O
HelixCore

Helix Versioning Engine User
Guide

20171
May 2017

PERFORCE

Copyright © 2015-2017 Perforce Software.
Allrights reserved.

Perforce Software and documentation is available from www.perforce.com. You can download and use Perforce programs, but
you can not sell or redistribute them. You can download, print, copy, edit, and redistribute the documentation, but you can not sell
it, or sellany documentation derived from it. You can not modify or attempt to reverse engineer the programs.

This product is subject to U.S. export control laws and regulations including, but not limited to, the U.S. Export Administration
Regulations, the International Trafficin Arms Regulation requirements, and all applicable end-use, end-user and destination
restrictions. Licensee shall not permit, directly or indirectly, use of any Perforce technology in or by any U.S. embargoed country or
otherwise in violation of any U.S. export control laws and regulations.

Perforce programs and documents are available from our Web site as is. No warranty or supportis provided. Warranties and
support, along with higher capacity servers, are sold by Perforce Software.

Perforce Software assumes no responsibility or liability for any errors or inaccuracies that might appear in this book. By
downloading and using our programs and documents you agree to these terms.

Perforce and Inter-File Branching are trademarks of Perforce Software.
Allother brands or product names are trademarks or registered trademarks of their respective companies or organizations.

Any additional software included within Perforce Software is listed in "License Statements" on page 185.

https://www.perforce.com/

Howto Use this Guide 11
Searchwithin this guide 11

N aVIGat ON 11
Feedback ... L 12
Other Helix Core documentation 12
SYNtaX CONVENTIONS 12
What's newinthisguide 14
Installation ... 15
OnUnix and OS X ..o L 15
ON WINAOWS .. 15
OV eIV W 16
INtrOdUC T ON .. 16
File management . 16
Changelists .. 17
Parallel development 17
Shared filles ..l 17
Branching: branches versus streams 17

SO CUNY . 18
Organizing your work: jobs and labels 18
Scripting and reporting ...l 19
Tutorial 20
Read me first .. 20
Make binaries executable, on UNIXand OS X 20
Create aworking direCtOry ...l 20
Start up the shared server . .. 21
Start up the command line client 21
Verify the connectiontothe server 22
Create a stream depot 23
Create your first stream .. 24
Define a client workspace and bindittothe stream 26
Populate a mainline stream .. 29
Bt files . 32

Delete filleS . 33

Sync files from the depot to your client workspace 35
Populate child streams . iiiiiiiiiiii.. 35
Basictasks 36
Overview of initial tasks 36
Overview of recurring tasks 36
Initial tasKS .. il 37
Create aworking direCtory 38
Logintothe shared server 38
Start up ashared Server ... 38
Start up the command line client and verify the connectiontotheserver 39
Create astream depot 40
Create amainline stream . il 41
Define aworkspace and bind it tothe stream 42
Populate the mainline stream 43
Recurring file-level tasks L 44
SYNC fIlES il 45
A IS 46
Add files outside of Helix Core and then use p4 reconcile-k 47
Edit files and check in Changes i 48
Delete fileS ... 48
Revert files, todiscard changes 49
Rename and move files 49
D1 11 T 49
Resolve conflicts 50
Otherrecurring tasks .. 50
Example 8, "Automatic renumbering of changelists’Changelist-related tasks 51
Configure client behavior 56
Configure stream behavior 56
Branch and populate child streams ... 57
Propagate Changes 57
Configure clients 59
Configure the client process 59
Usingthe command liNe ... L 59
Using config files 60

Using environment variablesl 61

Using the Windows registry or OS X system settings 62

Configure for IPV6 networks 62
Configure forUnicode ... 63
Configure a client Workspace 64
How Helix Core manages files inaworkspace .. 64
Define aclientworkspace 65
Configure workspace OptionNs 66
Configure submit options 67
View a stream as of a specific changelist 68
Configure line-ending Settings oo i 69
Change the location and/or layout of your workspace 69
Manage WOrKSPaCeS . il 70
Delete aclient Workspace iiiiiiil. 71
Configure Workspace VIeWS ... 71
SPeCifY MaPPINGS - il 72
Use wildcards in WorksSpace VIEWS el 73
Map part of the depot 73
Map files to different locations inthe workspace 74
Map files to different filenames 74
Rearrange parts of filenames 74
Exclude files and directories ...l 75
Map a single depot path to multiple locations inaworkspace 75
Restrict access by changelist 76
Avoid mapping CONfliCtS . L 76
Automatically prune empty directories from aworkspace 77
Map different depot locations to the same workspace location _............................... 77
Deal with spaces in filenames and directories 77
Map Windows workspaces across multiple drives 78
Use the same workspace from different computers 78
Streams . 80
Configure @ stream ... 80
More 0N OPtiONS . .. il 83
Stream tY PeS .. 83
Task Streams il 85
Virtual Streams L 86
Stream paths ... 86

Update Streams ... 9

Make changes to a stream spec and associated files atomically 92
Resolve conflicts 93
How conflicts OCCUr ... 93
How toresolve conflicts . .. 93
Your, theirs, base, and merge files 94
Options for resolving CONfliCtS ... L 95
Accepting yours, theirs, ormerge ...l 95
Editingthe merge file 96
Merging to resolve conflicts 97

Full list of resolve OptioNS .. . 97
Resolving branched files, deletions, moves and filetype changes 99
Resolve command-line OptioNs 100
Resolve reporting Commands L 101
Codeline management 103
Organizing the depot 103
Branching streams ...l 104
A shortcut: pd populate 105
Branching Streams .. L 105
Whento branch .. L 105
BranChing Streams .. L 106
Merge Changes L 107
Merging between unrelated files 108
Merging specific file revisSions L 108
Re-merging and re-resolving files L 108
Reporting branches and merges 108
Lesscommontasks 110
WoOrK OFfliNe 110
Ignoring groups of files whenadding 110
LoCKING fileS . il 112
Preventing multiple resolves by locking files 112
Preventing multiple CheCKoUts L 113

SO CUNI Y 114
SSL-encrypted CONNECIONS L 114

Connecting to services that require plaintext connections 115

PasSSWOIAS . 116

Setting PasSWOrdS ...l 116
USIiNg YOUr PasSSWOId 116
Connection time limits 117
Logging in and logging OUt ... 117
Working on multiple computers 117
Labels .. . 118
Tagging files with alabel ... L 118
Untagging filles ... 119
Previewing tagging resUlS . 119
Listing files tagged by alabel 119
Listing labels that have been applied tofiles 119
Using a label to specify file revisions L 119
Deleting labels 120
Creating alabel for future Use 120
Restricting files that can be tagged L 121
Static versus automatic labels 121
Static labels 122
Automatic labels 122
Automatic labels: superior performance, 124
Preventing inadvertent tagging and untagging of files 125
Using labels on edge SErVers 125
Using labels with Git 125
JObBS 127
Creating, editing, and deleting a job L 127
SearChing JODS .o L 128
Searching Job teXt .. 128
Searching specific flelds ... L 129
Using comparison Operators iiiiiiiiiiiii.. 130
Searching date flelds ... L 131
FIXING JODS .. 131
Linking automatically 131
Linking manually 132
Linking jobs to changelists 132

Scripting and reporting ... 133

Common options used in scriptingand reporting 133

Scripting with Helix Core forms 134
File reporting 134
Displaying file status 135
Displaying file revision history 136
Listing Open files .. 136
Displaying file locations 137
Displaying file CONteNtS L 137
Displaying annotations (details about changes tofile contents) _............................ 138
Monitoring changes to files L 139
Changelist rePOrtiNg o L 139
Listing changelists .. 139
Listing files and jobs affected by changelists 140
Label repOrting oL 141
Branch and integration reporting 141
JOD rePOrING . 142
Listing JODS . 142
Listing jobs fixed by changelists 142
System configuration reporting ... 143
Displaying USers .. 143
Displaying WOrKSpPaCes o 144
Listing AePOtS 144
SaAMIPIE SO L 144
Helix Core file types 146
File type mModifiersl 147
Specifying how files are stored in Helix Core 149
Assigning file types forUnicode files L 149
Choosing the file tyPe ... L 150
Helix Core file type detectionand Unicode 151
Overriding file types ... 151
Preserving timestamps ... L 152
Expanding RCS Keywords 152
Helix Core command syntax 154
Command-line SYNLAX 154

Specifying filenames onthe command line 156

Restrictions on filenames and identifiers 158
Specifying file revisSioNs 160
Reporting commands 163
Using Helix Core fommMs . L 164
Gl oS SaANY . 165

License Statements 185

How to Use this Guide

This guide tells you how to use the Helix Core Command Line Client (p4). Unless you're an experienced
Helix Core user, we strongly urge you to read the "Basic concepts" chapter of Solutions Overview: Helix
Version Control System before reading this guide.

Perforce provides many applications that enable you to manage your files, including the command line
client, GUls — such as P4V — and plug-ins. The command line client enables you to script and to
perform administrative tasks that are not supported by Helix Core GUls.

Note
If you're new to Helix Core software, start with the "Tutorial" on page 20, and then read "Overview" on
page 16.

Search within this guide

Use quotes for an exact multi-word phrase: “revision range” O

Revision ranges are also acceptable.

Quickly spot multiple search terms in color-coded results branch tagrepo 2
(different color for each term):
Force an overwrite to the branch.

Delete the repository's branch or tag

Find search terms on page with Command- F on Mac or
CTRL+F on Windows

Navigation

Browse tothe nextor | [k

on search

previous heading
with arrow buttons:

11

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
http://www.perforce.com/perforce/doc.current/manuals/overview/index.html

Feedback

See the top of any
page to knows its Installing and Upgrading the Server > Planning the installation > Disk space allocation
location within the
book:

Use the links to
resources at the
footer of each page:

Resize the Content
pane as needed:

Contents

@ p4 grant-permis:
@ p4sgrep

& p4 jobs

& p4 jobspec

& p4 journalcopy

Tip
When sharing URLSs, you can ignore the extra characters at the end of each page's URL because
standard URLs do work. For example:

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#Cm
dref/p4_add.htm

or

https://www.perforce.com/perforce/doc.current/manuals/cmdref/#Cm
drRef/configurables.configurables.html#auth.default.method

Feedback

How can we improve this manual? Email us at manual@perforce.com.

Other Helix Core documentation

See https://www.perforce.com/support/self-service-resources/documentation.

Syntax conventions

Helix documentation uses the following syntax conventions to describe command line syntax.

12

mailto:manual@perforce.com
https://www.perforce.com/support/self-service-resources/documentation

Syntax conventions

Notation Meaning

Titeral Must be used in the command exactly as shown.

italics A parameter for which you must supply specific information. For example, for
a serverid parameter, supply the ID of the server.

[-f] The enclosed elements are optional. Omit the brackets when you compose
the command.

m Repeats as much as needed:

« alias-name[[$(argl)...
[$Cargn)]]=transformation

m Recursive for all directory levels:

« clone perforce:1666 //depot/main/p4...
~/1local-repos/main

« p4 repos -e //gra.../rep...

element1 | Either element1 or element2 s required.
element2

13

What's new in this guide

What'’s new in this guide

This section provides a list of changes to this guide for the Helix Versioning Engine since the last major
release. For a list of all new functionality and major bug fixes in Helix Versioning Engine , see the Helix
Versioning Engine Release Notes.

You can now undo a submitted change See "Basic tasks" on page 36.

14

http://www.perforce.com/perforce/doc.current/user/relnotes.txt
http://www.perforce.com/perforce/doc.current/user/relnotes.txt

Installation

This chapter tells you how to install the Helix Core Command-Line Client (p4) and the Helix Versioning
Engine (p4d) on your computer.

Instructions vary by operating system.

On Unix and OS X

On UNIX and OS X, download the server and command line client binaries into the /usr/l1ocal/bin
directory.

1. Change into the download directory.
$ c¢d /usr/local/bin

2. Download the p4d and p4 executable files from the Perforce website.
http://www.perforce.com/downloads/complete_list

3. Make the server and client binaries executable, if they aren’t already.

$ chmod +x p4d
$ chmod +x p4

On Windows

Toinstall the Helix Core server (p4d) and Helix Core command-line client (p4) on Windows, download
and run the Helix Core Windows installer (he11ix-versioning-engine-x64.exeorhelix-
versioning-engine-x86.exe)from the Downloads page of the Perforce web site:

http://www.perforce.com/downloads/complete_list

The Helix Core installer walks you through the steps to install and uninstall the Helix Core server
(p4d . exe), the Helix Core command-line client (p4 . exe), and other Helix Core Windows
components.

15

http://www.perforce.com/downloads/complete_list
http://www.perforce.com/downloads/complete_list

Overview

This chapter provides an overview of the Helix Core version management system.

Important
Read the "Basic concepts" chapter of Solutions Overview: Helix Version Control System before
reading this guide.

This guide documents the command-line client only. For documentation on other clients, see the Helix
Core documentation website.

Although this guide presents the command line interface, it discusses all the other things you need to
know regardless of interface choice.

Introduction

Helix Core is an enterprise version management system in which you connect to a shared versioning
server; you sync files from a shared repository called the depot, and edit them on your computer in your
workspace. You manage files with the help of changelists. You have the option of submitting to the depot
any changes you make locally to make them available to other users.

The Helix Coreserver also known as p4d, manages depots, which contain every revision of every file
under version management. Files are organized into directory trees. The server also maintains a
database to track data associated with files and client activity: logs, user permissions, metadata,
configuration values, and so on.

Helix Coreclients provide an interface that allows you to check files in and out of the depot, resolve
conflicts, track change requests, and more. Helix Core includes a number of clients: a command-line
client, a graphical user interface client, and various plugins that work with commercial IDEs and
productivity software.

Helix Core also supports a decentralized (“distributed”) workflow. See the "Basic concepts" chapter of
Solutions Overview: Helix Version Control System, and Using Helix Core for Distributed Versioning.

File management

You use Helix Core clients to manage a special area of your computer, called a workspace. Directories in
the depot are mapped to directories in your workspace, which contain local copies of managed files. You
always work on managed files in your workspace:

1. You populate your local workspace by syncing files from the depot.
2. You check the files out of the depot (and into your workspace).

3. You make changes to the files.
4

. You check them back into the depot, also known as submitting.

16

http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
http://www.perforce.com/resources
http://www.perforce.com/resources
http://www.perforce.com/perforce/doc.current/manuals/overview/index.html
http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html

Changelists

5. If the changes you try to submit conflict with changes that other users, working in parallel with
you, have already submitted, you must resolve conflicts as needed.

Changelists

The unit of file submission is the changelist; it is the means by which you check files in and out of the
depot. A changelist must contain at least one file and may contain tens of thousands. A changelist is
numbered and allows you to track all changes with respect to the contents of the depot: file
modifications, the addition of a file, or the deletion of afile.

A changelist is the simplest way to organize your work. A changelist also represents the atomic unit of
work in Helix Core: if a changelist includes several files, changes for all the files are committed to the
depot or none of the changes are. For example, if a network connection between the client and the server
fails during changelist submission, the entire submit fails.

Parallel development

As with all version management systems, Helix Core is designed to let multiple users work on the same
files, codelines, or digital assets in parallel and then reconcile differences later. When conflicts occur, the
system resolves them if the user cannot.

Helix Core permits parallel development at two levels:

m At the file level, with shared files

m At the codeline level, with branching.

Shared files

Parallel development also happens when multiple users check the same file(s) out of the depot, work on
them in parallel, and check them back into the depot by submitting them. At the time of submission, Helix
Core reports whether there are conflicts with other users' changes to the same file or files, and requires
that any conflicts be resolved.

Branching: branches versus streams

In the course of a collaborative development project, you may find it useful to split off the codeline into
multiple codelines, each having a distinct intended purpose. For example, when a certain milestone is
reached in development, you may choose to copy the code — also known as branching it — into a new
codeline for testing, thereby creating a QA branch. After it passes all tests, it is copied up to the Beta test
line where it is subjected to real-world use. Later, you may choose to merge one or more of these new
branches back into the main codeline.

17

Security

Streams: branches with additional intelligence

Streams are like branches, with additional intelligence built in. They provide clues of where and how to do
branching and merging. They guide merging and branching actions that support both stability and
innovation. In addition, using streams eliminates a lot of the work needed to define branches, to create
workspaces, and to manage merges.

When you create a stream, you specify its type, information about the files it is associated with, its
relationship to other streams, and how files are to be treated for branching and merging. The system uses
the information you provide to encourage merging best practices and to track parallel development.

The stream type tells the system how stable the stream is relative to other streams. The stream’s path
info tells the system a number of things; including which files to populate the workspace with, which files
child streams are allowed to branch, and, if necessary, which changelist to lock the files at. Parent
labeling specifies how the stream relates to other streams in the system, helping to determine how
change flows through the system.

Streams are ideal forimplementing the mainline branching model, in which less stable streams merge
changes to keep up to date with their parents, then copy work to the parent when the work is stable
enough to promote. In addition, streams enable the system to generate views for associated
workspaces, eliminating the need for you to update views manually to reflect changes to your stream
structure.

Note
This guide assumes the reader is using streams, but notes where instructions differ for branch users.

Security

The Helix Core command line client supports a number of security-related features, mostly having to do
with SSL encryption.

Organizing your work: jobs and labels

In addition to using changelists and streams to organize your work, you can use two other methods: jobs
and labels.

m Jobs provide lightweight issue tracking that integrates well with third party defect tracking and
workflow systems. They allow you to track the status of a bug or an enhancement request. Jobs
have a status and a creator and are associated with changelists that implement the bug fix or the
enhancement.

18

Scripting and reporting

m Labels are sets of tagged file revisions that allow you to handle a heterogeneous group of files as
one unit. While a changelist refers only to the contents of a given set of files at the time they were
submitted, a label can refer to a group of file revisions from different points in time. You might want
to use labels to define the group of files contained in a particular release, to sync a set of files, to
populate a workspace, or to specify a set of file revisions to be branched. You can also use a label
as an alias for a changelist number, which makes it easier to remember the changelist and easier
torefer to it in issuing commands.

Scripting and reporting
You can use client commands in scripts and for reporting purposes. For example, you could:

m merge and then resolve multiple files in one script
m use the UNIX Stream Editor (sed) in conjunction with a Helix Core client command to create a job

m issue a command reporting all labels containing a specific file revision (or range)

19

This section walks you through a tutorial to help you get familiar with the most common tasks.

Read me first

This tutorial is for users not experienced with the Helix Versioning Engine. After working through this
tutorial, you should understand the following:

m the basics of starting up a shared server and command line client
m getting a shared server and client communicating with each other
m adding, editing, deleting, and syncing files on your client computer

m checking those files into the server.

The sections that follow take you — step-by-step — through the tutorial.

Important
Before running this tutorial install the shared server and command client binaries onto the same
computer. See "Installation" on page 15 for instructions.

Make binaries executable, on UNIX and OS X

On UNIX and OS X, make the server and client binaries executable, if they aren’t already.

$ c¢d /usr/local/bin
$ chmod +x p4d
$ chmod +x p4

Create a working directory

Create a working directory in which to perform the rest of the steps in this tutorial, and then change to that
directory. In this example, we create a directory called tutorial in the user's home directory.

On Unix and OS X

$ mkdir /Users/bruno/tutorial
$ cd /Users/bruno/tutorial

On Windows

20

Start up the shared server

$ mkdir c:\Users\bruno\tutorial
$ c¢d Cc:\Users\bruno\tutorial

Start up the shared server

1. Make a subdirectory in which to start up the server and client.

When started, the server creates a large number of database files; it’s best not to clutter your
working directory with these files, so we will start up the server and client in a designated
directory.

On Unix and OS X

$ mkdir /Users/bruno/server
On Windows

$ mkdir c:\Users\bruno\server

2. Start up the shared server.

Start up the shared server, using the = d7 " option to specify the directory created in the
previous step and the —=p port option to set the hostname:port number to
Tocalhost:1666, the required setting for running the shared server and the client on same
computer.

On UNIX and OS X

$ p4d -r /users/bruno/server -p localhost:1666
On Windows

$ p4d -r C:\Users\bruno\server -p localhost:1666

This produces the following output:

Perforce db files in 'server' will be created if missing...
Perforce Server starting...

Because the shared server runs in the foreground, you must open a new terminal window in
which to run subsequent commands.

Start up the command line client

1. Change to your working directory.
This is the working directory you created in "Create a working directory" on the previous page.
On UNIX and OS X

21

Verify the connection to the server

$ cd /Users/bruno/tutorial
On Windows

$ cd Cc:\Users\bruno\tutorial

2. Set the P4APORT environment variable

The serveris running as Tocalhost on port 1666. For the client to communicate with the
server, you must set the client’'s P4PORT variable to Tocalhost:1666.

On UNIX and OSX

$ export P4PORT=1ocalhost:1666

On Windows

$ set P4PORT=localhost:1666

3. Start up the command line client.

$ p4

This produces the following output, followed by a list of help commands.

Perforce -- the Fast Software Configuration Management System.

p4 is Perforce's client tool for the command Tine.

Verify the connection to the server

To verify a connection, run the p4 info command.

$ p4 info

If P4PORT is set correctly, information like the following is displayed:

User name: bruno
Client name: dhcp-133-n101
Client host: dhcp-133-n101.dhcp.perforce.com

Client

unknown.

Current directory: /Users/bruno/tutorial
Peer address: 127.0.0.1:49917

Client
server
server
Server
Server

address: 127.0.0.1

address: localhost:1666

root: /Users/bruno/server

date: 2016/03/01 16:15:38 -0800 PST
uptime: 00:03:26

22

Create a stream depot

Server version: P4D/DARWIN90X86_64/2015.2/1340214 (2016/02/03)
Server license: none
Case Handling: insensitive

The Server address: field shows the host to which p4 connected and also displays the host and
port number on which the Helix Core server is listening. If P4PORT is set incorrectly, you receive a
message like the following:
Perforce client error:

connect to server failed; check $P4PORT.

