helix Core that makes it easier to manage permissions for multiple users.

H

have list

The list of file revisions currently in the client workspace.

178

Glossary

head revision

The most recent revision of a file within the depot. Because file revisions are numbered sequentially,
this revision is the highest-numbered revision of that file.

Helix server

The Helix Core depot and metadata; also, the program that manages the depot and metadata, also
called Helix Versioning Engine.

Helix TeamHub

A Perforce management platform for code and artifact repository. TeamHub offers built-in support for
Git, SVN, Mercurial, Maven, and more.

Helix4Git

Perforce solution for teams using Git. Helix4Git offers both speed and scalability and supports hybrid
environments consisting of Git repositories and 'classic' Helix Core depots.

I

integrate

To compare two sets of files (for example, two codeline branches) and determine which changes in
one set apply to the other, determine if the changes have already been propagated, and propagate
any outstanding changes from one set to another.

J

job

A user-defined unit of work tracked by Helix Core. The job template determines what information is
tracked. The template can be modified by the Helix Core system administrator. A job describes work
to be done, such as a bug fix. Associating a job with a changelist records which changes fixed the
bug.

job specification

A form describing the fields and possible values for each job stored in the Helix server machine.

job view

A syntax used for searching Helix server jobs.

179

Glossary

journal

A file containing a record of every change made to the Helix server’s metadata since the time of the
last checkpoint. This file grows as each Helix Core transaction is logged. The file should be
automatically truncated and renamed intoa numbered journal when a checkpoint is taken.

journal rotation

The process of renaming the current journal to a numbered journal file.

journaling

The process of recording changes made to the Helix server’s metadata.

L

label

A named list of user-specified file revisions.

label view

The view that specifies which filenames in the depot can be stored in a particular label.

lazy copy

A method used by Helix server to make internal copies of files without duplicating file content in the
depot. A lazy copy points to the original versioned file (depot file). Lazy copies minimize the
consumption of disk space by storing references to the original file instead of copies of the file.

license file

A file that ensures that the number of Helix server users on your site does not exceed the number for
which you have paid.

list access

A protection level that enables you to run reporting commands but prevents access to the contents of
files.

local depot

Any depot located on the currently specified Helix server.

180

Glossary

local syntax

The syntax for specifying a filename that is specific to an operating system.

lock

1. A file lock that prevents other clients from submitting the locked file. Files are unlocked with the 'p4
unlock' command or by submitting the changelist that contains the locked file. 2. A database lock that
prevents another process from modifying the database db.* file.

log

Error output from the Helix server. To specify a log file, set the P4LOG environment variable or use
the p4d -L flag when starting the service.

M

mapping

A single line in a view, consisting of a left side and a right side that specify the correspondences
between files in the depot and files in a client, label, or branch. See also workspace view, branch
view, and label view.

MDS checksum

The method used by Helix Core to verify the integrity of versioned files (depot files).

merge

1. To create new files from existing files, preserving their ancestry (branching). 2. To propagate
changes from one set of files to another. 3. The process of combining the contents of two conflicting
file revisions into a single file, typically using a merge tool like P4Merge.

merge file

A file generated by the Helix server from two conflicting file revisions.

metadata

The data stored by the Helix server that describes the files in the depot, the current state of client
workspaces, protections, users, labels, and branches. Metadata includes all the data stored in the
Perforce service except for the actual contents of the files.

181

Glossary

modification time or modtime

The time a file was last changed.

N

nonexistent revision

A completely empty revision of any file. Syncing to a nonexistent revision of a file removes it from
your workspace. An empty file revision created by deleting a file and the #none revision specifier are
examples of nonexistent file revisions.

numbered changelist

A pending changelist to which Helix Core has assigned a number.

O

opened file

A file that you are changing in your client workspace that is checked out. If the file is not checked out,
opening it in the file system does not mean anything to the versioning engineer.

owner

The Helix server user who created a particular client, branch, or label.

P

p4

1. The Helix Versioning Engine command line program. 2. The command you issue to execute
commands from the operating system command line.

p4d

The program that runs the Helix server; p4d manages depot files and metadata.

pending changelist

A changelist that has not been submitted.