TCP connect to perforce:1666 failed.

perforce: host unknown.

If you get the "host unknown" error, speak to your administrator.

Create a stream depot
Create a stream depot in which the stream you create in the next step will reside. Type the following:

$ p4 depot -t stream JamCode

The -t option specifies the type of depot to create, in this case a stream depot. JamCode is the name
of the depot you're creating.

Helix Core opens the depot specification in an editor:

A Perforce Depot Specification.

#

Depot: The name of the depot.

Owner: The user who created this depot.

Date: The date this specification was Tast modified.

Description: A short description of the depot (optional).

Type: whether the depot is 'local', 'remote',

'stream', 'spec', 'archive', 'tangent',

or 'unload'. Default is 'local'.

Address: connection address (remote depots only).

sSuffix: suffix for all saved specs (spec depot only).

Streambepth: Depth for streams in this depot (stream depots only).
Map: Path translation information (must have ... in 1it).

SpecMap: For spec depot, which specs should be recorded (optional).
#

Use 'p4 help depot' to see more about depot forms.

23

Create your first stream

Depot: JamCode
owner:
Date: 2016/02/22 13:20:06
Description:

Created by bruno.
Type: stream
StreambDepth: //JamCode/1
Map: JamCode/. ..
Create your first stream

A stream is where you store your work. The first stream is always a mainline stream. To learn more about
streams, see "Streams" on page 80.

To create the stream:

1. Issue the p4 stream, command, specifying the stream depot name followed by the

stream name.

Here, we name the stream main and — with the =t option — specify the stream type as
mainline:

$ p4 stream -t mainline //JamCode/main

Helix Core opens the stream specification (spec) in an editor:

A Perforce Stream Specification.

#

Stream:
path.

Update:
Access:
Owner:
Name:

Parent:

The stream field is unique and specifies the depot

The date the specification was last changed.

The date the specification was originally created.
The user who created this stream.

A short title which may be updated.

The parent of this stream, or 'none' if Type is

24

Create your first stream

25

mainline.

Type:

#

'mainline',

#

"task'.

Description:

Type of stream provides clues for commands run
between stream and parent. Five types include

'release', 'development' (default), 'virtual' and

A short description of the stream (optional).

Options: Stream Options:

alTsubmit/ownersubmit [un]Tlocked
[no]toparent [no]fromparent
mergedown/mergeany

Paths:

#

#

#

Remapped:
1Ignored:
#

#

Identify paths in the stream and how they are to be
generated in resulting clients of this stream.

Path types are share/isolate/import/import+/exclude.
Remap a stream path in the resulting client view.
Ignore a stream path in the resulting client view.

Use 'p4 help stream' to see more about stream specifications and

command.

Stream: //JamCode/main

owner: bruno

Name: main

Parent: none

Type: mainline

Description:

Created by bruno.

Options:

allsubmit unlocked notoparent nofromparent mergedown

Define a client workspace and binditto the stream

Paths:
share ...

A stream spec defines the stream’s name and location, its type, its parent stream, the files in the
workspace view of workspaces bound to it, and other configurable behaviors. Note that the
stream name is composed of the stream depot name followed by the stream name. You edit the
stream spec’s fields to configure the stream’s behavior, as explained at length in "Configure a
stream" on page 80.

2. To verify that your mainline stream has been created, issue the p4 streams command.

For example:

$ p4 streams //JamCode/...

This produces the following output:

Stream //JamCode/main mainline none 'main'

Define a client workspace and bind it to the stream

A client workspace is the set of directories on your local computer where you work on the file revisions
that Helix Core manages. At minimum, you should assign your workspace a name and specify a
workspace root where you want local copies of depot files stored. The client workspace name defaults to
the hostname of the computer on which your client is running. For details, see "Configure a client
workspace" on page 64.

Before you can work in a stream, you must associate your workspace with the stream. When you
associate a workspace with a stream, Helix Core generates the workspace view based on the structure
of the stream. Workspace views are a crucial concept in Helix Core and are discussed in detail in
"Configure workspace views" on page 71.

To create a workspace and bind it to a stream:

1. Set the PACLIENT environment variable to desired workspace name.
On UNIX and OS X

$ export P4CLIENT=bruno_ws

On Windows

$ set PACLIENT=bruno_ws

26

Define a client workspace and binditto the stream

2. Usethe p4 client command to bind your workspace to the stream.

$ p4 client -S //JamCode/main

The =S option specifies the name of the associated stream.

Helix Core opens the client specification (spec) in an editor:

A Perforce Client Specification.

The client name.

The date this specification was Tast modified.
The date this client was last used in any way.
The Perforce user name of the user who owns the

workspace. The default is the user who created the

client workspace.

If set, restricts access to the named host.

A short description of the client (optional).

The base directory of the client workspace.

Up to two alternate client workspace roots.

Client options:
[no]lallwrite [no]clobber [no]compress
[un]Tocked [no]lmodtime [no]rmdir

submitunchanged/submitunchanged+reopen
revertunchanged/revertunchanged+reopen
Teaveunchanged/1eaveunchanged+reopen

Text file 1line endings on client:

Type of client: writeable/readonly.
Client's participation in backup enable/disable. If

specified backup of a writable client defaults to

If set, restricts access to the named server.

#

Client:

Update:

Access:

Owner:
client

#

#

Host:

Description:
Root:

AltRoots:

Options:

#

#

SubmitoOptions:
#

#

#

LineEnd:
local/unix/mac/win/share.
Type:

Backup:

not

#

enabled.

ServerID:

View:

Changeview:

27

Lines to map depot files into the client workspace.
Lines to restrict depot files to specific

Define a client workspace and binditto the stream

changelists.

Stream:
dedicated.
#
dedicated
#
#
#

The stream to which this client's view will be
(Files in stream paths can be submitted only by
stream clients.) wWhen this optional field is set, the

View field will be automatically replaced by a stream
view as the client spec is saved.

StreamAtChange: A changelist number that sets a back-in-time view

of a
#
#
set.
#

stream (Stream field is required).
Changes cannot be submitted when this field is

Use 'p4 help client' to see more about client views and options.

Client:

owner:

Host:

Description:

Root:

Options:
normdir

SubmitoOptions:

LineEnd:

bruno_ws

bruno

dhcp-133-n101.dhcp.perforce.com

Created by bruno.

/Users/bruno/tutorial

noallwrite noclobber nocompress unlocked nomodtime

submitunchanged

Jocal

28

Populate a mainline stream

Stream: //3JamCode/main

View:
//JamCode/main/... //bruno_ws/...

At this point you have the option to configure the workspace root directory and any other desired
settings. The workspace root is the highest-level directory of the workspace under which the
managed source files reside. For more information, see "Define a client workspace" on page 65.
Once you've done this, save any changes and quit the editor.

For information about configuring other settings, see "Configure workspace views" on page 71.

Verify that your workspace has been created, with the p4 ¢1ients command.

$ p4 clients -S //JamCode/main

This produces the following output:

Client bruno_ws 2016/02/22 root /Users/bruno/tutorial 'Created by
bruno.'

Next, populate the mainline stream with files.

Populate a mainline stream

Now that you've created a stream, you can populate it with files. There are two ways to populate a
mainline stream:

m Add files from the local filesystem.

m Branch files from another depot.

In this tutorial, we demonstrate populating by adding files. For information on populating by branching
from another depot, see "Branch from other depots" on page 43.

To add files to the mainline stream, copy the files and folders to the workspace root directory and then
mark them for add with the p4 add command.

1.

29

Copy the files and folders to the workspace root directory.

In this example, we add all files residing in a directory named
/Users/bruno/repository.

On UNIX and OSX

$ cp /Users/bruno/repository/* /Users/bruno/tutorial
On Windows

$ copy C:\Users\bruno\repository* C:\Users\bruno\tutorial

Populate a mainline stream

2. Change into the client workspace root directory.
On UNIX and OSX

$ cd /Users/bruno/tutorial

On Windows

$ cd c:\User\bruno\tutorial

3. Mark the files for add.

$ p4 add *

This creates a default change1i st, which you will use when you submit to the depot the file
you added to your workspace. For more information on changelists, see "Example 8, "Automatic
renumbering of changelists”"Changelist-related tasks" on page 51.

4. Submit the added files.

To populate the stream, submit the default changelist in which the files are open for add.

$ p4 submit
Helix Core opens the change specification inan editor:

A Perforce Change Specification.

#

Change:

Date:

Client:
only

User

Status:

Type:

Description:
ImportedBy:
Identity:

Jobs:

#

only.)

Files:
added

#

#

The change number. 'new' on a new changelist.
The date this specification was Tast modified.
The client on which the changelist was created. Read-

The user who created the changelist.

Either 'pending' or 'submitted'. Read-only.

Either 'public' or 'restricted'. Default is 'public'.
Comments about the changelist. Required.

The user who fetched or pushed this change to this server.
Identifier for this change.

what opened jobs are to be closed by this changelist.

You may delete jobs from this Tist. (New changelists

what opened files from the default changelist are to be

to this changelist. You may delete files from this Tist.
(New changelists only.)

30

Populate a mainline stream

Change: new

Client: bruno_ws

User: bruno

Status: new

Description:
<enter description here>

Files:
//JamCode/main/filel.cc # add
//JamCode/main/filel.h # add
//3amCode/main/filel. txt # add
//3JamCode/main/file2.cc # add
//JamCode/main/file2.h # add
//JamCode/main/file2.txt # add
//3JamCode/main/file3.cc # add
//JamCode/main/file3.h # add
//JamCode/main/file3.txt # add

Enter a description under Description and then save your changes, to store the files you added in
the Helix Core depot. Something like the following output is displayed:

Change 1 created with 9 open file(s).
Submitting change 1.

Locking 9 files ...

add //JamCode/main/filel.cc#l
add //JamCode/main/filel.h#1
add //JamCode/main/filel. txt#1l
add //JamCode/main/file2.cc#l
add //JamCode/main/file2.h#1
add //JamCode/main/file2.txt#1
add //JamCode/main/file3.cc#l
add //JamCode/main/file3.h#1
add //JamCode/main/file3.txt#1
Change 1 submitted.

31

Edit files

The files you added are now stored in the Helix Core depot.

Edit files

Now that the files are stored in the depot, you or others can check them out of the depot to edit them. To
open files for edit, issue the p4 ed1t command, followed by the names(s) of the files you want to edit:

$ p4 edit filel.txt
This displays output like the following:
//JamCode/main/filel.txt#1 - opened for edit

Now you can edit the file in the editor of your choice and make changes. After you've made the desired
changes, you submit the changelist associated with the file(s):

$ p4 submit

This open a change specification inan editor:

#

Change: The change number. 'new' on a new changelist.

Date: The date this specification was Tast modified.

Client: The client on which the changelist was created. Read-
only

User: The user who created the changelist.

Status: Either 'pending' or 'submitted'. Read-only.

Type: Either 'public' or 'restricted'. Default is 'public'.

Description: Comments about the changelist. Required.

1ImportedBy: The user who fetched or pushed this change to this server.
Identity: Identifier for this change.

Jobs: what opened jobs are to be closed by this changelist.

You may delete jobs from this Tist. (New changelists
only.)

Files: what opened files from the default changelist are to be
added

to this changelist. You may delete files from this Tist.
(New changelists only.)

Change: new

Client: bruno_ws

32

Delete files

User: bruno
Status: new

Description:
<enter description here>

Files:
//JamCode/main/filel. txt # edit
Enter a description under Description and then save your changes, to store the edits you made in
the Helix Core depot. Something like the following output is displayed:
Change 2 created with 1 open file(s).
Submitting change 2.
Locking 1 files ...
edit //JamCode/main/filel. txt#2
Change 2 submitted.

Delete files

Deleting files is more complicated than just deleting them from your filesystem. To mark files for delete,
issue the p4 delete command. Inthis case, we choose to delete just the header files.

$ p4 delete *.h

Helix Core displays the following:

//3JamCode/main/filel.h#1 - opened for delete
//3JamCode/main/file2.h#1 - opened for delete
//JamCode/main/file3.h#1 - opened for delete

As in "Edit files" on the previous page, you issue the p4 submit command to have the deletion affect
files in the depot:

$ p4 submit
Helix Core opens the change specification inan editor:

A Perforce Change Specification.

#
Change: The change number. 'new' on a new changelist.
Date: The date this specification was Tast modified.

33

Delete files

Client:
only

User

Status:

Type:

Description:
ImportedBy:
Identity:

Jobs:

#

only.)

Files
added

#

#

Change: new

The client on which the changelist was created. Read-

The user who created the changelist.

Either 'pending' or 'submitted'. Read-only.

Either 'public' or 'restricted'. Default is 'public'.
Comments about the changelist. Required.

The user who fetched or pushed this change to this server.
Identifier for this change.

what opened jobs are to be closed by this changelist.

You may delete jobs from this list. (New changelists

what opened files from the default changelist are to be

to this changelist. You may delete files from this Tist.
(New changelists only.)

Client: jschaffer_ws

User: jschaffer

Status: new

Description:

<enter description here>

Files:

//JamCode/main/filel.h # delete
//JamCode/main/file2.h # delete
//JamCode/main/file3.h # delete

Enter a description under Description and then save your changes, to store the changes you made
in the Helix Core depot. Something like the following output is displayed:

Change 3 created with 3 open file(s).

Submitting change 3.

Locking 3 files ...

34

Sync files from the depot to your client workspace

delete //JamCode/main/filel.h#2
delete //JamCode/main/file2.h#2
delete //JamCode/main/file3.h#2
Change 3 submitted.

Sync files from the depot to your client workspace

Syncing (retrieving files from the depot) — with the p4 Sync command — specifies the files and
directories you want to retrieve from the depot. You do this to obtain the latest changes — be they edits,
adds, or deletes — that have been made by others and then submitted to the depot.

You can only sync files that are mapped in your workspace view. For more information on workspace
views, see "Configure workspace views" on page 71.

$ p4 sync

By passing in ..., we request to sync all files in the current directory.

Suppose that another user has made changes to filel.ccand file3. cc. A sync request, would
yield output like the following:

//3amCode/main/filel.cc#3 - updating
/Users/bruno/workspace/tutorial/filel.cc

//3JamCode/main/file3.cc#5 - updating
/Users/bruno/workspace/tutorial/file3.cc

Populate child streams

After populating the mainline, you can branch files for development and for release. For example, to
create a development stream that is a clone of its mainline parent, issue the following command:

$ p4 stream -t development -P //JamCode/main //JamCode/dev

Helix Core displays the stream specification with the type set to development. Save the specification. To
populate the stream with the files from the mainline, issue the following commands:

$ p4 populate -d "From main" -S //JamCode/dev -r
$ p4 sync

35

This chapter describes tasks you commonly perform when setting up and using your version control
system. It discusses both tasks you perform just once when getting your system set up, and tasks you
may perform one or more times during the lifetime of your installation.

Overview of initial tasks

This section gives you an overview of the tasks for setting up your command client and shared server.
The tasks in this workflow should be performed once, and in the order presented in the following table:

Step Task Stream or classic Link
user
1 Create a working directory Both "Create a working directory” on
page 38
2 Login to the shared server Both "Log in to the shared server" on
or start up a shared server page 38 or "Start up a shared

server" on page 38

3 Start up the command line Both "Start up the command line
client and verify the client and verify the connection
connection to the server to the server" on page 39

4 Create a stream depot Stream "Create a stream depot" on

page 40
5 Create a mainline stream Stream. Classic users, "Create a mainline stream" on
see "Organizing the page 41

depot" on page 103.

6 Define a workspace Both "Define a workspace and bind it
to the stream" on page 42

7 Bind the workspace to the Stream "Define a workspace and bind it
stream to the stream" on page 42

8 Populate the mainline Stream. Classic users "Populate the mainline stream"
stream populate a codeline. on page 43

Overview of recurring tasks

This section gives you an overview of the tasks you perform during the lifetime of your installation,
divided between file-level tasks and other tasks. You may perform them one or more times, or never.

The following table summarizes file-level recurring tasks:

Initial tasks

Task Stream or classic Link
user

Sync files from the Both "Sync files" on page 45

depot

Edit files Both "Edit files and check in changes" on
page 48

Rename and move Both "Rename and move files" on page 49

files

Diff files Both "Diff files" on page 49

Revert files Both "Revert files, to discard changes" on
page 49

Add files Both "Add files" on page 46

Delete files Both "Delete files" on page 48

Resolve conflicts Both "Resolve conflicts" on page 93

The following table summarizes other recurring tasks:

Task Stream or Link
classic user
Work with Both "Example 8, "Automatic renumbering of
changelists changelists”"Changelist-related tasks" on page 51
Configure client Both "Configure clients" on page 59
behavior
Configure stream Stream "Configure a stream" on page 80
behavior
Branch and populate Stream "Branch and populate child streams" on page 57

child streams

Propagate changes Stream "Propagate changes" on page 57
between streams

Initial tasks

You perform the tasks in this section once, in the order presented.

Create a working directory

Create a working directory

Create a working directory and then change to the directory. In this example, we create a working
directory called work in the user's home directory.

$ mkdir /Users/bruno/work
$ c¢d /Users/bruno/work

Log in to the shared server

Typically, your administrator starts up a shared server for you. If you need to start up your own shared
server, see "Start up a shared server" below.

Your admin provides you with a user id, a password, and the server's address. You then follow these
steps:

1. Set the PAPORT environment variable to the server address the admin gave you.

The serveris running on as serverl on port 1666. For the client to communicate with the
server, you must set the client’s P4PORT variable to serverl:1666.

On UNIX and OSX

$ export P4PORT=serverl:1666
On Windows

$ set P4PORT=serverl:1666
2. Log in to the server with the p4 10gin command
$ p4 Tlogin
Helix Core displays the following:

Enter password:
Enter the password your admin gave you.

Helix Core displays the following:

User bruno logged 1in.

Start up a shared server

Download into your computer's /usr/1ocal /b1 n directory the server (p4d) and client (p4) binaries,
as described in "Installation" on page 15. Then, follow these steps:

38

Start up the command line client and verify the connection to the server

1. Make the server and client binaries executable, if they’re not already

$ chmod +x /usr/local/bin/p4d
$ chmod +x /usr/local/bin/p4

2. Make a subdirectory in which to start up the server and client.

When started, the server creates a large number of database files; it's best not to clutter your
working directory with these files, so we will start up the server and client in a different directory, in
this case /Users/bruno/server.

$ mkdir /uUsers/bruno/server

3. Start up the shared server.
Start up the shared server, using the = d7 r option to specify the directory created in the
previous step.

$ p4d -r /users/bruno/server

This produces the following output:

Perforce db files in 'server' will be created if missing...
Perforce Server starting...

Start up the command line client and verify the connection to
the server
1. Start up the command line client.
$ p4

To verify a connection, issue the p4 info command. If P4PORT is set correctly, information like the
following is displayed:

User name: bruno

Client name: bruno_ws

Client host: computer_12

Client root: c:\bruno_ws

Current directory: c:\bruno_ws

Peer address; 10.0.102.24:61122

Client address: 10.0.0.196

Server address: ssl:example.com:1818
Server root: /usr/depot/p4d

Server date: 2012/03/28 15:03:05 -0700 PDT

39

Create a stream depot

Server uptime: 752:41:33

Server version: P4D/FREEBSD/2012.1/406375 (2012/01/25)
ServerID: Master

Server license: P4Admin <p4adm> 20 users (expires 2015/01/01)
Server license-ip: 10.0.0.2

Case handling: sensitive

The Server address: field shows the host to which p4 connected and also displays the host and
port number on which the Helix Core server is listening. If P4PORT is set incorrectly, you receive a
message like the following:

Perforce client error:
Connect to server failed; check $P4PORT.
TCP connect to perforce:1666 failed.
perforce: host unknown.

If the value you see in the third line of the error message is perforce: 1666 (as above), P4APORT has
not been set. Set P4PORT and try to connect again.

If your installation requires SSL, make sure your P4PORT is of the form ss1 : hostname: port.

You will be asked to verify the server's fingerprint the first time you attempt to connect to the server. If the
fingerprint is accurate, use the p4 trust command to install the fingerprint into a file (pointed to by the
P4TRUST environment variable) that holds a list of known/trusted Helix Core servers and their
respective fingerprints. If PATRUST is unset, this file is . p4trust inthe user's home directory. For
more information, see "SSL-encrypted connections" on page 114.

If your installation requires plain text (in order to support older Helix Core applications), set P4PORT to
tcp: hostname: port.

Create a stream depot

Typically your administrator will create a stream depot for you and provide you with the depot name.

However, if you are creating a stream depot yourself, type the following:

$ p4 depot -t stream depotname
The =1t option specifies the type of depot to create, in this case a stream depot.

Helix Core opens the depot specification in an editor:

A Perforce Depot Specification.

#

Depot: The name of the depot.

Owner: The user who created this depot.

Date: The date this specification was Tast modified.
Description: A short description of the depot (optional).

40

Create a mainline stream

Type: whether the depot is 'local', 'remote',
'stream', 'spec', 'archive', 'tangent',
or 'unload'. Default is 'local"'.
Address: connection address (remote depots only).
Ssuffix: suffix for all saved specs (spec depot only).

Map: Path translation information (must have ... in 1it).

#

#

#

#

#

StreambDepth: Depth for streams in this depot (stream depots only).

#

SpecMap: For spec depot, which specs should be recorded (optional).
#
#

Use 'p4 help depot' to see more about depot forms.

Depot: JamCode

owner: bruno

Date: 2016/02/22 13:20:06
Description:

Created by bruno.

Type: stream
StreambDepth: //3JamCode/1
Map: JamCode/. ..

Adjust the value of other fields as desired and save the specification.

Create a mainline stream
To create a mainline stream:

1. Issue the p4 stream, command, specifying the depot followed by the stream name.

For example:

$ p4 stream -t mainline //JamCode/main

The stream specification form is displayed.

41

Define a workspace and bind it to the stream

2. Change options in the spec to assign the stream the desired characteristics and save the
spec. See "Configure a stream" on page 80 for details on the stream spec.

3. To verify that your mainline stream has been created, issue the p4 streams command.

For example:

$ p4 streams //projectX/...

Define a workspace and bind it to the stream

Before you can work in a stream, you must define a workspace associated with the stream. When you
associate a workspace with a stream, Helix Core generates the workspace view based on the structure
of the stream. Stream users never need edit the workspace view (and, in fact, cannot manually alter it). If
the structure of the stream changes, Helix Core updates the views of workspaces associated with the
stream on an as-needed basis.

Note
Classic Helix Core users define a workspace by issuing the p4 ¢11ent command without passing

the —S option, and edit the workspace view manually by editing the Vi ew: field in the client spec.
See "Configure workspace views" on page 71.

Your Helix Core administrator may already have configured a client workspace for your computer. If so,
the C11 ent field in the client spec - displayed when you issue the p4 ¢11ent command — contains
this name.

If not, to create a workspace for a stream:

1. Issue the p4 c11ient command, using the -S option to specify the name of the
associated stream.

For example:

$ p4 client -S //JamCode/main
The workspace specification form is displayed.

2. Configure the workspace root directory and any other desired settings, and save the
specification. See "Define a client workspace" on page 65 for details.

3. Verify that your workspace has been created using p4 clients.

For example:
$ p4 clients -S //JamCode/main

Now you can populate the mainline with files, as described in the next step.

42

Populate the mainline stream

Populate the mainline stream

Note
Classic users populate a branch. See "Codeline management" on page 103.

There are two ways to populate a mainline stream:

m Add files from the local filesystem. This is the most typical way.

m Branch files from another depot. This way only applies if you have existing "classic" Helix Core
depots.

If you need to preserve file history, branch the source files to the mainline stream. If you have no
requirement for preserving file history, simply add them. The sections that follow describe each
approach.

Add files

If you do not need to preserve file history, simply add the files. To add files to the mainline stream:

1. Create the workspace root directory if it does not exist.

For example:

C:\bruno_ws> cd C:\Users\bruno\p4clients
C:\Users\bruno\p4clients> mkdir bruno_projectx_main

Copy the files and folders to the workspace root directory.
3. Change into the client workspace root directory, and use the p4 reconcile command
to detect files not under Helix Core control and open them for add.
C:\Users\bruno\p4clients> cd bruno_projectX_main
C:\Users\bruno\p4clients\bruno_projectx_main> p4 add
To verify that the files are set up to be added correctly, issue the p4 opened command. To populate
the stream, submit the changelist in which the files are open.

For details on working with changelists, see "Example 8, "Automatic renumbering of
changelists”"Changelist-related tasks" on page 51.

Branch from other depots

You can branch files from other stream depots, classic depots, or remote depots into a stream. If you
populate the mainline by branching, Helix Core preserves the connection between the revision history of
the source and target files. Your workspace must be set to one associated with the target stream
(example: p4 set P4CLIENT=bruno_projectx_main).

To populate the mainline by branching, issue the p4 CoOpy command, specifying source and target.
Example:

43

Recurring file-level tasks

$ p4 copy -v //mysourcedepot/mainline/... //ProjectX/main/...

In this example the =V option performs the copy on the server without syncing the newly-created files to
the workspace. This can be a significant time-saver if there are many files being copied; you can then
sync only the files you intend to work with from the new location.

p4d displays a series of “import from” messages listing the source and target files, and opens the file(s)
in a pending changelist. To preview the results of the operation without opening files, specify the =n
option.

To populate the stream with the files from the mainline, issue the following commands:
1. To verify that the files are set up to be added correctly, issue the p4 opened command.
2. Topopulate the stream, p4 submi t the changelist in which the files are open.

If you are populating an empty stream, you can simplify this process by using p4 populate. For
example:

$ p4 populate //mysourcedepot/mainline/... //ProjectX/main/...

does the same thingas p4 copy -V followed by ap4 submi t. If you are unsure of the results of
p4 populate,usep4 populate -n,which previews the result of the command.

To undo an erroneous copy operation, issue the p4 revert command; for example:

$ p4 revert //ProjectX/main/...

Recurring file-level tasks

This section describes tasks you perform during the lifetime of your installation that occur at the file level.

Before we look at the tasks in detail, here’s a table that provides a snapshot of the sequence in which you
perform the most common file-related tasks.

For details on working with changelists, see "Example 8, "Automatic renumbering of
changelists”"Changelist-related tasks" on page 51.

Here are the basic steps for working with files. In general, to change files in the depot (file repository), you
open the files in changelists and submit the changelists with a description of your changes. Helix Core
assigns numbers to changelists and maintains the revision history of your files. This approach enables
you to group related changes and find out who changed a file and why and when it was changed.

Task Description

Syncing Issue the p4 sync command, specifying the files and directories you want to
(retrieving files retrieve from the depot. You can only sync files that are mapped in your client
from the depot) workspace view.

44

Sync files

Task Description

Add files to the 1. Create the file in the workspace.
depot 2. Open the file for add in a changelist (p4 add).
3. Submit the changelist (p4 submi t).
Edit files and 1. If necessary, sync the desired file revision to your workspace (p4
check in sync).
changes 2. Open the file for edit in a changelist (p4 edi t).
Make your changes.
Submit the changelist (p4 submi t). To discard changes, issue the p4
revert command.
Delete files from 1. Open the file for delete in a changelist (p4 delete). Thefileis deleted
the depot from your workspace.

2. Submit the changelist (p4 submii t). The file is deleted from the depot.

Discard Revert the files or the changelist in which the files are open. Reverting has the
changes following effects on open files:

Add no effect - the file remains in your workspace.

Edit the revision you opened is resynced from the depot, overwriting

any changes you made to the file in your workspace.

Delete thefileis resynced to your workspace.

Files are added to, deleted from, or updated in the depot only when you successfully submit the pending
changelist in which the files are open. A changelist can contain a mixture of files open for add, edit and
delete.

For details on working with changelists, see "Example 8, "Automatic renumbering of
changelists”"Changelist-related tasks" on page 51.

Sync files

Syncing — with the p4 Sync command — adds, updates, or deletes files in the client workspace to
bring the workspace contents into agreement with the depot. If afile exists within a particular
subdirectory in the depot, but that directory does not exist in the client workspace, the directory is created
in the client workspace when you sync the file. If a file has been deleted from the depot, p4 sync
deletes it from the client workspace.

Example Sync files from the depot to a client workspace

The command below retrieves the most recent revisions of all files in the client view from the depot
into the workspace. As files are synced, they are listed in the command output.

45

Add files

C:\bruno_ws> p4 sync
//Acme/dev/bin/bin.Tinux24x86/readme.txt#1 - added as c:\bruno_
ws\dev\bin\bin.Tinux24x86\readme.txt
//Acme/dev/bin/bin.ntx86/glut32.d11#1 - added as c:\bruno_
ws\dev\bin\bin.ntx86\glut32.d11
//Acme/dev//bin/bin.ntx86/jamgraph.exe#2 - added as c:\bruno_
ws\dev\bin\bin.ntx86\jamgraph.exe

[...]

Note
You cannot sync files that are not in your workspace view. See "Configure workspace views" on
page 71 for more information.

To sync revisions of files prior to the latest revision in the depot, use revision specifiers. For example, to
sync the first revision of Jamfi 1e, which has multiple revisions, issue the following command:

$ p4 sync //Acme/dev/jam/Jamfile#l

To sync groups of files or entire directories, use wildcards. For example, to sync everything in and below
the jam folder, issue the following command:

$ p4 sync //Acme/dev/jam/...

The Helix Core server tracks which revisions you have synced. For maximum efficiency, Helix Core
does not re-sync an already-synced file revision. To re-sync files you (perhaps inadvertently) deleted
manually, specify the = f option when you issue the p4 sync command.

Add files

To add files to the depot, create the files in your workspace, then issue the p4 add command. The p4
add command opens the files for add in the default pending changelist. The files are added when you

successfully submit the default pending changelist. You can open multiple files for add using a single p4
add command by using wildcards. You cannot use the Helix Core. . . wildcard to add files recursively.

To add files recursively, use the p4 reconcile command. See p4 reconcileinthe P4
Command Reference.

Example Add files

Bruno has created a couple of text files that he must add to the depot. To add all the text files at once,
he uses the ¥ wildcard when he issues the p4 add command.

46

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Add files outside of Helix Core and then use p4 reconcile -k

C:\bruno_ws\Acme\dev\docs\manuals> p4 add *.txt
//Acme/dev/docs/manuals/installnotes.txt#1l - opened for add
//Acme/dev/docs/manuals/requirements.txt#l - opened for add

Now the files he wants to add to the depot are open in his default changelist. The files are stored in the
depot when the changelist is submitted.

Example Submit a changelist to the depot

Bruno is ready to add his files to the depot. He types p4 submi t and sees the following form in a
standard text editor:

Change: new
Client: bruno_ws
User: bruno
Status: new
Description:
<enter description here>
Type: public
Files:
//Acme/dev/docs/manuals/installnotes.txt # add
//Acme/dev/docs/manuals/requirements.txt # add

Bruno changes the contents of the Description: field to describe his file updates. When he’s
done, he saves the form and exits the editor, and the new files are added to the depot.

You must enter a description in the Description: field. You can delete lines from the Files: field.
Any files deleted from this list are moved to the next default changelist, and are listed the next time you
submit the default changelist.

If you are adding a file to a directory that does not exist in the depot, the depot directory is created when
you successfully submit the changelist.

For details on working with changelists, see "Example 8, "Automatic renumbering of
changelists"Changelist-related tasks" on page 51.

Add files outside of Helix Core and then use p4 reconcile -k

In certain situations, you may need to copy a very large number of files into your workspace from another
user's workspace. Rather than doing this via Helix Core, you may, for performance reasons, choose to
copy them directly — via a snapshot, for example — from the other user's workspace into yours.

Once you've done this, you will need to:

47

Edit files and checkin changes

m Inform Helix Core that these files now exist on your client.

That is, you want to update your client’s have list to reflect the actual contents of your workspace.
Seethe p4 have page in P4 Command Reference for details on have lists.

m Ensure that your workspace view contains mappings identical to those contained in the
workspace view of the client you copied from

This ensures that Helix Core doesn’t think these files are new.

Todo this, runthe p4 reconcile -k command.

You can also ignore groups of files when adding. See "Ignoring groups of files when adding" on page 110
for details.

Edit files and check in changes

You must open a file for edit before you attempt to edit the file. When you open a file for edit — with the
p4 edit command —Helix Core enables write permission for the file in your workspace and adds the
files to a changelist. If the file is in the depot but not in your workspace, you must sync it before you open
it for edit.

Example Open a file for edit
Bruno wants to make changes to command . €, so he syncs it and opens the file for edit.

C:\bruno_ws\dev> p4 sync //Acme/dev/command.c
//depot/dev/command.c#8 - added as c:\bruno_ws\dev\command.c

C:\bruno_ws\dev> p4 edit //Acme/dev/command.c
//Acme/dev/command.c#8 - opened for edit

He then edits the file with any text editor. When he’s finished, he submits the file to the depot with p4
submit.

Delete files

To delete files from the depot, you open them for delete by issuing the p4 delete command, then
submit the changelist in which they are open. When you delete a file from the depot, previous revisions
remain, and a new head revision is added, marked as “deleted.” You can still sync previous revisions of
the file.

When you issue the p4 delete command, the files are deleted from your workspace but not from the
depot. If you revert files that are open for delete, they are restored to your workspace. When you
successfully submit the changelist in which they are open, the files are deleted from the depot.

Example Delete a file from the depot
Bruno deletes vendor . doc from the depot as follows:

48

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Revert files, to discard changes

C:\bruno_ws\dev> p4 delete //Acme/dev/docs/manuals/vendor.doc
//Acme/dev/docs/manuals/vendor.doc#l - opened for delete

The file is deleted from the client workspace immediately, but it is not deleted from the depot until he
issues the p4 submit command.

Revert files, to discard changes

To remove an open file from a changelist and discard any changes you made, issue the p4 revert
command. When you revert afile, Helix Core restores the last version you synced to your workspace. If
you revert a file that is open for add, the file is removed from the changelist but is not deleted from your
workspace.

Example Revert a file
Bruno decides not to add his text files after all.

C:\bruno_ws\dev> p4 revert *.txt
//Acme/dev/docs/manuals/installnotes.txt#none - was add, abandoned
//Acme/dev/docs/manuals/requirements.txt#none - was add, abandoned

To preview the results of a revert operation without actually reverting files, specify the =n option when
you issue the p4 revert command.

Rename and move files
To rename or move files, you must first open them for add or edit, and then use the p4 move command:

C:\bruno_ws> p4 move source_file target_file

To move groups of files, use matching wildcards in the source_file and target_file specifiers. To move
files, you must have Helix Corewri te permission for the specified files. For information about using
wildcards with Helix Core files, see "Helix Core wildcards" on page 157.

For details about Helix Core permissions, see the Helix Versioning Engine Administrator
Guide: Fundamentals.

When you rename or move a file using p4 move, the versioning service creates an integration record
that links it to its deleted predecessor, preserving the file’s history. Integration is also used to create
branches and to propagate changes.

Diff files

Helix Core allows you to diff (compare) revisions of text files. By diffing files, you can display:

49

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Resolve conflicts

m Changes that you made after opening the file for edit
m Differences between any two revisions

m Differences between file revisions in different branches

To diff afile that is synced to your workspace with a depot revision, issue the p4 diff
1 1ename# rev command. If you omit the revision specifier, the file in your workspace is compared
with the revision you last synced, to display changes you made after syncing it.

To diff two revisions that reside in the depot but not in your workspace, use the p4 diff2 command.
To diff a set of files, specify wildcards in the filename argument when you issue the p4 di ff2
command.

The p4 diff command performs the comparison on your computer, but the p4 di 2 command
instructs the Helix Core server to perform the diff and to send the results to you.

The following table lists some common uses for diff commands:

To diff Against Use this command

The workspace file ~ The head revision p4 diff fileorp4 diff
file#head

The workspace file Revision 3 p4 diff file#3

The head revision Revision 134 p4 diff2 file file#134

File revision at File revision at changelist p4 diff2 file@32 file@l77

changelist 32 177

The workspacefile A file shelved in pending p4 diff file@=123

changelist 123

Allfilesinrelease 1 All files in release 2 p4 diff2 //Acme/rell/...

//Acme/rel2/...

By default, the p4 di ff command launches Helix Core’s internal diff application. To use a different diff
program, set the P4DIFF environment variable to specify the path and executable of the desired
application. To specify arguments for the external diff application, use the —d option. For details, refer to
the P4 Command Reference.

Resolve conflicts

When you and other users are working on the same set of files, conflicts can occur. Helix Core enables
your team to work on the same files simultaneously and resolve any conflicts that arise.

"Resolve conflicts" on page 93 explains in detail how to resolve file conflicts.

Other recurring tasks

This section describes other basic tasks you perform during the lifetime of your installation.

50

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Example 8, "Automatic renumbering of changelists”Changelist-related tasks

Example 8, "Automatic renumbering of
changelists”Changelist-related tasks

This section explains how to work with changelists.

To change files in the depot, you open them in a changelist, make any changes to the files, and then
submit the changelist. A changelist contains a list of files, their revision numbers, and the operations to
be performed on the files. Unsubmitted changelists are referred to as pending changelists.

Submission of changelists is an all-or-nothing operation; that is, either all of the files in the changelist are
updated in the depot, or, if an error occurs, none of them are. This approach guarantees that code
alterations that affect multiple files occur simultaneously.

Helix Core assigns numbers to changelists and also maintains a default changelist, which is numbered
when you submit it. You can create multiple changelists to organize your work. For example, one
changelist might contain files that are changed to implement a new feature, and another changelist might
contain a bug fix. When you open afile, it is placed in the default changelist unless you specify an
existing changelist number on the command line using the =C option. For example, to edit a file and
submit it in changelist number 4, use p4 edit -c 4 filename. Toopen afilein the default
changelist, omit the —C option.

You can also shelve changelists in order to temporarily preserve work in progress for your own use, or for
review by others. Shelving enables you to temporarily cache files in the shared server without formally
submitting them to the depot.

The Helix Core server might renumber a changelist when you submit it, depending on other users'
activities; if your changelist is renumbered, its original number is never reassigned to another changelist.

You can restrict a changelist from public view by changing the Type: field from pub1i c to
restricted. Ingeneral, if a changelist is restricted, only those users with 11 St access to at least
one of the files in the changelist are permitted to see the changelist description.

To control what happens to files in a changelist when you submit the changelist to the depot, see
"Configure submit options" on page 67.

Submit a pending changelist

To submit a pending changelist, issue the p4 subm1it command. When you issue the p4 submit
command, a form is displayed, listing the files in the changelist. You can remove files from this list. The
files you remove remain open in the default pending changelist until you submit them or revert them.

To submit specific files that are open in the default changelist, issue the p4 submit f7lename
command. To specify groups of files, use wildcards. For example, to submit all text files open in the
default changelist, type p4 submit "*".txXt. (Use quotation marks as an escape code around the
* wildcard to prevent it from being interpreted by the local command shell).

After you save the changelist form and exit the text editor, the changelist is submitted to the Helix Core
server, and the files in the depot are updated. After a changelist has been successfully submitted, only a
Helix Core administrator can change it, and the only fields that can be changed are the description and
user name.

51

Example 8, "Automatic renumbering of changelists”Changelist-related tasks

If an error occurs when you submit the default changelist, Helix Core creates a numbered changelist
containing the files you attempted to submit. You must then fix the problems and submit the numbered
changelist using the —C option.

Helix Core enables write permission for files that you open for edit and disables write permission when
you successfully submit the changelist containing the files. To prevent conflicts with Helix Core’s
management of your workspace, do not change file write permissions manually.

Before committing a changelist, p4 submi t briefly locks all files being submitted. If any file cannot be
locked or submitted, the files are left open in a numbered pending changelist. By default, the files ina
failed submit operation are left locked unless the submi t.unlocklocked configurable is set. Files
are unlocked even if they were manually locked prior to submit if submit fails when
submit.unlocklockedis set.

Create numbered changelists

To create a numbered changelist, issue the p4 change command. This command displays the
changelist form. Enter a description and make any desired changes; then save the form and exit the
editor.

All files open in the default changelist are moved to the new changelist. When you exit the text editor, the
changelist is assigned a number. If you delete files from this changelist, the files are moved back to the
default changelist.

Example Working with multiple changelists

Bruno is fixing two different bugs, and needs to submit each fix in a separate changelist. He syncs the
head revisions of the files for the first fix and opens the file for edit in the default changelist:

C:\bruno_ws> p4 sync //JamCode/dev/jam/*.c
[1ist of files synced...]

C:\bruno_ws> p4 edit //JamCode/dev/jam/*.c
[Tist of files opened for edit...]

Now he issues the p4 change command and enters a description in the changelist form. After he
saves the file and exits the editor, Helix Core creates a numbered changelist containing the files.

C:\bruno_ws\dev\main\docs\manuals> p4 change
[Enter description and save form]

Change 777 created with 33 open file(s).

For the second bug fix, he performs the same steps, p4 sync, p4 edit,andp4 change.Now
he has two numbered changelists, one for each fix.

52

Example 8, "Automatic renumbering of changelists”Changelist-related tasks

The numbers assigned to submitted changelists reflect the order in which the changelists were
submitted. When a changelist is submitted, Helix Core might renumber it, as shown in the following
example:

Example Automatic renumbering of changelists

Bruno has finished fixing the bug that he’s been using changelist 777 for. After he created that
changelist, he submitted another changelist, and two other users also submitted changelists. Bruno
submits changelist 777 with p4 submit -c 777, and sees the following message:

Change 777 renamed change 783 and submitted.

Submit a numbered changelist

To submit a numbered changelist, specify the —C option when you issue the p4 subm1i t command. To
submit the default changelist, omit the = C option. For details, refer to the p4 submit command
description in the P4 Command Reference.

Note
Using parallel submits can significantly improve performance. For additional information see the
description of the p4 subm1i t command in the P4 Command Reference.

Undo a submitted change

One of the fundamental benefits of version control is the ability to undo an unwanted change, either to
undo the effects of a bad changelist or to roll back to a known good changelist.

You use the p4 undo command to accomplish this. For details, refer to the p4 undo command
description in the P4 Command Reference.

Shelve changelists

The Helix Core shelving feature enables you to temporarily make copies of your files available to other
users without checking the changelist into the depot.

Shelving is useful for individual developers who are switching between tasks or performing cross-
platform testing before checking in their changes. Shelving also enables teams to easily hand off
changes and to perform code reviews.

Example Shelving a changelist

Earl has made changes to command . € on a UNIX platform, and now wants others to be able to view
and test his changes.

$ p4 edit //Acme/dev/command.c
//Acme/dev/command.c#9 - opened for edit

53

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Example 8, "Automatic renumbering of changelists”Changelist-related tasks

$ p4 shelve

Change 123 created with 1 open file(s).
Shelving files for change 123.

edit //Acme/dev/command.c#9

Change 123 files shelved.