182

Glossary

project

In Helix Swarm, a group of Helix Core users who are working together on a specific codebase,
defined by one or more branches of code, along with options for a job filter, automated test
integration, and automated deployment.

protections

The permissions stored in the Helix server’s protections table.

proxy server

A Helix server that stores versioned files. A proxy server does not perform any commands. It serves
versioned files to Helix Core clients.

R

RCS format

Revision Control System format. Used for storing revisions of text files in versioned files (depot files).
RCS format uses reverse delta encoding for file storage. Helix server uses RCS format to store text
files. See also reverse delta storage.

read access

A protection level that enables you to read the contents of files managed by Helix server but not
make any changes.

remote depot

A depot located on another Helix server accessed by the current Helix server.

replica

A Helix server that contains a full or partial copy of metadata from a master Helix server. Replica
servers are typically updated every second to stay synchronized with the master server.

reresolve

The process of resolving a file after the file is resolved and before it is submitted.

resolve

The process you use to manage the differences between two revisions of a file. You can choose to
resolve conflicts by selecting the source or target file to be submitted, by merging the contents of

183

Glossary

conflicting files, or by making additional changes.

reverse delta storage

The method that Helix Core uses to store revisions of text files. Helix Core stores the changes
between each revision and its previous revision, plus the full text of the head revision.

revert

To discard the changes you have made to a file in the client workspace before a submit.

review access

A special protections level that includes read and list accesses and grants permission to run the p4
review command.

revision number

A number indicating which revision of the file is being referred to, typically designated with a pound
sign (#).

revision range

A range of revision numbers for a specified file, specified as the low and high end of the range. For
example, myfile#5,7 specifies revisions 5 through 7 of myfile.

revision specification

A suffix to a filename that specifies a particular revision of that file. Revision specifiers can be
revision numbers, a revision range, change numbers, label names, date/time specifications, or client
names.

S

server data

The combination of server metadata (the Helix Core database) and the depot files (your
organization's versioned source code and binary assets).

server root

The topmost directory in which p4d stores its metadata (db.* files) and all versioned files (depot files
or source files). To specify the server root, set the P4ROOT environment variable or use the p4d -r
flag.

184

Glossary

service

In the Helix Versioning Engine, the shared versioning service that responds to requests from Helix
Core client applications. The Helix server (p4d) maintains depot files and metadata describing the
files and also tracks the state of client workspaces.

shelve

The process of temporarily storing files in the Helix server without checking in a changelist.

status

For a changelist, a value that indicates whether the changelist is new, pending, or submitted. For a
job, a value that indicates whether the job is open, closed, or suspended. You can customize job
statuses. For the 'p4 status' command, by default the files opened and the files that need to be
reconciled.

stream

A branch with additional intelligence that determines what changes should be propagated and in
what order they should be propagated.

stream depot

A depot used with streams and stream clients.

submit

To send a pending changelist into the Helix Core depot for processing.

super access

An access level that gives the user permission to run every Helix Core command, including
commands that set protections, install triggers, or shut down the service for maintenance.

symlink file type

A Helix server file type assigned to symbolic links. On platforms that do not support symbolic links,
symlink files appear as small text files.

sync

To copy a file revision (or set of file revisions) from the Helix Core depot to a client workspace.

185

Glossary

T

target file

The file that receives the changes from the donor file when you integrate changes between two
codelines.

text file type

Helix Core file type assigned to a file that contains only ASCII text, including Unicode text. See also
binary file type.

theirs

The revision in the depot with which the client file (your file) is merged when you resolve a file
conflict. When you are working with branched files, theirs is the donor file.

three-way merge

The process of combining three file revisions. During a three-way merge, you can identify where
conflicting changes have occurred and specify how you want to resolve the conflicts.

trigger

A script automatically invoked Helix Core when various conditions are met.

two-way merge

The process of combining two file revisions. In a two-way merge, you can see differences between
the files.

typemap

A table in Helix server in which you assign file types to files.

U

user

The identifier that Helix server uses to determine who is performing an operation.

186

Glossary

V

versioned file

Source files stored in the Helix Core depot, including one or more revisions. Also known as a depot
file or source file. Versioned files typically use the naming convention 'filenamev' or '1.changelist.gz'.

view

A description of the relationship between two sets of files. See workspace view, label view, branch
view.