A pending changelist is created, and the shelved version of command. c is stored in the server. The
file command. € remains editable in Earl’s workspace, and Earl can continue to work on the file, or
can revert his changes and work on something else.

Shelved files remain open in the changelist from which they were shelved. (To add a file to an existing
shelved changelist, you must first open that file in that specific changelist.) You can continue to work on
the files in your workspace without affecting the shelved files. Shelved files can be synced to other
workspaces, including workspaces owned by other users. For example:

Example Unshelving a changelist for code review
Earl has asked for code review and a cross-platform compatibility check on the version of

command. c that he shelved in changelist 123. Bruno, who is using a Windows computer, types:
C:\bruno_ws\dev> p4 unshelve -s 123 //Acme/dev/command.c
//Acme/dev/command.c#9 - unshelved, opened for edit

and conducts the test in the Windows environment while Earl continues on with other work.

When you shelve afile, the version on the shelf is unaffected by commands that you perform in your own
workspace, even if you revert the file to work on something else.

Example Handing off files to other users
Earl’s version of command . € works on UNIX, but Bruno’s cross-platform check of command . c

has revealed a bug. Bruno can take over the work from here, so Earl reverts his workspace and works
on something else:

$ p4 revert //Acme/dev/command.c

//Acme/dev/command.c#9 - was edit, reverted

The shelved version of command. C is still available from Earl’s pending changelist 123, and Bruno
opens it in a new changelist, changelist 124.

$ p4 unshelve -s 123 -c 124 //Acme/dev/command.c
//Acme/dev/command.c#9 - unshelved, opened for edit

When Bruno is finished with the work, he can either re-shelve the file (in his own changelist 124, not
Earl’'s changelist 123) for further review — with the p4 reshelve command — or discard the
shelved file and submit the version in his workspace by using p4 submit.

54

Example 8, "Automatic renumbering of changelists”Changelist-related tasks

The p4 submit command has a - option that enables the submitting of shelved files directly from a
changelist. All files in the shelved change must be up to date and resolved. Other restrictions can apply in
the case of files shelved to stream targets; see the P4 Command Reference for details. (To avoid dealing
with these restrictions, you can always move the shelved files into a new pending changelist before
submitting that changelist.)

Example Discarding shelved files before submitting a change
The Windows cross-platform changes are complete, and changelist 124 is ready to be submitted.

Bruno uses p4 shelve -dtodiscard the shelved files.
C:\bruno_ws\dev> p4 shelve -d -c 124
Shelve 124 deleted.

All files in the shelved changelist are deleted. Bruno can now submit the changelist.

C:\bruno_ws\dev> p4 submit -c 124
Change 124 submitted.

Bruno could have shelved the file in changelist 124, and let Earl unshelve it back into his original
changelist 123 to complete the check-in.

Display information about changelists

To display brief information about changelists, use the p4 changes command. To display full
information, use the p4 describe command. The following table describes some useful reporting
commands and options:

Command Description

p4 Displays a list of all pending, submitted, and shelved changelists, one line per
changes changelist, and an abbreviated description.

p4 Limits the number of changelists reported on to the last specified number of
changes - changelists.

m count

p4 Limits the list to those changelists with a particular status; for example, p4
changes - changes -s submitted lists only already submitted changelists.

S Sstatus

p4 Limits the list to those changelists submitted by a particular user.

changes -

u user

p4 Limits the list to those changelists submitted from a particular client workspace.
changes -

Cc

workspace

55

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Configure client behavior

Command Description

p4 Displays full information about a single changelist. If the changelist has already
describe been submitted, the report includes a list of affected files and the diffs of these
changenum files. (You can use the —S option to exclude the file diffs.)

p4 If a changelist was renumbered, describe the changelist in terms of its original
describe change number. (For example, the changelist renumbered in the example on
-0 Example "Automatic renumbering of change lists" can be retrieved with either p4

changenum describe 783 orp4 describe -0 777)

For more information, see "Changelist reporting" on page 139.

Move files between changelists

To move files from one changelist to another, issue the p4 reopen -c changenum
1 1enames command, where changenum specifies the number of the target changelist. If you are
moving files to the default changelist, use p4 reopen -c default filenames.

Delete changelists

To delete a pending changelist, you must first remove all files and jobs associated with it and then issue
the p4 change -d changenumcommand. Related operations include the following:

» To move files to another changelist, issue the p4 reopen -c changenumcommand.

= Toremove files from the changelist and discard any changes, issue the p4 revert -c
changenum command.

Changelists that have already been submitted can be deleted only by a Helix Core administrator. See the
Helix Versioning Engine Administrator Guide: Fundamentals for more information.

Configure client behavior

You can configure many aspects of the behavior of both the client workspace and the client binary
running on your computer.

"Configure clients" on page 59 discusses client configuration in detail.

Configure stream behavior

You can configure a stream’s characteristics — such as its location, its type, and the files in its view,
among other things.

"Configure a stream" on page 80 discusses stream configuration in detail.

56

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Branch and populate child streams

Branch and populate child streams

After populating the mainline — as described in "Populate the mainline stream" on page 43 — you can
branch files for development and for release. For example, to create a development stream that is a clone
of its mainline parent, issue the following command:

$ p4 stream -t development -P //Acme/main //Acme/dev

Helix Core displays the stream specification with the type set to development. Save the specification. To
populate the stream with the files from the mainline, issue the following commands:

$ p4 populate -d "From main" -S //Acme/dev -r

$ p4 sync

Propagate changes

Streams enable you to isolate stable code from work in progress, and to work concurrently on various
projects without impediment. Best practice is to periodically update less stable streams from streams
that are more stable (by merging), then promote changes to the more stable stream (by copying). Merging
and copying are streamlined forms of integration. In general, propagate change as follows:

= Forcopying and branching, use p4 copy orp4 populate.

= Formerging, use p4 merge.

» Foredge cases not addressed by p4 merge orp4 copy,usep4 integrate.

The preceding guidelines apply to classic Helix Core as well.

Merge changes from a more stable stream

To update a stream with changes from a more stable stream, issue the p4 merge -S source-
streamcommand, resolve as required, and submit the resulting changelist. By default, you cannot
copy changes to a more stable stream until you have merged any incoming changes from the intended
target. This practice ensures that you do not inadvertently overwrite any of the contents of the more
stable stream.

Assuming changes have been checked into the mainline after you started working in the development
stream (and assuming your workspace is set to a development stream), you can incorporate the changes
into the development stream by issuing the following commands:

$ p4 merge

$ p4 resolve

$ p4 submit -d "Merged latest changes"

57

Propagate changes

Copy changes to a more stable stream

After merging, your stream is up to date with its more stable parent or child. Assuming you'’ve finalized
the changes you want to make in the development stream, you can now promote its new content with no
danger of overwriting work in the target stream. The copy operation simply propagates a duplicate of the
source to the target, with no resolve required. For example, (and assuming your workspace is set to a
mainline parent stream) to promote changes from the development stream to its parent mainline, issue
the following commands:

$ p4 copy --from //Acme/dev
$ p4 submit -d "Check my new feature in"

Compare changes between streams

Using the p4 1nterchanges command, you can compare changes between streams to look for
outstanding merges. Suppose you have a mainline stream //Acme/main and its child, a development
stream, //Acme/dev. The following command tells you which changes exist in //Acme/dev but
not in its parent stream:

$ p4 interchanges -S //Acme/dev
The following command tells you which changes exist in the parent of //Acme/devV but not in
//Acme/dev:

$ p4 interchanges -S -r //Acme/dev

Propagate change across the stream hierarchy

You might need to propagate a specific change between two streams that do not have a natural parent-
child relationship, for example, to obtain an in-progress feature or bug fix from a peer development
stream. To merge from or copy to such a stream, you can re-parent your stream by editing its
specification and setting the Parent: field to the desired source or target. This practice is not
considered optimal but might be necessary.

Alternatively, you can use the =P option with the p4 merge command to do a one-off merge of the
streams.

58

Configure clients

You can configure many aspects of the behavior of a command-line client — such as which server port it
listens on, the current client workspace name, and how files are mapped from the depot to the client
workspace, among other things.

In Helix Core, the word "client" can refer to one of the following:

m The client process — that is, the running client binary (p4)

m The client workspace — the location on your computer where you work on file revisions managed
by Helix Core

This chapter discusses configuring both.

Configure the client process

This guide refers to client settings using environment variables (for example, set P4CLIENT), but you
can specify settings such as port, user, and workspace names using the following methods, listed in
order of precedence:

1. Onthe command line, using options

2. Inaconfigfile, if PACONFIG is set

3. Userenvironment variables (on UNIX or Windows)
4

System environment variables (on Windows, system-wide environment variables are not
necessarily the same thing as user environment variables)

o

On Windows or OS X, in the user registry or settings (set by issuing the p4 set command)

On Windows or OS X, in the system registry or system settings (set by issuingthe p4 set -s
command)

To configure your computer to connect to the Helix Core server, you specify the name of the host where
the server is running, and the port on which it is listening. The default host is perforce and default port
is 1666. If the server is running on your own computer, specify 1ocaThost as the host name. If the
server is running on port 1666, you can omit the port specification.

You can specify these settings as described in the sections below. For details about working offline
(without a connection to a Helix Core server), see "Work offline" on page 110.

Using the command line
To specify these settings on the command line, use the —p option. For example:

$ p4 -p tcp:localhost:1776 sync //JamCode/dev/jam/Jambase

59

Using config files

Settings specified on the command line override any settings specified in config files, environment
variables, the Windows registry, or OS X system settings. For more details about command-line options,
refer to the discussion of global options in the P4 Command Reference.

Using config files

Config files are text files containing settings that are in effect for files in and below the directory where the
config file resides. Config files are useful if you have multiple client workspaces on the same computer.
By specifying the settings in config files, you avoid the inconvenience of changing system settings every
time you want to work with a different workspace.

To use config files, you define the P4CONFIG environment variable, specifying a file name (for example,

. p4config). When you issue a command, Helix Core searches the current working directory and its
parent directories for the specified file and uses the settings it contains (unless the settings are
overridden by command-line options).

Each setting in the file must be specified on its own line, using the following format:
setting=value

The following settings can be specified in a config file:

Setting Description

P4CHARSET Character set used for translation of Unicode files.

P4COMMANDCHARSET Non-UTF-16 or UTF-32 character set used by Command-Line Client
when P4CHARSET is set to a UTF-16 or UTF-32 character set.

PACLIENT Name of the current client workspace.

PADIFF The name and location of the diff program used by p4 resolve and
p4 diff.

P4EDITOR The editor invoked by those Helix Core commands that use forms.

P4HOST Hostname of the client computer. Only useful if the HOSt & field of the
current client workspace has been set inthe p4 ¢11ient form.

P4IGNORE A list of files to ignore when using the p4 add and p4 reconcile
commands.

P4LANGUAGE This environment variable is reserved for system integrators.

P4AMERGE The name and location of the third-party merge program to be used by
p4 resolve's merge option.

P4PASSWD Supplies the current Helix Core user’'s password for any Helix Core
command.

P4PORT The protocol, host and port number of the Helix Core server (including

proxies or brokers) with which to communicate.

60

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using environment variables

Setting Description

P4TRUST The location of a file of known (trusted) Helix Core servers. You manage
the contents of this file with the p4 trust command. By default, this
fileis . p4trust inyour home directory.

P4USER Current Helix Core user name.

For details about these settings, refer to the P4 Command Reference.

Example Using config files to handle switching between two workspaces

Ona switches between two workspaces on the same computer. The first workspace is ona-ash. It
has a client root of /tmp/user/ona and connects to the Helix Core server using SSL at
ss1:1ida:1818. The second workspace is called ona-agave. Its client root is
/home/ona/p4-ona, and it uses a plaintext connection to a Helix Core server at
tcp:warhol:1666.

Ona sets the P4CONFIG environment variable to . p4settings. She creates afile called
.p4settingsin /tmp/user/ona containing the following text:

P4PORT=ss1:ida:1818

PACLIENT=0na-ash
She creates a second . p4settings filein /home/ona/p4-ona. It contains the following text:

P4PORT=tcp:warhol:1666
PACLIENT=0na-agave

Any work she does on files under /tmp/user/ona is managed by the Helix Core server at
ss1:1ida:1818 and work she does on files under /home/ona/p4-ona is managed by the
Helix Core serverat tcp:warhol:1666.

Using environment variables

To configure connection settings using environment variables, set P4PORT to
protocol: host: port, as in the following examples:

If the server and listens supports set IERERN to

runs on to port encryption protocol

your computer 1666 nothing (plaintext) Tocalhost:1666
perforce 1666 SSL ss1:perforce:1666
houston 3435 nothing (plaintext) tcp:houston:3435
example.com 1818 SSL ssl:example.com:1818

61

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using the Windows registry or OS X system settings

If you do not specify a protocol in your P4PORT setting, tCp : (plaintext communication over TCP/IP)is
assumed. If the Helix Core server has been configured to support SSL, you can encrypt your connection
to Helix Core by using S 1 : as the desired protocol.

Other protocols (for example, tCp4 : to require a plaintext IPv4 connection, or 164 : to require an
encrypted connection, but to prefer the use of the IPv6 transport instead of IPv4) are available for use in
mixed networking environments.

See "Configure for IPv6 networks" below, and the Helix Versioning Engine Administrator
Guide: Fundamentals, for details.

Using the Windows registry or OS X system settings

On Windows and OS X computers, you can store connection settings in the registry (or system settings)
by using the p4 set command. For example:
$ p4 set P4PORT=ss1:tea.example.com:1667

There are two ways you can configure client settings in the registry:

m p4 set setting=value:forthe current local user.

m p4 set -s setting=value:forall users on the local computer. Can be overridden by any
registry settings made for the local user. Requires administrative privileges.

To see which settings are in effect, use the p4 set command without arguments. For details about the
p4 set command, see the P4 Command Reference.

Configure for IPv6 networks

Helix Core supports connectivity over IPv6 networks as well as over IPv4 networks.

Depending on the configuration of your LAN or WAN, your system administrator may recommend
different port settings. Your administrator may also recommend that you set the net . rfc3484
configurable to 1, either from the command line orin a P4CONFIG file:

$ p4 configure set net.rfc3484=1

Doing so ensures RFC3484-compliant behavior if the protocol value is not explicitly specified; that is, if
the client-side configurable net . rfc3484 is set to 1, and P4PORT is set to
example.com:1666, ortcp:example.com:1666, orss1:example.com: 1666, the
user’s operating system automatically determines, for any given connection, whether to use IPv4 or IPv6
when communicating with the versioning server.

Further information is available in the Helix Versioning Engine Administrator Guide: Fundamentals.

62

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Configure for Unicode

Configure for Unicode

The Helix Core server can be run in Unicode mode to activate support for file names or directory names
that contain Unicode characters, and Helix Core identifiers (for example, user names) and specifications
(for example, changelist descriptions or jobs) that contain Unicode characters.

In Unicode mode, the Helix Core server also translates Unicode files and metadata to the character set
configured on the user's computer, and verifies that the Unicode files and metadata contain valid UTF-8
characters.

Note

If you only need to manage textual files that contain Unicode characters, but do not need the features
listed under "Configure for Unicode" above, you do not need to run Helix Core in Unicode mode. Your
system administrator will tell you if your site is using Unicode mode or not. For these installations,
assign the Helix Coreutf16 file type to textual files that contain Unicode characters. You do not
have to set the P4ACHARSET or P4ACOMMANDCHARSET environment variables. See "Assigning file
types for Unicode files" on page 149 for details.

To correctly inter-operate in Unicode mode, and to ensure that such files are translated correctly by the
Helix Core server when the files are synced or submitted, you must set PACHARSET to the character
set that corresponds to the format used on your computer by the applications that access them, such as
text editors or IDEs. These formats are typically listed when you save the file using the Save As... menu
option.

Values of P4CHARSET that begin with utf16 or utf32 further require that you also set
P4COMMANDCHARSET to a non utf16 or utf32 character set in which you want server output
displayed. “Server output” includes informational and error messages, diff output, and information
returned by reporting commands.

For a complete list of valid P4CHARSET values, issue the command p4 help charset.

For further information, see the Helix Versioning Engine Administrator Guide: Fundamentals.

Setting PACHARSET on Windows

To set P4ACHARSET for all users on a computer, you need Windows administrator privileges. Issue the
following command:

C:\bruno_ws> p4 set -s P4CHARSET=character_set
To set P4ACHARSET for the user currently logged in:

c:\bruno_ws> p4 set P4CHARSET=character_set

Your computer must have a compatible TrueType or OpenType font installed.

63

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Configure a client workspace

Setting PACHARSET on UNIX

You can set P4CHARSET from a command shell or in a startup script such as . kshrc, . cshrc, or
.profile. To determine the proper value for PACHARSET, examine the setting of the LANG or
LOCALE environment variable. Common settings are as follows

en_US.IS0_8859-1 1508859-1
ja_JP.EUC eucjp
ja_JP.PCK shiftjis

In general, for a Japanese installation, set PACHARSET to eucjp, and for a European installation, set
P4CHARSET to 1s08859-1.

Configure a client workspace

A Helix Coreclient workspace is a set of directories on your computer where you work on file revisions
that are managed by Helix Core. Each workspace is given a name that identifies the client workspace to
the Helix Core server. If no workspace name is specified (by setting the P4ACLIENT environment
variable) the default workspace name is the name of your computer. To specify the effective workspace
name, set the PACLIENT environment variable. You can have multiple workspaces on your computer.

All files within a Helix Core client workspace share a root directory, called the client workspace root. The
workspace root is the highest-level directory of the workspace under which the managed source files
reside.

If you configure multiple workspaces on the same computer, keep workspace locations separate to avoid
inadvertently overwriting files. Ensure that client roots are located in different folders and that their
workspace views do not map depot files to overlapping locations on your computer.

Although Windows-based systems do not have a root directory, Helix Core supports — via the concept
of a null root — workspaces spread across multiple drives and/or a disjoint folder with only €z \ as the
root.

How Helix Core manages files in a workspace
Helix Core manages the files in a client workspace as follows:

m Files inthe workspace are created, updated, and deleted as determined by your changes.

m \Write permission is enabled when you edit a file, and disabled when you submit your changes.

The state of your workspace is tracked and managed by Helix Core. To avoid conflicts with the file
management performed by Helix Core applications, do not manually change read-only permission
settings on files. Helix Core has commands that help you determine whether or not the state of your
client workspace corresponds to Helix Core’s record of that state; see "Work offline" on page 110 for
details.

64

Define a client workspace

Files in the workspace that you have not put under Helix Core control are ignored by Helix Core. For
example, compiled objects, libraries, executables, and developers’ temporary files that are created while
developing software but not added to the depot are not affected by Helix Core commands.

By default, when you create a client workspace, the entire depot is mapped to your workspace. You can
refine this mapping to view only a portion of the depot and to change the correspondence between depot
and workspace locations, by refining the workspace view, as described in "Configure workspace views"
onpage 71.

Define a client workspace

To define a client workspace:

1. Specify the workspace name by setting PACLIENT; for example, on a UNIX system:

$ export P4CLIENT=bruno_ws

2. lIssue the p4 client command.

Important
Stream users must pass inthe S _streamname optiontothe p4 c1ient command to
specify the name of the stream to which Helix Core should bind the workspace.

Helix Core displays the client specification form in your text editor. (For details about Helix Core forms,
see "Using Helix Core forms" on page 164.)

1. Specify (at least the minimum) settings and save the specification.

No files are synced when you create a client specification. To find out how to sync files from the depot to
your workspace, see "Sync files" on page 45. For details about relocating files on your computer, see
"Change the location and/or layout of your workspace" on page 69.

The minimum settings you must specify to configure a client workspace are:

m Workspace name

The workspace name defaults to your computer’s hostname, but your computer can contain
multiple workspaces. To specify the effective workspace, set PACLIENT.

= Workspace root

The client workspace root is the top directory of your client workspace, where Helix Core stores
your working copies of depot files. Be sure to set the workspace root, or you might inadvertently
sync files to your computer’s root directory.

Note
For Windows users: when specifying a workspace root, you must include the drive letter. In addition,

root is null on Windows when the client workspace is either on a disjoint drive with only € : \ as the
root and/or is spread over multiple drives.

65

Configure workspace options

If the workspace root directory does not exist, you must create it before the Helix Core application can
make use of it.

The @, #, *, and % characters have specific meaning to Helix Core; if you have file or folder names that
use these characters, see "Restrictions on filenames and identifiers" on page 158 for details.

m Workspace view

By default, the entire depot is mapped to your workspace. You can define a workspace view (also
referred to as a client view) to determine which files in the depot are mapped to your workspace; this
enables Helix Core to construct a one-to-one mapping between individual depot and workspace files. You
can map files to have different names and locations in your workspace than they have in the depot.

For users of streams, Helix Coregenerates the workspace view from the contents of the stream spec’s
Paths: field. Users of classic Helix Core branches configure the workspace view by editing the
contents of the client spec’s V1ew: field.

For details on configuration of workspace views, see "Configure workspace views" on page 71.

Configure workspace options

The following table describes the client spec Options : in detail:

Option Description Default

[nolallwrite Specifies whether unopened files are always writable. By noallwrite
default, Helix Core makes unopened files read-only. To
avoid inadvertently overwriting changes or causing syncs
to fail, specify noallwrite.

A setting of a1 1wr1 te leaves unopened files writable by
the current user; it does not set filesystem permissions to
ensure that files are writable by any user of a multiuser
system.

Ifallwrite and noclobber are both set, Helix Core
performs a safe sync, comparing the content in your client
workspace against what was last synced. If the file was
modified outside of Helix Core control, an error message is
displayed and the file is not overwritten.

[no]lclobber Specifies whether p4 sync overwrites writable but noclobber
unopened workspace files. (By default, Helix Core does
not overwrite unopened files if they are writable.)

Ifallwrite and noclobber are both set, Helix Core
performs a safe sync, comparing the content in your client
workspace against what was last synced. If the file was
modified outside of Helix Core control, an error message is
displayed and the file is not overwritten.

66

Configure submit options

Option Description Default

[no]compress Specifies whether data is compressed when it is sent nocompress
between your computer and the Helix Core server.

[un]Tocked Specifies whether other users can use, edit, or delete the unlocked
client workspace specification. A Helix Core administrator
can override the lock with the = f (force) option.

If you lock your client specification, be sure to set a
password for the workspace’s owner using the p4
passwd command.

[no]lmodtime For files without the +m (modtime) file type modifier, if nomodtime
modtime is set, the modification date (on the local (date and time
filesystem) of a newly synced file is the datestamp on the of sync).
file when the file was submitted to the depot. If
nomodtime is set, the modification date is the date and
time of sync.

Ignored for files
with the +m file
type modifier.
For files with the +m (modtime) file type, the modification

date (on the local filesystem) of a newly synced file is the

datestamp on the file when the file was submitted to the

depot, regardless of the setting of modtime or

nomodtime on the client.

[no]lrmdir Specifies whether p4 sync deletes empty directoriesin =~ normdir
a workspace if all files in the directory have been removed.

Configure submit options

To control what happens to files in a changelist when you submit the changelist to the depot, set the
Submitoptions: field. Valid settings are as follows.

Option Description

submitunchanged All open files (with or without changes) are submitted to the
depot.

This is the default behavior of Helix Core.

submitunchanged+reopen Allopenfiles (with or without changes) are submitted to the
depot, and all files are automatically reopened in the default
changelist.

revertunchanged Only those files with content, type, or resolved changes are
submitted to the depot. Unchanged files are reverted.

67

View a stream as of a specific changelist

Option Description

revertunchanged+reopen Only those files with content, type, or resolved changes are
submitted to the depot and reopened in the default changelist.
Unchanged files are reverted and not reopened in the default
changelist.

Teaveunchanged Only those files with content, type, or resolved changes are
submitted to the depot. Any unchanged files are moved to the
default changelist.

Teaveunchanged+reopen Only those files with content, type, or resolved changes are
submitted to the depot. Unchanged files are moved to the
default changelist, and changed files are reopened in the
default changelist.

This option is similar to submi tunchanged+reopen,
except that no unchanged files are submitted to the depot.

View a stream as of a specific changelist

The StreamAtChange option in the client spec lets you use the version of the stream specified as of
a particular changelist to generate a workspace view. This is helpful when you want to see what the
stream view was at a particular point in time, especially if your stream spec changes a lot (for example, if
you frequently change what you’re importing or what you’re deciding to share). When you use the
StreamAtChange option, you cannot submit changes to the files in the stream, since your
workspace view is not up to date.

To set a stream workspace to use the version of the stream specified as of a particular changelist, do the
following:

1. Open the stream’s workspace specification form for editing.
$ p4 client

2. Use one of the following alternatives:

a. Edit the form to set StreamAtChange: to the changelist you want to view the stream as
of. Or,

b. Issue this command:
$ p4 client -S //Ace/main@l2546

For more information, see the P4 Command Reference.

Alternatively, you can issue the following command to sync a stream using the stream’s view as of a
specific changelist:

$ p4 switch [-r -v] stream@change
This command both sets the StreamAtChange value and syncs to the same change.

68

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Configure line-ending settings

Configure line-ending settings

To specify how line endings are handled when you sync text files, set the L1neEnd: field. Valid
settings are as follows:

Option Description

local Usemode native to the client (default)

unix UNIX-style (and Mac OS X) line endings: LF

mac Mac pre-OS X: CR only

win Windows- style: CR, LF

share The share option normalizes mixed line-endings into UNIX line-end format. The
share option does not affect files that are synced into a client workspace; however,
when files are submitted back to the Helix Core server, the share option converts all
Windows-style CR/LF line-endings and all Mac-style CR line-endings to the UNIX-style
LF, leaving lone "LF’'s untouched.

When you sync your client workspace, line endings are set to LF. If you edit the file on a
Windows computer, and your editor inserts CR’s before each LF, the extra CR’s do not
appear in the archive file.

The most common use of the share option is for users of Windows computers who
mount their UNIX home directories as network drives; if you sync files from UNIX, but
edit the files on a Windows computer.

The share option implicitly edits the file(s) during a submit. As a consequence, if you
have set the L1neEnd field to share in your client spec, the p4 resolve
command may prompt you to edit the file before resolving.

For detailed information about how Helix Core uses the line-ending settings, see “CR/LF Issues and Text
Line-endings” in the Helix Core knowledge base:

http://answers.perforce.com/articles/KB_Article/ CR-LF-Issues-and-Text-Line-endings

Change the location and/or layout of your workspace

To change the location of files in your workspace, issue the p4 ¢11ent command and change either
or both of the Root : and Vi ew: fields. Before changing these settings, ensure that you have no files
checked out (by submitting or reverting open files).

If you're using streams, you must change the Paths : field in the stream spec, rather than the Vi ew:
field, in the client spec.

If you intend to modify both fields, perform the following steps to ensure that your workspace files are
located correctly:

69

http://answers.perforce.com/articles/KB_Article/CR-LF-Issues-and-Text-Line-endings

Manage workspaces

1. Toremove the files from their old location in the workspace, issue the p4 sync ..#none
command.

2. Change the Root : field. (The new client workspace root directory must exist on your computer
before you can retrieve files into it.)

3. Tocopy thefiles to their new locations in the workspace, perform a p4 sync. (If you forget to
performthe p4 sync ..#none before you change the workspace view, you can always
remove the files from their client workspace locations manually).

4. Users of streams, change the Paths : field in the stream spec. Users of classic Helix Core
branches, change the Vi ew: field in the client spec.

5. Again, perform a p4 sync. This time, syncing changes the layout of the workspace. The files in
the client workspace are synced to their new locations.

Manage workspaces

This section discusses various approaches to managing your stream workspaces.
Using one workspace for multiple streams

When working with multiple streams, you have two choices:

m Switch one workspace between multiple streams; the workspace is appropriately populated
whenever you switch from one stream to another. While this requires some extra processing, it is
the right choice when you don’'t need to work on different streams at the same time and you don’t
want to have multiple streams on disk at the same time.

m Establish a distinct workspace for each stream. This is the right choice if you want to move
quickly between different streams or if you want to have multiple streams on disk at the same
time.

Note that distinct workspaces must have distinct workspace roots — that is, distinct local folders.

To change the stream associated with a workspace, issue the following command:

$ p4 switch streamname

To get aworkspace view and a set of files as of a specific changelist, issue the following command:

$ p4 switch stream@change
Narrowing the scope of workspaces with virtual streams

For large projects, even consistently-organized streams may not sufficiently restrict workspace views. In
large organizations, there are often many groups who are concerned with only a small subset of a
project’s files. In classic Helix Core, these users would manually restrict their workspace’s view to
include only the desired subset. Streams offer an analog; use a virtual stream as afilter:

For example, if ongoing development work is occurring inan //Ace/dev stream:

Stream: //Ace/dev
Parent: //Ace/main

70

Delete aclient workspace

Type: development
Paths:
share ...

Then a user who is working only with the documentation for the product (rather than all of the assets
associated with the project) could create a virtual stream that includes only those files under
//Ace/dev/docs/. .., as follows:

Stream: //Ace/devdocs
Parent: //Ace/dev
Type: virtual
Paths:

share docs/...
The user can then can switch his or her workspace to the devdocs virtual stream with the following
command:
$ p4 switch //Ace/devdocs

When using the devdocs workspace, the user's workspace view is automatically updated to include
only the material in //Ace/dev/docs/. . . and any changes he or she makes in
//Ace/devdocs are automatically made directly in the original //Ace/devV codeline without the
need to manually run p4 copy or p4 merge.

For details on virtual streams, see "Virtual streams" on page 86.

Delete a client workspace

To delete a workspace, issuethe p4 client -d c1ientname command. Deleting a client
workspace removes Helix Core’s record of the workspace but does not remove files from the workspace
or the depot.

When you delete a workspace specification:

1. Revert (or submit) any pending or shelved changelists associated with the workspace.
2. Delete existing files from a client workspace (p4 sSync ...#nhone). (optional)

3. Delete the client spec.

If you delete the client spec before you delete files in the workspace, you can delete workspace files
using your operating system'’s file deletion command.

Configure workspace views

By default, when you create a client workspace, the entire depot is mapped to your workspace. You can
refine this mapping to view only a portion of the depot and to change the correspondence between depot
and workspace locations.

71

Specify mappings

Helix Core generates workspace views automatically, from the stream spec, for all workspaces bound to
that stream. When you bind a workspace to a stream, Helix Core generates the workspace view based
on the structure of the stream. Specifically, it bases it on the depot mapping entries in the stream spec’s
Paths: field. If the structure of the stream changes, Helix Core updates the views of workspaces
associated with the stream on an as-needed basis.

For details on all stream spec fields, see "Configure a stream" on page 80.

Note
Classic users update the workspace view manually, by editing the View: field in the client spec
(invoked with the p4 ¢11ent command.)

To modify a workspace view, issue the p4 streamcommand. Helix Core displays the stream
specification form, which lists mappings in the Paths : field.

Suppose your stream spec contains the following entries under Paths::

Paths:

import ...

isolate apps/bin/...
share apps/xp/...
exclude tests/...

Switching your workspace to this stream gives you this workspace view:

//Acme/XProd/apps/bin/... //bruno_ws/apps/bin/. ..
//Acme/XProd/apps/xp/... //bruno_ws/apps/xp/...
-//Acme/XProd/tests/. .. //bruno_ws/tests/...

The sections below provide details about specifying the workspace view. For more information, see the
description of views in the P4 Command Reference.

Specify mappings
Views consist of multiple mappings. Each mapping has two parts.

m The left-hand side specifies one or more files in the depot and has the form:
//depotname/file_specification

m The right-hand side specifies one or more files in the client workspace and has the form:
//clientname/file_specification

The left-hand side of a workspace view mapping is called the depot side, and the right-hand side is the
client side.

To determine the location of any workspace file on your computer, substitute the client workspace root
for the workspace name on the client side of the mapping. For example, if the workspace root is
C:\bruno_ws, thefile //JamCode/dev/jam/Jamfile resides inC:\bruno_
ws\dev\jam\Jamfile.

72

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Use wildcards in workspace views

Later mappings override earlier ones. In the example below, the second line overrides the first line,
mapping the files in //Acme/dev/docs/manuals/ up two levels. When files in
//Acme/dev/docs/manuals/ are synced, they reside in c: \bruno_ws\docs\

View:
//Acme/dev/. .. //bruno_ws/dev/. ..
//Acme/dev/docs/. .. //bruno_ws/docs/...

Use wildcards in workspace views

To map groups of files in workspace views, you use Helix Core wildcards. Any wildcard used on the
depot side of a mapping must be matched with an identical wildcard in the mapping’s client side. You can
use the following wildcards to specify mappings in your client workspace:

Wildcard Description

= Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your platform.

Matches anything including slashes. Matches recursively (everything in and below the
specified directory).

%%1 - Positional specifiers for substring rearrangement in filenames.

%269

In the following simple workspace view, all files in the depot’s dev stream are mapped to the
corresponding locations in the client workspace:

//JamCode/dev/... //bruno_ws/dev/...
For example, the file //JamCode/dev/jam/Makefi1e is mapped to the workspace file
C:\bruno_ws\dev\jam\Makefile.

Note
To avoid mapping unwanted files, always precede the . . . wildcard with a forward slash.

The mappings in workspace views always refer to the locations of files and directories in the depot; you
cannot refer to specific revisions of a file in a workspace view.

Map part of the depot

If you are interested only in a subset of the depot files, map that portion. Reducing the scope of the
workspace view also ensures that your commands do not inadvertently affect the entire depot. To restrict
the workspace view, change the left-hand side of the Vi ew: field to specify the relevant portion of the
depot.

73

Map filesto different locations in the workspace

Example Mapping part of the depot to the client workspace
Dai is working on the Jam project and maintaining the web site, so she sets the View: field as
follows:

View:
//JamCode/dev/jam/. .. //dai-beos-locust/jam/. ..
//JamCode/www/1ive/. .. //dai-beos-Tocust/www/1ive/. ..

Map files to different locations in the workspace

Views can consist of multiple mappings, which are used to map portions of the depot file tree to different
parts of the workspace file tree. If there is a conflict in the mappings, later mappings have precedence

over the earlier ones.

Example Multiple mappings in a single workspace view
The following view ensures that Microsoft Word files in the manuals folder reside in the workspace in a
top-level folder calledwordfiles:

View:
//depot/. .. //bruno_ws/...
//Acme/dev/docs/manuals/*.doc //bruno_ws/wordfiles/*.doc

Map files to different filenames

Mappings can be used to make the filenames in the workspace differ from those in the depot.

Example Files with different names in the depot and the workspace
The following view maps the depot fle RELNOTES to the workspace file rnotes . tXt:

View:
//depot/. .. //bruno_ws/. ..
//3JamCode/dev/jam/RELNOTES //bruno_ws/dev/jam/rnotes.txt

Rearrange parts of filenames

Positional specifiers %%0 through %%9 can be used to rearrange portions of filenames and directories.

74

Exclude filesand directories

Example Using positional specifiers to rearrange filenames and directories

The following view maps the depot file //depot/al1files/readme. txt to the workspace
file filesbytype/txt/readme:

View:
//depot/allfiles/%%1l.%%2 //bruno_ws/filesbytype/%%2/%%1

Exclude files and directories

Exclusionary mappings enable you to explicitly exclude files and directories from a workspace. To
exclude afile or directory, precede the mapping with a minus sign (=). White space is not allowed
between the minus sign and the mapping.

Example Using views to exclude files from a client workspace
Earl, who is working on the Jam project, does not want any HTML files synced to his workspace. His
workspace view looks like this:

View:
//3JamCode/dev/jam/. .. //earl-dev-beech/jam/. ..
-//JamCode/dev/jam/....html //earl-dev-beech/jam/....html

Map a single depot path to multiple locations in a workspace

Helix Core includes a "one-to-many" mapping feature, with which you can map a single depot path to
multiple locations in a client workspace.

Important
This feature is currently only available for users of classic Helix Core branches; one-to-many mapping

is not available for streams.

Consider the following scenario: A company has a website whose content is divided into categories such
as products, documentation, and technical support. The content for each of these categories is managed
in its own location in the workspace.

However, all of these websites display the same logo. Consequently, all three of the locations in the
workspace must contain the same image file for the logo.

You might try to map the depot path like this:

View:
//Acme/images/Togo.png //bruno_ws/products/images/logo.png
//Acme/images/Tlogo.png //bruno_ws/documentation/images/Togo.png
//Acme/images/logo.png //bruno_ws/support/images/logo.png

75

Restrict access by changelist

When you sync the client, the depot file will only be mapped to the support location in the workspace.
By default, in a situation in which a workspace view maps a depot path to multiple locations in a client,
only the last location in the list is the one to which the depot files are actually mapped.

To enable Helix Core’s one-to-many mapping feature, prepend & to the mapping line for each additional
client location you want to map to, as in the following example:

View:
//Acme/images/Togo.png //bruno_ws/products/images/logo.png
&//Acme/images/logo.png //bruno_ws/documentation/images/logo.png
&//Acme/images/logo.png //bruno_ws/support/images/logo.png

This time when you sync the client, the depot file will be mapped to all three locations. However, note
that bruno_ws/documentation, and bruno_ws/support are read only-because all mapping
line prepended with & are read-only.

Restrict access by changelist

You can restrict access to depot paths to a particular point in time by providing the depot path names and
changelist numbers in the ChangeV:i ew field of the client specification. Files specified for the
ChangeV1 ew field are read-only: they can be opened but not submitted. For example:

ChangeView:
//depot/path/...@1000

In this example, revisions of the files in //depot/path/. . . are not visible if they were submitted
after changelist 1000. Files submitted up to and including changelist 1000 are visible but read-only. You
can specify multiple paths.

You may specify ChangeV1i ew entries in either depot syntax or client syntax.

Avoid mapping conflicts

When you use multiple mappings in a single view, a single file can inadvertently be mapped to two
different places in the depot or workspace. When two mappings conflict in this way, the later mapping
overrides the earlier mapping.

Example Erroneous mappings that conflict
Joe has constructed a view as follows:

View:
//Acme/projl/... //joe/project/...
//Acme/proj2/... //joe/project/...

76

Automatically prune empty directories from a workspace

The second mapping //Acme/proj2/. .. mapsto//joe/project and conflicts with the
first mapping. Because these mappings conflict, the first mapping is ignored; no files in
//Acme/projl are mapped into the workspace: //Acme/projl/file. cis not mapped,
evenif //Acme/proj2/file. c does not exist.

Automatically prune empty directories from a workspace

By default, Helix Core does not remove empty directories from your workspace. To change this behavior,
issue the p4 ¢11ent command and in the Options: field, change the option normdi rto rmdi r.

For more about changing workspace options, see "Configure workspace options" on page 66.

Map different depot locations to the same workspace
location

Overlay mappings enable you to map files from more than one depot directory to the same place in a
workspace. To overlay the contents of a second directory in your workspace, use a plus sign (+) in front
of the mapping.

Example Overlaying multiple directories in the same workspace

Joe wants to combine the files from his projects when they are synced to his workspace, so he has
constructed a view as follows:

View:

//Acme/projl/... //joe/project/. ..

+//Acme/proj2/... //joe/project/...
The overlay mapping //Acme/proj2/. .. mapsto//joe/project, and overlays the first
mapping. Overlay mappings do not conflict. Files (even deleted files)in //Acme/proj2 take
precedence over files in //Acme/projl.1f //Acme/proj2/file. cis missing (as opposed

to being present, but deleted), then //Acme/projl/file. cis mapped into the workspace
instead.

Overlay mappings are useful for applying sparse patches in build environments.

Deal with spaces in filenames and directories

Use quotation marks to enclose files or directories that contain spaces.

Example Dealing with spaces in filenames and directories
Joe wants to map files in the depot into his workspace, but some of the paths contain spaces:

77

Map Windows workspaces across multiple drives

View:
"//Acme/Release 2.0/..." //joe/current/...
"//Acme/Release 1.1/..." "//joe/Patch Release/..."
//Acme/webstats/2011/... "//joe/2011 web Stats/..."

By placing quotation marks around the path components on the server side, client side, or both sides
of the mappings, Joe can specify file names and/or directory components that contain spaces.

For more information, see "Restrictions on filenames and identifiers" on page 158.

Map Windows workspaces across multiple drives

To specify a workspace that spans multiple Windows drives, use aRo0t : of nul1 and specify the
drive letters (in lowercase) in the workspace view. For example:

Client: bruno_ws

Update: 2011/11/29 09:46:53

Access: 2011/03/02 10:28:40

owner: bruno

Root: null

Options: noallwrite noclobber nocompress unlocked nomodtime normdir

SubmitOptions: submitunchanged

LineEnd: Tocal

View:
//Acme/dev/. .. "//bruno_ws/c:/Current Release/..."
//Acme/release/... "//bruno_ws/d:/Prior Releases/..."
//Acme/www/ . . . //bruno_ws/d: /website/...

Use the same workspace from different computers

By default, you can only use a workspace on the computer that is specified by the Host & field. If you
want to use the same workspace on multiple computers with different platforms, delete the HOSt & entry
and set the ATtRoOtS : field in the client specification. You can specify a maximum of two alterate
workspace roots. The locations must be visible from all computers that will be using them, for example
through NFS or Samba mounts.

Helix Core compares the current working directory against the main ROOt : first, and then against the
two ATtRoots : if specified. The first root to match the current working directory is used. If no roots
match, the main root is used.

78

Use the same workspace from different computers

Note

If you are using a Windows directory in any of your workspace roots, specify the Windows directory

as your main client ROOt : and specify your other workspace root directories in the A1tRoOtsS :
field.

In the example below, if user bruno’s current working directory is located under /usr/bruno, Helix
Core uses the UNIX path as his workspace root, rather than € 2 \bruno_ws. This approach allows
bruno to use the same client specification for both UNIX and Windows development.

Client: bruno_ws
owner: bruno
Description:

Created by bruno.
Root: c:\bruno_ws
AltRoots:

/usr/bruno/

To find out which client workspace root is in effect, issue the p4 info command and check the
Client root: field.

If you edit text files in the same workspace from different platforms, ensure that the editors and settings

you use preserve the line endings. For details about line-endings in cross-platform settings, see
"Configure line-ending settings" on page 69.

79

This chapter describes how to configure streams, how to propagate changes between them, and how to
update them.

Note
If you are an existing user of Helix Core branches and would like to use streams instead, see the
Streams Migration Guide.

Configure a stream

To configure a stream you edit its associated stream spec. A stream spec names a path in a stream
depot to be treated as a stream. A spec defines the stream’s location, its type, its parent stream, the files
in its view, and other configurable behaviors. It is created when you create a stream with the p4
streamcommand. You can update the spec’s entries — as described in "Update streams" on page 91
— to change the stream’s characteristics.

The following is a sample stream spec:

$ p4 stream -o //Acme/dev

A Perforce Stream Specification.