W

wildcard

A special character used to match other characters in strings. The following wildcards are available
in Helix server: * matches anything except a slash; ... matches anything including slashes; %%0
through %%9 is used for parameter substitution in views.

workspace

See client workspace.

workspace view

A set of mappings that specifies the correspondence between file locations in the depot and the
client workspace.

write access

A protection level that enables you to run commands that alter the contents of files in the depot. Write
access includes read and list accesses.

Y

yours

The edited version of a file in your client workspace when you resolve a file. Also, the target file when
you integrate a branched file.

187

License Statements
Perforce Software includes software developed by the University of California, Berkeley and its
contributors. This product includes software developed by the OpenSSL Project for use in the OpenSSL
Toolkit (http://www.openssl.org/).

Perforce Software includes software from the Apache ZooKeeper project, developed by the Apache
Software Foundation and its contributors. (http://zookeeper.apache.org/)

Perforce Software includes software developed by the OpenLDAP Foundation
(http://www.openldap.org/).

Perforce Software includes software developed Computing Services at Carnegie Mellon University:
Cyrus SASL (http://www.cmu.edu/computing/).

188

http://www.openssl.org/
http://zookeeper.apache.org/
http://www.openldap.org/
http://www.cmu.edu/computing/

	How to use this guide
	Feedback
	Other Helix Core documentation
	Syntax conventions

	P4Ruby
	System Requirements and Release Notes
	Installing P4Ruby
	Programming with P4Ruby
	Connecting to SSL-enabled servers

	P4Ruby classes
	P4
	P4Exception
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::Map
	P4::MergeData
	P4::Message
	P4::OutputHandler
	P4::Progress
	P4::Spec
	Class P4
	Class P4Exception
	Class P4::DepotFile
	Class P4::Revision
	Class P4::Integration
	Class P4::Map
	Class P4::MergeData
	Class P4::Message
	Class P4::OutputHandler
	Class P4::Progress
	Class P4::Spec

	P4Perl
	System Requirements and Release Notes
	Installing P4Perl
	Programming with P4Perl
	Connecting to Helix Core over SSL

	P4Perl Classes
	P4
	P4::DepotFile
	P4::Revision
	P4::Integration
	P4::Map
	P4::MergeData
	P4::Message
	P4::OutputHandler
	P4::Progress
	P4::Resolver
	P4::Spec
	Class P4
	Class P4::DepotFile
	Class P4::Revision
	Class P4::Integration
	Class P4::Map
	Class P4::MergeData
	Class P4::Message
	Class P4::OutputHandler
	Class P4::Progress
	Class P4::Resolver
	Class P4::Spec

	P4Python
	Introduction
	System Requirements and Release Notes
	Installing P4Python
	Programming with P4Python
	Submitting a Changelist
	Logging into Helix Core using ticket-based authentication
	Connecting to Helix Core over SSL
	Changing your password
	Timestamp conversion
	Working with comments in specs

	P4Python Classes
	P4
	P4.P4Exception
	P4.DepotFile
	P4.Revision
	P4.Integration
	P4.Map
	P4.MergeData
	P4.Message
	P4.OutputHandler
	P4.Progress
	P4.Resolver
	P4.Spec
	Class P4
	Class P4.P4Exception
	Class P4.DepotFile
	Class P4.Revision
	Class P4.Integration
	Class P4.Map
	Class P4.MergeData
	Class P4.Message
	Class P4.OutputHandler
	Class P4.Progress
	Class P4.Resolver
	Class P4.Spec

	P4PHP
	Introduction
	System Requirements and Release Notes
	Installing P4PHP
	Programming with P4PHP
	Submitting a Changelist
	Logging into Helix Core using ticket-based authentication
	Connecting to Helix Core over SSL
	Changing your password

	P4PHP Classes
	P4
	P4_Exception
	P4_DepotFile
	P4_Revision
	P4_Integration
	P4_Map
	P4_MergeData
	P4_OutputHandlerAbstract
	P4_Resolver
	Class P4
	Class P4_Exception
	Class P4_DepotFile
	Class P4_Revision
	Class P4_Integration
	Class P4_Map
	Class P4_MergeData
	Class P4_OutputHandlerAbstract
	Class P4_Resolver

	Glossary
	License Statements