#

Use *'p4 help stream'* to see more about stream specifications and
command.

Stream: //Acme/dev

Update: 2015/02/06 10:57:04

Access: 2015/02/06 10:57:04

owner: bruno

Name: //Acme/dev

Parent: //Acme/main

Type: development

80

http://swarm.perforce.com/files/depot/intranet/consulting/Guides/StreamsMigrationGuide.docx

Configure a stream

options: allsubmit unlocked toparent fromparent mergeany

Description:
our primary development stream for the project.

Paths:
share ...
import boost/... //3rd_party/boost/1.53.0/artifacts/original/...
import boost/1ib/1inux26x86_64/... //3rd_
party/boost/1.53.0/artifacts/original/1ib/1inuxx86_64/gcc441ibc212/. ..
import boost/1ib/1inux26x86/... //3rd_
party/boost/1.53.0/artifacts/original/1ib/1inuxx86/gcc441ibc212/. ..
import protobuf/... //3rd_party/protobuf/2.4.1/artifacts/patch-
1/...
import gtest/... //3rd_party/gtest/1.7.0/artifacts/original/...
import icu/... //3rd_party/icu/53.1/artifacts/original/...
import p4-bin/1lib.ntx64/vsll/pdapi_vs2012_dyn.zip
//builds/pl5.1/p4-bin/bin.ntx64/p4api_vs2012_dyn.zip
import p4/... //depot/pl5.1/p4/...
exclude p4/lbr/...
exclude p4/server/...

Remapped:
p4/doc/... p4/relnotes/...

Ignored:

... /~tmp. txt

The following table describes the stream spec in more detail:

81

Configure a stream

Entry Meaning

Stream The Stream field is unique and specifies the depot path where the stream files
live. All streams in a single stream depot must have the same number of forward
slashes in their name; your administrator specifies this number in the
StreambDepth field of the stream depot spec. If you try to create a stream with a
different number of forward slashes than those specified in the StreamDepth
field, you'll get an error message like the following:

Error in stream specification. Stream streamname does not
reflect depot
depth-field streamdepth.

Update The date the stream specification was last changed.

Access The date the specification was originally created.

owner The user or group who has specific and unique permissions to access to this
stream.

Name An alternate name of the stream, for use in display outputs. Defaults to the

streamname portion of the stream path.

Parent The parent of this stream. Can be none if the stream type is mainline,
otherwise must be set to an existing stream identifier, of the form
//depotname/streamname.

Type Type of stream provides clues for commands run between stream and parent. The
five types includemainline, release, development (default), virtual
and task.

Descript A short description of the stream (optional).

ion

Ooptions Stream Options: al1submit/ownersubmit[un]locked
[no]toparent[no]fromparent mergedown/mergeany

Paths Identify paths in the stream and how they are to be generated in resulting

workspace views of this stream. Path types are
share/isolate/import/import+/exclude, which are discussed
further in "Stream paths" on page 86. p4d uses the Paths entry to generate a
workspace view. See "Configure workspace views" on page 71.

Note

Files don’'t actually have to be branched to appear in a stream. Instead, they can
be imported from the parent stream or from other streams in the system.

82

More on options

Entry Meaning

Remapped Remap a stream path in the resulting workspace view.

Ignored Ignore a stream path in the resulting workspace view. Note that Perforce
recommends that you use p4 ignore inlieu of this entry, to accomplish the
same thing.

More on options

The following table summarizes the meaning of each of the options available in the stream spec:

Option Meaning

allsubmit All users can submit changes to the stream.

ownersubmit Only the stream owner can submit changes to the stream.

Tocked The stream spec cannot be deleted and only the stream owner can maodify it.
unlocked All users can edit or delete the stream spec.

toparent Merges from the stream to its parent are expected.

notoparent Merges from the stream to the parent are not expected.

fromparent Merges to the stream from the parent are expected.

nofromparent Merges to the stream from the parent are not expected.

mergedown Enforces the best practice of merge down, copy up.

mergeany Allows you to merge the stream’s content both up and down.

This section discusses some key concepts related to streams.

Stream types
You assign stream types according to the stream’s expected usage, stability and flow of change:

m Development streams are used for code that changes frequently; they they enable you to
experiment without destabilizing the mainline stream.

= Mainline streams contain code that changes somewhat frequently, but is more stable than code in
development streams.

m Release streams contain the most stable code, as this is the code closest to being released.
Release streams enable you to finalize existing features while working on new features in the
mainline.

Stream types

There is also a virtual stream type and a task stream type. See "Task streams" on the next page and
"Virtual streams" on page 86, respectively.

On a scale of stability, a development stream is considered less stable than its mainline stream parent,
while a release stream is considered more stable than its mainline stream parent. Change is expected to
flow down by merging, and up by copying. This “merge down, copy up” practice assures that merging is
done only when necessary, and always in the more forgiving of the two streams involved.

Merging means incorporating another stream’s changes into your stream, and can require you to resolve
conflicts. Copy propagates a duplicate of the source stream to the target. The following diagram shows a
basic stream hierarchy: changes are merged down (to streams of lesser stability) and copied up (to
streams of greater stability):

ih rel2.3
¢

& main E'

v
) dev-2.1M2

The following table summarizes these qualities of stream types:

Stream Type Stability Merge Copy

mainline Stable per your policy (for from child (from to child (to release, or
example, all code builds) release, or to from development)

development)

virtual N/A; used to filter streams N/A N/A

development Unstable from parent to parent

task Unstable from parent to parent

release Highly stable to parent from parent

84

Task streams

Task streams

Task streams are lightweight short-lived streams used for bug fixing or new features that only modify a
small subset of the stream data. Since branched (copied) files are tracked in a set of shadow tables that
are later removed, repository metadata is kept to a minimum when using this type of stream and server
performance is optimized.

They are branches that work just like development streams, but task streams remain semi-private until
branched back to the parent stream. Designed as lightweight branches, they are most effective when
anticipated work in the branch will only affect a small number of files relative to the number of files in the
branch.

Note
DVCS does not support task streams.

Task streams are intended to be deleted or unloaded after use. Because you cannot re-use task stream
names even after the stream has been deleted, most sites adopt a naming convention that is likely to be
unique for each task, such as user-datesjobnumber.

Working within task streams is just like working in a development stream:
1. Create the task stream (in this example, as a child of a development stream).
$ p4 stream -t task -P //projectX/dev //Tasks/mybugl23
2. Populate the stream.
$ p4 populate -d "Fix bug 123" -S //Tasks/mybugl23 -r

Make changes to files in the stream and submit the changes.

4. Merge down any required changes from the parent stream, resolving as necessary.
$ p4 merge

5. Copy up the changes you made into the parent stream.
$ p4 copy --from //Tasks/mybugl23

6. Delete or unload the task stream.

$ p4 stream -d //Tasks/mybugl23
Alternatively, use p4 unload to unload it:

$ p4 unload -s //Tasks/mybugl23

See "Deleting versus unloading task streams" on the facing page for more information on deleting
versus unloading task streams.

85

Virtual streams

Only workspaces associated with the task stream can see all the files in the stream; the stream appears
as a sparse branch to other workspaces, which see only those files and revisions that you changed
within the task stream. Most other metadata for the task stream remains private.

Task streams can quickly accumulate in a depot until they are deleted or unloaded; to keep a project
depot uncluttered by task streams, your Helix Core administrator or project lead may choose to establish
certain streams depots as dedicated holding areas for task streams. In this case, create your stream in
the task streams depot as a child of a parent in the project depot.

Task streams are unique in that they can live in different depots from their children or parents. However,
the best practice is to have them reside in the same depot as their children or parents.

Deleting versus unloading task streams

To free up space in Helix Core server database tables, you can choose to either delete or unload task
streams. Deleting has no recovery option; you cannot work on that task stream again once you've
deleted it. Unloading gives you the option of recovering the task stream to work with it again.

You unload a task stream using the p4 un1oad commmand. For more information, see the p4
unload page in P4 Command Reference.

Virtual streams

Virtual streams can be used to create alternative views of real streams. Virtual streams differ from other
stream types in that a virtual stream is not a separate set of files, but instead a filtered view of its parent
stream. A virtual stream can have child streams, and its child streams inherit its views.

Stream paths

Stream paths control the files and paths that compose a stream and define how those files are
propagated. Except for the mainline, each stream inherits its structure from its parent stream. To modify
the structure of the child, you specify the paths as follows:

Type Sync? Submit? Integrate Remarks

to/from
Parent?

share Y Y Y (Default) For files that are edited and
propagated between parent and child
streams. All files in a shared path are
branched and, in general, shared paths are the
least restricted.

isolate Y Y N For files that must not be propagated outside
the stream but can be edited within it, such as
binary build results.

86

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Stream paths

Sync? Submit? Integrate Remarks

to/from
Parent?

import Y N N For files that must be physically present in the
stream but are never changed. Example:
third-party libraries. Import paths can
reference a specific changelist (or a label that
aliases a changelist) to limit the imported files
to the revisions at that change or lower. Use
the syntax @changelist#, as in:

//depot/1ib3.0/..@455678

import+ Y Y N Functions like an import path, in that it can
reference an explicitly-defined depot path, but
unlike a standard import path, you can submit
changes to the files in an import+ path.

exclude N N N Files in the parent stream that must never be
part of the child stream.

In the following example, files in the SrcC path are not submittable (and are imported from the parent
stream’s view), files in the 11 b path are not submittable (and are imported from an explicitly-specified
location in the depot), and files in the db path can be edited and submitted in the stream, but can never be
copied to the parent:

Paths:
share ...
import src/...
import 1lib/... //depot/1ib3.0/...
isolate db/...

The paths are used to generate the mappings for workspaces that are associated with the stream. If the
stream structure changes, the workspace views are updated automatically and in fact cannot be altered
manually. If the stream is locked, only the stream owner (or stream owners, if the Owner: field of the
stream is set to a group) can edit the stream specification.

Stream specification can also remap file locations (so that a file in specified depot location is synced to a
different location in the workspace) and screen out files according to file type. For example, to ensure that
object files and executables are not part of the stream, add the following entries to the stream
specification:

Ignored:

. exe

87

Stream paths and inheritance between parents and children

Stream paths and inheritance between parents and children

Child streams inherit folder paths and behavioral rules from their parents. When we talk about inheritance
between parents and children, it helps to think in the following terms:

m Permissiveness: what actions (submit, sync, etcetera) are permitted on a path?

Path types are inherited from parent streams, and you cannot override the effects of the path

types assigned by parent streams. In other words, child streams are always as permissive or less
permissive than their parents, but never more permissive. For example, if a parent stream defines
apathas isolate, its child streams cannot redefine the path as share to enable integrations.

m [Inclusiveness: what paths are included in the stream?

Since children cannot, by definition, be more inclusive than their parents, you cannot include a
folder path in a child that is not also included in its parent. This means, for example, that you
cannot add an 1s01ate path to a child if the folders in that path are not also included in the
parent.

In the example in the table below, the incorrectly defined DeV stream, which is a child of Main,
contains an 1so01ate path that does not work, because it includes folders that are not included
in the parent. In order to isolate the conf1i g/ folder in the DeV stream, that folder has to be
included as a shareorisolate pathinMain:

Incorrect Correct

Stream: //Acme/Main Stream: //Acme/Main
Parent: none Parent: none

Paths: share apps/... Paths: share apps/...
Paths: share tests/... share tests/...

share config/...

Stream: //Acme/Dev Stream: //Acme/Dev
Parent: //Acme/Main Parent: //Acme/Main
Paths: share apps/... Paths: share apps/...
share tests/... share tests/...
isolate config/... isolate config/...
Example Simple share

Let’s start with a simple case: two streams, //Ace/main andits child //Ace/dev.

Stream: //Ace/main
Parent: none
Paths: share ...

88

Stream paths and inheritance between parents and children

Stream: //Ace/dev
Parent: //Ace/main
Paths: share ...

In this case, the entire stream path is shared. When you switch your workspace to the //Ace/main
stream, the workspace view looks like this:

//Ace/main/... //bruno_ws/...

The workspace view maps the root of the / /Ace/ma n stream to your workspace. When you you
switch your workspace to the //Ace/devV stream, the workspace view is this:

//Ace/dev/... //bruno_ws/...
And the branch view for //Ace/dev/ looks like this:

//Ace/dev/... //Ace/main/...

In other words, the entire dev stream can be synced to workspaces, and the entire stream can be
branched, merged, and copied.

Example Share and import
Let’s look at an example where software components are housed in three separate depots: //Acme,

//Red, and //Tango.

The ACme mainline is configured like this:

Stream: //Acme/Main

Parent: none

Paths: share apps/...
share tests/...
import stuff/... //Red/R6.1/stuff/...
import tools/... //Tango/tools/...

If you switch your workspace to the //Acme/Mai n stream, this would be your workspace view:

//Acme/Main/apps/... //bruno_ws/apps/...
//Acme/Main/tests/... //bruno_ws/tests/...
//Red/R6.1/stuff/... //bruno_ws/stuff/...
//Tango/tools/. .. //bruno_ws/tools/. ..

The stream’s Paths field lists folders relative to the root of the stream. Those are the folders you get in
your workspace, beneath your workspace root. The shared folders are mapped to the //Acme/Main
path, and the imported paths are mapped to their locations in the //Red and //Tango depots.

89

Stream paths and inheritance between parents and children

Example Share, isolate, exclude, and import

Let’'s say that your team doesn’t want to do actual development in the mainline. In this example, XProd
feature team has a development stream of their own, defined like this:

Stream: //Acme/XProd

Parent: //Acme/Main

Paths: import ...
isolate apps/bin/...
share apps/xp/...
exclude tests/...

Switching your workspace to the //Acme/XProd stream gives you this view:

//Acme/Main/apps/. .. //bruno_ws/apps/. ..
//Acme/XProd/apps/bin/... //bruno_ws/apps/bin/...
//Acme/XProd/apps/xp/... //bruno_ws/apps/xp/...

//Red/R6.1/stuff/... //bruno_ws/stuff/...
//Tango/tools/. .. //bruno_ws/tools/. ..
-//Acme/XProd/tests/. .. //bruno_ws/tests/...

Here we see workspace view inheritance at work. The contents of imported paths are mapped into your
workspace. The shared and isolated paths are mapped to the child stream; these contain the files the
XProd team is working on and will be submitting changes to. And the excluded path (marked with a minus
sign in the view) doesn’t appear in the workspace at all.

Because the //Acme/XProd stream has a parent, it has a branch mapping that can be used by the
copy and merge commands. That branch view consists of the following, with just one path shared by the
child and parent.

-//Acme/XProd/apps/. .. //Acme/Main/apps/. ..
-//Acme/XProd/apps/bin/... //Acme/Main/apps/bin/. ..
//Acme/XProd/apps/xp/. .. //Acme/Main/apps/xp/. ..
-//Acme/XProd/stuff/... //Acme/Main/stuff/. ..
-//Acme/XProd/tests/. .. //Acme/Main/tests/...
-//Acme/XProd/tools/. .. //Acme/Main/tools/. ..

When you work in an //Acme/XProd workspace, it feels as if you're working in a full branch of
//Acme/Main, but the actual branch is quite small.

Example Child that shares all of the above parent

Let’s suppose that Lisa, for example, creates a child stream from //Acme/XProd. Her stream spec
looks like this:

90

Update streams

Stream: //Acme/LisaDev
Parent: //Acme/XProd

Paths: share ...

Lisa’s stream has the default view template. Given that Lisa’s entire stream path is set to share, you
might expect that her entire workspace will be mapped to her stream. But it is not, because inherited
behaviors always take precedence; sharing applies only to paths that are shared in the parent as well. A
workspace for Lisa’s stream, with its default view template, has this client view:

//Acme/Main/apps/. ..
-//Acme/LisaDev/tests/...
//Acme/Lisabev/apps/bin/...
//Acme/LisabDev/apps/xp/. ..
//Red/R6.1/stuff/...
//Tango/tools/. ..

//bruno_ws/apps/. ..
//bruno_ws/tests/...
//bruno_ws/apps/bin/. ..
//bruno_ws/apps/xp/. ..
//bruno_ws/stuff/...
//bruno_ws/tools/. ..

A workspace in Lisa’s stream is the same as a workspace in the XProd stream, with one exception: the
paths available for submit are rooted in //Acme /L1 saDeV. This makes sense; if you work in Lisa’s
stream, you expect to submit changes to her stream. By contrast, the branch view that maps the
//Acme/DeV stream to its parent maps only the path that is designated as shared in both streams:

-//Acme/Main/apps/. .. //XProd/apps/. ..
-//Acme/LisaDev/tests/... //XProd/tests/. ..
-//Acme/Lisabev/apps/bin/... //XProd/apps/bin/...
//Acme/Lisabev/apps/xp/... //bruno_ws/apps/xp/. ..
-//Red/R6.1/stuff/... //XProd/stuff/...
-//Tango/tools/. .. //XProd/tools/. ..

The default template allows Lisa to branch her own versions of the paths her team is working on, and
have a workspace with the identical view of non-branched files that she would have in the parent stream.

Update streams

As part of maintaining your version control application, you will likely update streams over time, by
changing any of the fields listed above, to do such things as:

m modify the paths the stream consumes when the stream proves to be too narrow or too wide, in
order to:

« change the version of an included library by modifying the target of an import path
« change the scope of a path to widen or narrow the scope included

m Change restrictions on who can submit to the stream

To do this, you modify stream specifications directly via the p4 streamcommand, automatically and
immediately updating all workspace views derived from that stream.

91

Make changes to a stream spec and associated files atomically

Make changes to a stream spec and associated files atomically

Alternatively, you can isolate edits to the stream spec to the editing client prior to making them available
to other clients as part of an atomic changelist submission. This works just as edits to files do: they are
made locally on a single client and then submitted to make them available to other clients.

This functionality has a couple of important benefits:

m You can stage a stream spec in your workspace and test it before submitting it.

= You can submit the spec atomically in a changelist along with a set of files. Since the stream
structure dictates the workspace view, this means that when users sync, they obtain the new
view and the new files together.

You open and submit changes to the stream spec using the following three commands:

» p4 stream edit puts the client’s current stream spec into the opened state, isolating any
edits made to fields that affect view generation. While the spec is open, those fields are marked
with the comment #0pen to indicate that they are open and isolated to your client. Changes
made to these fields affect your workspace view normally, but other clients are not affected.

» p4 stream resolve resolves changes that have been submitted to the stream spec by
other users since you opened it. You may not submit changes to the stream spec until newer
changes have been resolved.

s p4 stream revert reverts any pending changes made to the open spec, returning your
client to the latest submitted version of the stream.

For details on all three of these commands, see the p4 stream page in the P4 Command Reference.

By default, the open stream spec is included along with files that are shelved or submitted in a changelist.
Conversely, when unshelving a change that contains an open stream spec, the current stream is opened
and the shelved version becomes the opened version. If the stream is already open when attempting to
unshelve, a warning is generated and the unshelve operation aborts. The stream may be omitted from
any of these operations by using the =Af flag to specify that only files should be acted upon.

Seethep4 submit,p4 shelve,andp4 unshelve commands inthe P4 Command Reference
for details.

92

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Resolve conflicts

In settings where multiple users are working on the same set of files, conflicts can occur. Helix Core
enables your team to work on the same files simultaneously and resolve any conflicts that arise. For
example, conflicts occur if two users change the same file (the primary concern in team settings) or you
edit a previous revision of a file rather than the head revision.

When you attempt to submit a file that conflicts with the head revision in the depot, Helix Core requires
you to resolve the conflict.

Merging changes from a development stream to a release stream is another typical task that requires you
toresolve files.

To prevent conflicts, Helix Core enables you to lock files when they are edited. However, locking can
restrict team development. Your team needs to choose the strategy that maximizes file availability while
minimizing conflicts. For details, see "Locking files" on page 112.

How conflicts occur

Conflicts can occur in a number of ways, for example:

1. Brunoopens //JamCode/dev/jam/command . c#8 for edit.

2. Gale subsequently opens the same file for edit in her own client workspace.
3. Bruno and Gale both edit //Jamcode/dev/jam/command . c#8.
4

Bruno submits a changelist containing //JamCode/dev/jam/command . ¢, and the submit
succeeds.

5. Gale submits a changelist with her version of //Acme/dev/jam/command. c. Her submit
fails.

If Helix Core accepts Gale’s version into the depot, her changes will overwrite Bruno’s changes. To
prevent Bruno’s changes from being lost, Helix Core rejects the changelist and schedules the conflicting
file to be resolved. If you know of file conflicts in advance and want to schedule a file for resolution, sync
it. Helix Core detects the conflicts and schedules the file for resolution.

How to resolve conflicts

To resolve a file conflict, you determine the contents of the files you intend to submit by issuing the p4
resolve command and choosing the desired method of resolution for each file. After you resolve
conflicts, you submit the changelist containing the files.

Note
If you open a file for edit, then sync a subsequently submitted revision from the depot, Helix Core

93

Your, theirs, base, and merge files

I requires you to resolve to prevent your own changes from being overwritten by the depot file.

By default, Helix Core uses its diff program to detect conflicts. You can configure a third-party diff
program. For details, see "Diff files" on page 49.

To resolve conflicts and submit your changes, perform the following steps:

1. Sync the files (for example p4 sync //Acme/dev/jam/. . .). Helix Core detects any
conflicts and schedules the conflicting files for resolve.

2. Issuethe p4 resolve command and resolve any conflicts. See "Options for resolving
conflicts" on the facing page for details about resolve options.

3. Test the resulting files (for example, compile code and verify that it runs).

4. Submit the changelist containing the files.

Note

If any of the three file revisions participating in the merge are binary instead of text, a three-way merge
is not possible. Instead, p4 reso’lve performs atwo-way merge: the two conflicting file versions
are presented, and you can choose between them or edit the one in your workspace before submitting
the changelist.

Your, theirs, base, and merge files

The p4 resolve command uses the following terms during the merge process:

File Description

revision

yours The revision of the file in your client workspace, containing changes you made.

theirs The revision in the depot, edited by another user, that yours conflicts with. (Usually
the head revision, but you can schedule a resolve with another revision using p4
sync.)

base The file revision in the depot that yours and theirs were edited from (the closest

common ancestor file).

merge The file generated by Helix Core from theirs, yours, and base.

result The final file resulting from the resolve process.

94

Options for resolving conflicts

Options for resolving conflicts

To specify how a conflict is to be resolved, you issue the p4 resolve command, which displays a
dialog for each file scheduled for resolve. The dialog describes the differences between the file you
changed and the conflicting revision. For example:

C:\bruno_ws> p4 resolve //Acme/dev/jam/command.c
c:\bruno_ws\dev\main\jam\command.c - merging //Acme/dev/jam/command.c#9

Diff chunks: 4 yours + 2 theirs + 1 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e:

The differences between each pair of files are summarized by p4 resolve. Groups of lines (chunks)
inthe yours, theirs, and base files can differ in various ways. Chunks can be:

m Diffs: different between two of the three files: yours, theirs, or base

m Conflicts: different in all three files
In the preceding example:

m Four chunks are identical in theirs and base but are different in yours.
m Two chunks are identical in yours and base but are different in theirs.
m One chunk was changed identically in yours and theirs.

m One chunk is different in yours, theirs, and base.

Helix Core’s recommended choice is displayed at the end of the command line. Pressing Enter or
choosing Accept performs the recommended choice.

You can resolve conflicts in three basic ways:
m Accept afile without changing it (see "Accepting yours, theirs, or merge" below)
m Edit the merge file with a text editor (see "Editing the merge file" on the next page)

m Merge changes selectively using a merge program (see "Merging to resolve conflicts" on page 97)

The preceding options are interactive. You can also specify resolve options on the p4 resolve
command line, if you know which file you want to accept. For details, see "Resolve command-line
options" on page 100. To re-resolve a resolved but unsubmitted file, specify the = option when you
issue the p4 reso’lve command. You cannot re-resolve a file after you submit it. The following
sections describe the resolve options in more detail:

Accepting yours, theirs, or merge

To accept a file without changing it, specify one of the following options:

95

Editing the merge file

Option Description Remarks

a Accept m |[f theirs is identical to base, accept yours.
;ﬁ(e:ommended m If yours is identical to base, accept theirs.
m If yours and theirs are different from base, and there are no
conflicts between yours and theirs; accept merge.
m Otherwise, there are conflicts between yours and theirs, so skip
this file.
ae Accept edit If you edited the merge file (by selecting @ from the p4 resolve
dialog), accept the edited version into the client workspace. The
version in the client workspace is overwritten.
am Accept merge Accept merge into the client workspace as the resolved revision. The
version in the client workspace is overwritten.
at Accept theirs Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.
ay Accept yours Accept yours into the client workspace as the resolved revision,

ignoring changes that might have been made in theirs.

Accepting yours, theirs, edit, or merge overwrites changes, and the generated merge file might not be
precisely what you want to submit to the depot. The most precise way to ensure that you submit only the
desired changes is to use a merge program or edit the merge file.

Editing the merge file

Toresolve files by editing the merge file, choose the @ option. Helix Core launches your default text
editor, displaying the merge file. In the merge file, diffs and conflicts appear in the following format:
>>>> ORIGINAL f1ile#n(text from the original version)

==== THEIR f7le#m(text from their file)

==== YOURS file(text from your file)

<<<<

To locate conflicts and differences, look for the difference marker >>>> and edit that portion of the text.
Examine the changes made to theirs to make sure that they are compatible with your changes. Make
sure you remove all conflict markers before saving. After you make the desired changes, save the file. At
the p4 resolve prompt, choose ae.

By default, only the conflicts between the yours and theirs files are marked. To generate difference
markers for all differences, specify the =V option when you issue the p4 reso’lve command.

96

Merging to resolve conflicts

Merging to resolve conflicts

A merge program displays the differences between yours, theirs, and the base file, and enables you to
select and edit changes to produce the desired result file. To configure a merge program, set PAMERGE
to the desired program. To use the merge program during a resolve, choose the m option. For details
about using a specific merge program, consult its online help.

After you merge, save your results and exit the merge program. At the p4 reso’lve prompt, choose

am.

Full list of resolve options

The p4 resolve command offers the following options:

Option Action Remarks

? Help Display help forp4 resolve.
a Accept Accept the auto-selected file:
automatically o)
m |f theirs is identical to base, accept yours.
m |f yours is identical to base, accept theirs.
m |f yours and theirs are different from base, and there are no
conflicts between yours and theirs; accept merge.
m Otherwise, there are conflicts between yours and theirs, so skip
this file.
ae Accept edit If you edited the merge file (by selecting @ from the p4 resolve
dialog), accept the edited version into the client workspace. The version
in the client workspace is overwritten.
am Accept Accept merge into the client workspace as the resolved revision. The
merge version in the client workspace is overwritten.
at Accept theirs ~ Accept theirs into the client workspace as the resolved revision. The
version in the client workspace is overwritten.
ay Accept yours Accept yours into the client workspace as the resolved revision,
ignoring changes that might have been made in theirs.
d Diff Show diffs between merge and yours.
dm Diff merge Show diffs between merge and base.
dt Diff theirs Show diffs between theirs and base.
dy Diff yours Show diffs between yours and base.
e Edit merged Edit the preliminary merge file generated by Helix Core.

97

Full list of resolve options

Option Action Remarks

et Edit theirs Edit the revision in the depot that the client revision conflicts with
(usually the head revision). This edit is read-only.

ey Edit yours Edit the revision of the file currently in the workspace.

m Merge Invoke the command PAMERGE basetheirs yours merge. To use this
option, you must set PAMERGE to the name of a third-party program
that merges the first three files and writes the fourth as a result.

S Skip Skip this file and leave it scheduled for resolve.

Note
The merge file is generated by the Helix Core server, but the differences displayed by dy, dt, dm,

and d are generated by your computer’s diff program. To configure another diff program to be launched
when you choose a d option during a resolve, set PADIFF. For more details, see "Diff files" on
page 49.

Example Resolving file conflicts
To resolve conflicts between his work on a Jam README file and Gale’s work on the same file, Bruno
types p4 resolve //Acme/dev/jam/README and sees the following:

Diff chunks: 0 yours + O theirs + 0 both + 1 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) e: e

Bruno sees that he and Gale have made a conflicting change to the file. He types € to edit the merge
file and searches for the difference marker >>>>. The following text is displayed:

Jam/MR (formerly "jam - make(1l) redux")
/+\
>>>> ORIGINAL README#26

+\ Copyright 1993, 1997 cChristopher Seiwald.
==== THEIRS README#27

+\ Copyright 1993, 1997, 2004 cChristopher Seiwald.
==== YOURS README

+\ Copyright 1993, 1997, 2005 Christopher Seiwald.
<<<<

\+/

Bruno and Gale have updated the copyright date differently. Bruno edits the merge file so that the
header is correct, exits from the editor and types am. The edited merge file is written to the client
workspace, and he proceeds to resolve the next file.

98

Resolving branched files, deletions, moves and filetype changes

When a version of the file is accepted during a resolve, the file in the workspace is overwritten, and the
new client file must still be submitted to the depot. New conflicts can occur if new versions of a file are
submitted after you resolve but before you submit the resolved files. This problem can be prevented by
locking the file before you perform the resolve. For details, see "Locking files" on page 112.

Resolving branched files, deletions, moves and filetype
changes

Beyond reconciling changes to the contents of related files after integration, you can also determine how
other kinds of changes are handled. Consider this example:

= Youedit header . cc in the mainline while a coworker deletes it in the release branch (or vice
versa). You integrate fixes in the release branch back to main. During resolve, you can decide
whether header . cc is deleted from the mainline or the action in the release branch is ignored,
preserving header . cc in the mainline.

m A developerimplements RCS keywords in source files in a development branch, and changes
their Helix Core filetype from text to text+k. The release manager wants to integrate new
features from the development branch to the mainline, but does not want to enable keyword
expansion in the mainline. During resolve, the release manager can choose to ignore the filetype
change.

» Thefile header. ccis branched frommain to rel. Subsequently, it's renamed to
headerx. cc in main, and moved in the release branch to the headers subfolder.

Following are simple cases describing how you can resolve non-content changes to related files. After a
source file is branched to a target file, changes are made as describe below, then you integrate the
source to the target. To choose the outcome, you specify the resolve options at (“Accept Theirs”) or ay
(“Accept Yours”) as follows:

m The source is edited and target is deleted: the at option re-adds the source in the target
branch. The ay option causes the file to remain deleted in the target branch.

m The source is deleted and the target is edited: the at option causes the file to be deleted in
the target branch. The ay option retains the edited content in the target branch.

m The target file was moved after being branched: the at option moves the target file to the
source file name and location. The Qy option retains the target file name and location.

m The filetype of the source file was changed after it was branched: the at option propagates
the change to the target. The ay option leaves the filetype of the target unchanged. If the differing
filetypes do not conflict, you have the option of combining them.

99

Resolve command-line options

m Files have been moved or renamed in conflicting ways: you are prompted to choose a path
and filename. Example:

Resolving move to //Acme/rel/headerx.cc
Filename resolve:

at: //Acme/rel/headerx.cc

ay: //Acme/rel/headers/header.cc

am: //Acme/rel/headers/headerx.cc

By default, the p4 resolve command resolves all types of change, content and non-content. To
constrain the type of actions that you want to resolve, specify the —A option as follows:

Option What is Resolved

-Aa Resolve attributes set by p4 attribute.

-Ab Integrations where the source is edited and the target is deleted.
-AC Resolve file content changes as well as actions.

-Ad Integrations where the source is deleted and target is edited.
-Am Renames and moves.

-At Filetype changes.

-AQ Charset changes.

To perform more than one type of resolve, combine the options (for example: ~Abd). By default,
resolving is performed file by file, interactively. To specify the same outcome for a particular action (for
example, propagate all moves), and avoid the prompting, include the desired option on the command line.
Forexample: p4 resolve -Am -at

Resolve command-line options

The p4 reso’lve options described below enable you to resolve directly instead of interactively.
When you specify one of these options inthe p4 reso’lve command, files are resolved as described
in the following table:

Option Description

-a Accept the auto-selected file.

-ay Accept yours.

-at Accept theirs. Use this option with caution, because the file revision in your client
workspace is overwritten with the head revision from the depot, and you cannot recover
your changes.

100

Resolve reporting commands

Option Description

-am Accept the recommended file revision according to the following logic:

m [f theirs is identical to base, accept yours.
m |f yours is identical to base, accept theirs.

m |f yours and theirs are different from base, and there are no conflicts between
yours and theirs, accept merge.

m Otherwise, there are conflicts between yours and theirs, so skip this file, leaving it
unresolved.

-af Accept the recommended file revision, even if conflicts remain. If this option is used, edit
the resulting file in the workspace to remove any difference markers.

-as Accept the recommended file revision according to the following logic:

m |[f theirs is identical to base, accept yours.
m If yours is identical to base, accept theirs.

m Otherwise skip this file.

Example Automatically accepting particular revisions of conflicting files

Bruno has been editing the documentation files in /doc and knows that some of them require
resolving. He types p4 sync doc/*.gu1ide, and all of these files that conflict with files in the
depot are scheduled for resolve.

He thentypes p4 resolve -amand the merge files for all scheduled resolves are generated, and
those merge files that contain no line set conflicts are written to his client workspace. He'll still need to
manually resolve any conflicting files, but the amount of work he needs to do is substantially reduced.

Resolve reporting commands

The following reporting commands are helpful when you are resolving file conflicts:

Command Meaning

p4 diff Diffs the file revision in the workspace with the last revision you synced, to
[fiTlenames] display changes you have made.

p4 diff2 Diffs two depot files. The specified files can be any two file revisions and
filel file2 different files.

When you diff depot files, Helix Core server uses its own diff program, not
the diff program configured by setting PADIFF.

101

Resolve reporting commands

Command Meaning

p4 sync -n Previews the specified sync, listing which files have conflicts and need to
[fiTenames\] be resolved.
p4 resolved Reports files that have been resolved but not yet submitted.

102

Codeline management

This chapter describes the tasks required to maintain groups of files in your depot. The following specific
issues are addressed:

m Depot directory structure and how to best organize your repository
m Moving files and file changes among stream and project directories
m |dentifying specific sets of files using either labels or changelists
This chapter focuses on maintaining a software codebase, but many of the tasks are relevant to

managing other groups of files, such as a web site. For advice about best practices, see the white papers
on the Perforce web site.

Organizing the depot

You can think of a depot as a top-level directory. Consider the following factors as you decide how to
organize your depot:

m Type of content: create depots or mainline streams according to the nature of your projects and
their relationships (for example, applications with multiple components developed on separate
schedules).

m Release requirements: within a project, create streams for each release and merge changes
between branches to control the introduction of features and bug fixes.

= Build management: use labels and changelists to control the file revisions that are built; use
client specifications and views to ensure clean build areas.

A basic and logical way to organize the depot is to create one subdirectory (stream) for each project. For
example, if your company is working on Jam, you might devote one stream to the release presently in
development, another to already-released software, and perhaps one to your corporate web site. Your
developers can modify their workspace views to map the files in their project, excluding other projects
that are not of interest. For example, if Earl maintains the web site, his workspace view might look like
this:

//3JamCode/www/dev/. .. //ear1-web-catalpa/www/development/. ..
//JamCode/www/review/... //earl-web-catalpa/www/review/...
//3JamCode/www/1ive/. .. //earl-web-catalpa/www/live/. ..

And Gale, who’s working on Jam, sets up her workspace view as:

//3Jamcode/dev/jam/... //gale-jam-oak/jam/...

You can organize according to projects or according to the purpose of a stream. For example, to organize
the depot according to projects, you can use a structure like the following:

103

Branching streams

//Acme/projectl/main/
//Acme/projectl/release 1.0/
//Acme/projectl/release 1.1/

Or, to organize the depot according to the purpose of each stream, you can use a structure like the
following:

//Acme/main/projectl/
//Acme/main/project2/
//Acme/releasel.0/projectl/
//Acme/releasel.0/project2/
//Acme/release2.0/projectl/
//Acme/release2.0/project2/

Another approach is to create one depot for each project. Choose a structure that makes branching and
merging as simple as possible, so that the history of your activities makes sense to you.

Branching streams

If you are branching from a stream that has no history, use the p4 add command to add files to it, then
use p4 copy to create the branched streams. For example, to create the mainline structure shown in
the previous section, perform the following steps:

1. Create a local folder your workspace for the mainline files; for example:
$ mkdir c:\p4clients\myworkspace\depot\main\

2. Copy the files for Project1 and Project2 to the newly created folder.

3. Add the files to the depot:
$ p4 add //Acme/main/projectl/...

$ p4 add //Acme/main/project2/...
$ p4 submit

4. Create release streams:

$ p4 copy //Acme/main/projectl/...
//Acme/releasel.0/projectl/...

$ p4 copy //Acme/main/project2/...
//Acme/releasel.0/project2/...

$ p4 submit

104

A shortcut: p4 populate

Now you can use the p4 copy and p4 merge commands to propagate changes between main and
release streams. (You can also seed a stream from another stream using the p4 integrate
command, if there is a historical relationship between the source and target that you need to preserve.)

A shortcut: p4 populate

If a target stream is completely empty (no files present, not even deleted files), Helix Core offers a
command that automates the process of copying the files from an existing source stream submitting the
associated changelist.

For example, instead of populating a releasel . 0 branch with the following two commands:

$ p4 copy //Acme/main/projectl/... //Acme/releasel.O0/projectl/...
$ p4 submit

you can use the p4 populate command to populate the stream:

$ p4 populate //Acme/main/projectl/...
//Acme/releasel.0/projectl/...

Branching streams

Branching is a method of maintaining the relationship between sets of related files. Branches can evolve
separately from their ancestors and descendants, and you can propagate (merge) changes from one
branch to another as desired.

To create a stream, use the p4 merge command. The p4 merge command is also used to
propagate changes between existing sets of files. For details about merging changes, refer to "Merge
changes" on page 107.

When to branch

Create a branch when two sets of files have different submission policies or need to evolve separately.
For example:

m Problem : the development group wants to submit code to the depot whenever their code changes,
regardless of whether it compiles, but the release engineers don’t want code to be submitted until
it’s been debugged, verified, and approved.

Solution: create a release branch by branching the development codeline. When the development
codeline is ready, it is merged into the release codeline. Patches and bug fixes are made in the
release code and merged back into the development code.

= Problem: a company is writing a driver for a new multi-platform printer. The UNIX device driveris
done and they are beginning work on an OS X driver, using the UNIX code as their starting point.

Solution: create an OS X branch from the existing UNIX code. These two codelines can evolve
separately. If bugs are found in one codeline, fixes can be merged to the other.

105

Branching streams

One basic strategy is to develop code in a mainline stream and create streams for releases. Make
release-specific bug fixes in the release streams and, if required, merge them back into the mainline
stream.

Branching streams

To branch a stream, use the p4 branch command. When you branch a stream, Helix Core records
the relationships between the branched files and their ancestors.

You can create branches using file specifications or branch specifications. For simple branches, use file
specifications. For branches that are based on complex sets of files or to ensure that you have a record of
the way you defined the branch, use branch specifications. Branch specifications can also be used in
subsequent integrations. Branch specifications also can serve as a record of codeline policy.

Using branch specifications

To map a set of files from source to target, you can create a branch mapping and use it as an argument
when you issue the p4 integrate command. To create a branch mapping, issue the p4 branch
branchname command and specify the desired mapping in the Vi ew: field, with source files on the
left and target files on the right. Make sure that the target files and directories are in your client view.
Creating or altering a branch mapping has no effect on any files in the depot or client workspace. The
branch mapping merely maps source files to target files.

To use the branch mapping to create a branch, issue the p4 integrate -b branchname
command; then use p4 submi t to submit the target files to the depot.

Branch specifications can contain multiple mappings and exclusionary mappings, just as client views
can. For example, the following branch mapping branches the Jam 1.0 source code, excluding test
scripts, from the main codeline:

Branch: jamgraph-1.0-dev2release

View:

//depot/dev/main/jamgraph/. .. //depot/release/jamgraph/1.0/. ..

-//depot/dev/main/jamgraph/test/. ..
//depot/release/jamgraph/1.0/test/...

//depot/dev/main/bin/glut32.d11
//depot/release/jamgraph/1.0/bin/glut32.d11

To create a branch using the preceding branch mapping, issue the following command:

$ p4 integrate -b jamgraph-1.0-dev2release
anduse p4 submi t to submit the changes.

To delete a branch mapping, issue the p4 branch -d branchname command. Deleting a branch
mapping has no effect on existing files or branches.

106

Merge changes

As with workspace views, if a filename or path in a branch view contains spaces, make sure to quote the
path:

//depot/dev/main/jamgraph/... "//depot/release/Jamgraph 1.0/..."

Merge changes

After you create branches, you might need to propagate changes between them. For example, if you fix a
bug in a release branch, you probably want to incorporate the fix back into your main codeline. To
propagate selected changes between branched files, you use the p4 merge and p4 resolve
commands, as follows:

1. Issuethe p4 merge command to schedule the files for resolve.
2. Issuethe p4 resolve command to propagate changes from the source files to the target files.

To propagate individual changes, edit the merge file or use a merge program. The changes are
made to the target files in the client workspace.

3. Submit the changelist containing the resolved files.

Example Propagating changes between branched files
Bruno has fixed a bug in the release 2.2 branch of the Jam project and needs to integrate it back to the

main codeline. From his home directory, Bruno types the following:
$ p4 merge //JamCode/release/jam/2.2/src/Jambase
//JamCode/dev/jam/Jambase

He sees the following message:

//3JamCode/dev/jam/Jambase#134 - merge from
////3amCode/release/jam/2.2/src/Jambase#9

The file has been scheduled for resolve. He types p4 resolve, and the standard merge dialog
appears on his screen.

//3JamCode/dev/jam/Jambase - merging depot/release/jam/2.2/src/Jambase#9
Diff chunks: 0 yours + 1 theirs + 0 both + 0 conflicting
Accept(a) Edit(e) Diff(d) Merge (m) Skip(s) Help(?) [at]:

He resolves the conflict. When he’s done, the result file overwrites the file in his workspace. The
changelist containing the file must be submitted to the depot.

Torunthe p4 merge orp4 copy commands, you must have Helix Corewr1i te permission on the
target files, and read access on the source files. (See the Helix Versioning Engine Administrator
Guide: Fundamentals for information on Helix Core permissions.)

By default, a file that has been newly created in a client workspace by p4 merge cannot be edited
before being submitted. To edit a newly merged file before submission, resolve it, then issue the p4
edi t command.

107

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Merging between unrelated files

If the range of revisions being merged includes deleted revisions (for example, a file was deleted from the
depot, then re-added), you can specify how deleted revisions are merged using the =D option. For
details, refer to the P4 Command Reference.

Merging between unrelated files

If the target file was not branched from the source, there is no base (common ancestor) revision, and
Helix Core uses the first (most recently added) revision of the source file as its base revision. This
operation is referred to as a baseless merge.

Merging specific file revisions

By default, the p4 merge command merges all the revisions following the last-merged source revision
into the target. To avoid having to manually delete unwanted revisions from the merge file while editing,
you can specify a range of revisions to be merged. The base file is the revision with the most edits in
common.

Example Merging specific file revisions

Bruno has made two bug fixes to //JamCode/dev/jam/scan. c in the development stream,
and Earl wants to merge the change into the release 1.0 branch. Although scan . C has gone through
several revisions since the fixes were submitted, Earl knows that the bug fixes he wants were made to
the 30th revision of scan. C. He types:

$ p4 integrate -b jamgraph-1.0-dev2release
depot/release/jam/1.0/scan.c#30, 30

The target file (//depot/release/jam/1.0/scan. c)is given as an argument, but the file
revisions are applied to the source. When Earl runs p4 resolve, only the 30th revision of Bruno’s
file is scheduled for resolve. That is, Earl sees only the changes that Bruno made to scan. C at
revision 30.

Re-merging and re-resolving files

After a revision of a source file has been merged into a target, that revision is skipped in subsequent
merges to the same target. To force the merging of already-merged files, specify the = f option when you
issue the p4 merge command.

A target that has been resolved but not submitted can be resolved again by specifying the - f option to
p4 resolve. When you re-resolve afile, yours is the new client file, the result of the original resolve.

Reporting branches and merges

The reporting commands below provide useful information about the status of files being branched and
merged. Note the use of the preview option (=n) for reporting purposes.

108

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Reporting branches and merges

To display this information Use this command

Preview of the results of an integration p4 integrate -n
[filepatterns]

Files that are scheduled for resolve p4 resolve -n
[filepatterns]

Files that have been resolved but not yet submitted. p4 resolved

List of branch specifications p4 branches

The integration history of the specified files. p4 integrated
filepatterns

The revision histories of the specified files, including the integration p4 filelog -i

histories of files from which the specified files were branched. [Ffilepatterns]

109

Less common tasks

This chapter discusses less common tasks.

Work offline

The preferred method of working offline (without access to the Helix Core server) is to use DVCS
(distributed versioning) features. For details, refer to Using Helix Core for Distributed Versioning.

If you work offline, you must manually reconcile your work with the Helix Core service when you regain
access toit. The following method for working detached assumes that you work on files in your
workspace or update the workspace with your additions, changes, and deletions before you update the
depot:

To work offline:

1. Work on files without issuing p4 commands. Instead, use operating system commands to
change the permissions on files.

2. Afterthe network connection is re-established, use p4 statusorp4 reconcile tofindall
files in your workspace that have changed.

3. Submit the resulting changelist(s).

To detect changed files, issue the p4 status orp4 reconcile commands. The commands
perform essentially the same function, but differ in their default behavior and output format.

Command Description

p4 When called without arguments, p4 reconci1e opens the files in a changelist.
reconcile Topreview an operation, you must either use the —n option with p4
reconcile, orusethe p4 status command.

p4 status When called without arguments, p4 status only previews the results of the
workspace reconciliation. You must use either p4 status -A (orsome
combination of the —&, —a, or —d options) to actually open the files in a changelist.

Ignoring groups of files when adding

Sometimes development processes result in the creation of extraneous content that should not be
submitted to the depot. Compilers produce object files and executables during development, text editors
and word processors produce backup files, and you may have your own personal conventions for notes
on work in progress.

To ignore files (or groups of files) when adding, create a file with a list of file specifications you wish to
ignore, and set the P4IGNORE environment variable to point to this file.

110

http://www.perforce.com/perforce/doc.current/manuals/dvcs/index.html

Ignoring groups of files when adding

When you add files, the full local path and parent directories of any file to be added are searched for
P4IGNORE files. If any PAIGNORE files exist, their rules are added to a list, with greater precedence
given to P4IGNORE rules closest to the file being added.

The syntax for P4IGNORE files is not the same as Helix Core syntax. Instead, it is similar to that used
by other versioning systems: files are specified in local syntax, a # character at the beginning of a line
denotes a comment, a ! character at the beginning of a line excludes the file specification, and the *
wildcard matches substrings. The Helix Core wildcard of . . . is not permitted.

Character Meaning in IEEEENERE files

& Matches anything except slashes. Matches only within a single directory. Case
sensitivity depends on your client platform.

! Exclude the file specification from consideration.

Comment character; this line is ignored.

Example Ignoring groups of files when adding

Bruno unit tests his code before submitting it to the depot and does not want to accidentally add any
object files or generated executables when reconciling his workspace.

Bruno first sets P4 IGNORE to point to the correct file:

$ export P4IGNORE=.p4ignore

He then creates the following file and stores it as . p41ignore in the root of his workspace:

Ignore .p4dignore files

.p4ignore

Ignore object files, shared libraries, executables
*.d11

*.50

*.exe

*.0

Ignore all text files except readme file
“Ltxt

Ireadme. txt

The next time he runs a command (such as p4 add *.*), the rules are applied across the entire
workspace.

To override (or ignore) the P4AIGNORE file, use the - I option with the p4 add, p4 reconcile,or
p4 status commands.

111

Locking files

Reporting ignored files

The p4 1ignores command reports the ignore mappings in effect. Specifically, it displays the ignore
mappings computed from the rules in the P4IGNORE file.

If you add the =1 option, it reports whether a particular file or set of files will be ignored.

For more information on p4 1ignores, see the p4 ignores page in the P4 Command Reference.

Locking files

After you open a file, you can lock it to prevent other users from submitting it before you do. The benefit of
locking a file is that conflicts are prevented, but when you lock a file, you might prevent other team
members from proceeding with their work on that file.

Preventing multiple resolves by locking files

Without file locking, there is no guarantee that the resolve process ever ends. The following scenario
demonstrates the problem:

Bruno opens file for edit.
Gale opens the same file in her client for edit.
Bruno and Gale both edit their client workspace versions of the file.

Bruno submits a changelist containing that file, and his submit succeeds.

a M . Dd =

Gale submits a changelist with her version of the file; her submit fails because of file conflicts with
the new depot’s file.

S

Gale starts aresolve.
Bruno edits and submits a new version of the same file.

8. Gale finishes the resolve and attempts to submit; the submit fails and must now be merged with
Bruno’s latest file.

...and so on.
To prevent such problems, you can lock files, as follows.

Before scheduling a resolve, lock the file.
Sync the file (to schedule a resolve).
Resolve the file.

Submit the file.

a H» . Dd =

Helix Core automatically unlocks the file after successful changelist submission.

To list open locked files on UNIX, issue the following command:

$ p4 opened | grep "*locked*"

112

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Preventing multiple checkouts

Preventing multiple checkouts

To ensure that only one user at a time can work on the file, use the +1 (exclusive-open) file type modifier.
For example:

$ p4 reopen -t binary+l1 file

Although exclusive locking prevents concurrent development, for some file types (binary files), merging
and resolving are not meaningful, so you can prevent conflicts by preventing multiple users from working
on the file simultaneously.

Your Helix Core administrator can use the p4 typemap command to ensure that all files of a specified
type (for instance, //depot/. . ./*.qgif forall . gif files) can only be opened by one user at a
time. See the P4 Command Reference.

The difference between p4 1ock and +1 is that p4 Tock allows anyone to open afile for edit, but
only the person who locked the file can submit it. By contrast, afile of type +1 prevents more than one
user from opening the file.

113

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

For security purposes, your Helix Core administrator can configure the Helix Core server to require SSL-
encrypted connections, user passwords, and to limit the length of time for which your login ticket is valid.
The following sections provide details:

SSL-encrypted connections

If your installation requires SSL, make sure your P4PORT is of the form ss'1: hostname: port. If
you attempt to communicate in plaintext with an SSL-enabled Helix Core server, the following error
message is displayed:

Failed client connect, server using SSL.

Client must add SSL protocol prefix to P4PORT.

Set P4PORT to ss'1: hostname: port, and attempt to reconnect to the server.

The first time you establish an encrypted connection with an SSL-enabled server, you are prompted to
verify the server’s fingerprint:

The authenticity of '10.0.0.2:1818' can't be established,

this may be your first attempt to connect to this P4PORT.

The fingerprint for the key sent to your client is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2

Your administrator can confirm whether the displayed fingerprint is correct or not. If (and only if) the
fingerprint is correct, use the p4 trust command to add it to your P4TRUST file. If PATRUST is
unset, this file is assumed to be . p4trust in your home directory:

$ p4 trust

The fingerprint of the server of your P4PORT setting
'ss1:example.com:1818"' (10.0.0.2:1818) 1is not known.

That fingerprint is
CA:BE:5B:77:14:1B:2E:97:F0:5F:31:6E:33:6F:0E:1A:E9:DA:EF:E2
Are you sure you want to establish trust (yes/no)?

Added trust for P4PORT 'ssl:example.com:1818' (10.0.0.2:1818)

If the fingerprint is accurate, enter yes to trust this server. You can also install a fingerprint directly into
your trust file from the command line. Run:

$ p4 trust -p ssl:hostname:port -i fingerprint

where ss'1: hostname: port corresponds to your P4PORT setting, and fingerprint corresponds to a
fingerprint that your administrator has verified.

114

Connecting to services that require plaintext connections

From this point forward, any SSL connectionto ss1:example.com:1818 is trusted, so long as the
server at example . com: 1818 continues to report a fingerprint that matches the one recorded in your
P4TRUST file.

If the Helix Core server ever reports a different fingerprint than the one that you have trusted, the
following error message is displayed:

wwwwnwt WARNING P4PORT IDENTIFICATION HAS CHANGED! *#wwswws

It is possible that someone is intercepting your connection

to the Perforce P4PORT '10.0.50.39:1667'

If this is not a scheduled key change, then you should contact

your Perforce administrator.

The fingerprint for the mismatched key sent to your client is
18:FC:4F:C3:2E:FA:7A:AE:BC:74:58:2F:FC:F5:87:7C:BE:C0:2D:B5

To allow connection use the 'p4 trust' command.

This error message indicates that the server’s fingerprint has changed from one that you stored in your
P4TRUST file and indicates that the server's SSL credentials have changed.

Although the change to the fingerprint may be legitimate (for example, your administrator controls the
length of time for which your server's SSL credentials remain valid, and your server’s credentials may
have expired), it can also indicate the presence of a security risk.

Warning
If you see this error message, and your Helix Core administrator has not notified you of a change to

your server's key and certificate pair, it is imperative that you independently verify the accuracy of the
reported fingerprint.

Unless you can independently confirm the veracity of the new fingerprint (by some out-of-band means
ranging from the company’s intranet site, or by personally contacting your administrator), do not trust
the changed fingerprint.

Connecting to services that require plaintext connections

If your Helix Core installation requires plaintext (in order to support older Helix Core applications), set
P4PORT to tcp: hostname: port. If you attempt to use SSL to connect to a service that expects
plaintext connections, the following error message is displayed:

Perforce client error:
SSL connect to ssl:_host_:_port_ failed (Connection reset by peer).
Remove SSL protocol prefix from P4PORT.

Set P4APORT to tcp: hostname: port (or, if you are using applications at release 2011.1 or earlier,
set P4PORT to hostname: port), and attempt to reconnect to the service.

115

Passwords

Passwords

Depending on the security level at which your Helix Core installation is running, you might need to log in
to Helix Core before you can run Helix Core commands. Without passwords, any user can assume the
identity of any other Helix Core user by setting P4USER to a different user name or specifying the —u
option when you issue a p4 command. To improve security, use passwords.

Setting passwords

To create a password for your Helix Core user, issue the p4 passwd command.

Passwords may be up to 1,024 characters in length. Your system administrator can configure Helix Core
to require “strong” passwords, the minimum length of a password, and if you have been assigned a
default password, your administrator can further require that you change your password before you first
use Helix Core.

By default, the Helix Core server defines a password as strong if it is at least eight characters long and
contains at least two of the following:

m Uppercase letters
m Lowercase letters

m Non-alphabetic characters

In an environment with a minimum password length of eight characters, for example, alb2c3d4,
A1B2C3D4, aBcDeFgH would be considered strong passwords.

To reset or remove a password (without knowing the password), Helix Core superuser privilege is
required. If you need to have your password reset, contact your Helix Core administrator. See the Helix
Versioning Engine Administrator Guide: Fundamentals for details.

Using your password

If your Helix Core user has a password set, you must use it when you issue p4 commands. To use the
password, you can:

» Loginto Helix Core by issuing the p4 10g1n command, before issuing other commands.
= Set P4PASSWD to your password, either in the environment or in a config file.

» Specify the =P password option when you issue p4 commands (for instance, p4 -P
mypassword submit).

= Windows or OS X: store your password by using the p4 set -s command. Not advised for
sites where security is high. Helix Core administrators can disable this feature.

116

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Connection time limits

Connection time limits

Your Helix Core administrator can configure the Helix Core server to enforce time limits for users. Helix
Core uses ticket-based authentication to enforce time limits. Because ticket-based authentication does
not rely on environment variables or command-line options, it is more secure than password-based
authentication.

Tickets are stored in a file in your home directory. After you have logged in, your ticket is valid for a
limited period of time (by default, 12 hours).

Logging in and logging out

If time limits are in effect at your site, you must issue the p4 10g1n command to obtain a ticket. Enter
your password when prompted. If you log in successfully, a ticket is created for you in the ticket file in
your home directory, and you are not prompted to log in again until either your ticket expires or you log out
by issuing the p4 Togout command.

To see how much time remains before your login expires, issue the following command:

$ p4 login -s

If your ticket is valid, the length of time remaining is displayed. To extend a ticket's lifespan, use p4
Tog1 n while already logged in. Your ticket’s lifespan is extended by 1/3 of its initial timeout setting,
subject to a maximum of your ticket’s initial timeout setting.

Tolog out of Helix Core, issue the following command:

$ p4 Togout

Working on multiple computers

By default, your ticket is valid only for the IP address of the computer from which you logged in. If you
use Helix Core from multiple computers that share a home directory (typical in many UNIX
environments), log in with:

$ p4 login -a

Usingp4 Tlogin -a creates aticket in your home directory that is valid from all IP addresses,
enabling you to remain logged into Helix Core from more than one computer.

To log out from all computers simultaneously, issue the following command:
$ p4 logout -a

For more information about the p4 Toginand p4 1ogout commands, see the P4 Command
Reference.

117

http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

A Helix Core label is a set of tagged file revisions. For example, you might want to tag the file revisions
that compose a particular release with the label release2.0. 1. You can use labels to:

m Keep track of all the file revisions contained in a particular release of software.

m Distribute a particular set of file revisions to other users. For example, a standard configuration.
m Populate a clean build workspace.

m Specify a set of file revisions to be branched for development purposes.

m Sync the revisions as a group to a client workspace.

Labels and changelist numbers differ:

Label Changelist

A label can refer to any set of file A changelist number refers to the contents of all the files
revisions. in the depot at the time the changelist was submitted.
If you need to refer to a group of file If there is a point in time at which the files are consistent

revisions from different points in time, use | for your purposes, use a changelist number.
a label.

You can change the contents of a You cannot change the contents of a submitted
label. changelist.

You can assign your own names to Helix server assigns each changelist number.
labels.

There are two types of labels: static and automatic. See "Static versus automatic labels" on page 121 for
adiscussion of their differences.

Tagging files with a label

To tag a set of file revisions (in addition to any revisions that have already been tagged), use p4 tag,
specifying a label name and the desired file revisions.

For example, to tag the head revisions of files that reside under
//3amCode/release/jam/2.1/src/ with the label jam-2.1. 0, issue the following
command:

$ p4 tag -1 jam-2.1.0 //JamCode/release/jam/2.1/src/...

To tag revisions other than the head revision, specify a changelist number in the file pattern:

$ p4 tag -1 jam-2.1.0 //JamCode/release/jam/2.1/src/...@1234

118

Untagging files

Only one revision of a given file can be tagged with a given label, but the same file revision can be tagged
by multiple labels.

Untagging files
You can untag revisions with:

$ p4 tag -d -1 Tabelname filepattern

This command removes the association between the specified label and the file revisions tagged by it.
For example, if you have tagged all revisions under //JamCode/release/jam/2.1/src/...
with jam-2.1.0, you can untag only the header files with:

$ p4 tag -d -1 jam-2.1.0 //JamCode/release/jam/2.1/src/*.h

Previewing tagging results

You can preview the results of p4 tag withp4 tag -n. This command lists the revisions that would
be tagged, untagged, or re-tagged without actually performing the operation.

Listing files tagged by a label

To list the revisions tagged with labelname, use p4 f11es, specifying the label name as follows:

$ p4 files @labelname

All revisions tagged with labelname are listed, with their file type, change action, and changelist number.
(This command is equivalenttop4 files //...@Tabelname).

Listing labels that have been applied to files

To list all labels that have been applied to files, use the p4 labels command:

p4 labels filepattern

Using a label to specify file revisions

You can use a label name anywhere you can refer to files by revision (#1, #head), changelist number
(@7381), ordate (@2017/08/29).

If you omit file arguments when you issue the p4 sync @7abeTname command, all files in the
workspace view that are tagged by the label are synced to the revision specified in the label. All files in
the workspace that do not have revisions tagged by the label are deleted from the workspace. Open files
or files not under Helix Core control are unaffected. This command is equivalent to p4 sync

//...@labelname

119

Deleting labels

If you specify file arguments when you issue the p4 Sync command (p4 sync
files@labeTlname), files that are in your workspace and tagged by the label are synced to the
tagged revision.

Example Retrieving files tagged by a label into a client workspace

To retrieve the files tagged by Bruno’'s jam-2 . 1. 0 label into his client workspace, Bruno issues the
following command:

$ p4 sync @ jam-2.1.0

and sees:

//3JamCode/dev/jam/Build.com#5 - updating c:\bruno_ws\dev\jam\Build.com
//JamCode/dev/jam/command.c#5 - updating c:\bruno_ws\dev\jam\command.c
//JamCode/dev/jam/command.h#3 - added as c:\bruno_ws\dev\jam\command.h
//3amCode/dev/jam/compile.c#12 - updating c:\bruno_ws\dev\jam\compile.c
//3JamCode/dev/jam/compile.h#2 - updating c:\bruno_ws\dev\jam\compile.h

Deleting labels

To delete a label, use the following command:

$ p4 label -d Tabelname

Note
Only one revision of a given file can be tagged with a given label, but the same file revision can be

tagged by multiple labels.

Creating a label for future use

To create a label without tagging any file revisions, issue the p4 1abel 7Tabelname command.
This command displays a form in which you describe and specify the label. After you have created a
label, you can use p4 tagorp4 Tabelsync toapply the label to file revisions.

Label names cannot be the same as client workspace, branch, or depot names.

For example, to create jam-2 . 1.0, issue the following command:

$ p4 label jam-2.1.0

The following form is displayed:

Label: jam-2.1.0
Update: 2011/03/07 13:07:39

120

Restricting files that can be tagged

Access: 2011/03/07 13:13:35
owner: bruno
Description:
Created by bruno.
Options: unlocked noautoreload
View:
//depot/. ..
Enter a description for the label and save the form. (You do not need to change the Vi ew: field.)

After you create the label, you are able to use the p4 tag and p4 labelsync commands to apply
the label to file revisions.

Restricting files that can be tagged

The View: fieldinthe p4 Tabel form limits the files that can be tagged with a label. The default label
view includes the entire depot (//depot/. . .). To prevent yourself from inadvertently tagging every
file in your depot, set the label’s Vi ew: field to the files and directories to be taggable, using depot
syntax.

Example Using a label view to control which files can be tagged

Bruno wants to tag the revisions of source code in the release 2.1 branch, which he knows can be
successfully compiled. He types p4 1abel jam-2.1.0 and uses the label's View: field to
restrict the scope of the label as follows:

Label: jam-2.1.0
Update: 2018/03/27 13:07:39

Access: 2018/03/27 13:13:35
owner: bruno

Description:

Created by bruno.
Options: unlocked noautoreload
View:

//JamCode/release/jam/2.1/src/. ..

This label can tag only files in the release 2.1 source code directory.

Static versus automatic labels

There are two types of labels:

121

Static labels

static automatic
Use static labels with the p4 tagand p4 Use automatic labels to specify files at
Tabelsync commands to archive the certain revisions without having to issue the
currently synced file revisions. p4 labelsync command.

Static labels

You can use static labels to archive the state of your client workspace (meaning the currently synced file
revisions) by issuing the p4 Tabelsync command. The label you specify must have the same view
as your client workspace.

For example, to record the configuration of your current client workspace using the existingwWs_
confiig label, use the following command:
$ p4 labelsync -1 ws_config

All file revisions that are synced to your current workspace and visible through both the workspace view
and the label view (if any) are tagged with the ws_conf1 g label. Files that were previously tagged with
ws_confi g, then subsequently removed from your workspace (p4 sync #none), are untagged.

To sync the files tagged by the ws_conf1i g label (thereby recreating the workspace configuration):

$ p4 sync @ws_config

Note
You can control how static labels are stored using the autoreload or noautoreload options:

» autoreload stores the labels in the unload depot. This storage option can improve
performance on sites that make heavy use of labels.

s noautoreload stores the labels inthe db . 1abeT table.

These storage options do not affect automatic labels.

p4 tag allows you to specify any revision of any file, and add that revision to an existing label or create
anew label if the label does not exist.

p4 Tlabelsync allows you to use the named label to tag the current contents of the client.

When syncing static labels, the performance is the same regardless of how they are created.

Automatic labels

Automatic labels refer to the revisions provided in the View: and Revision: fields of the label
specification. To create an automatic label, fill in the Revision: field of the p4 TabeT spec witha
revision specifier. When you sync a workspace to an automatic label, the contents of the Revision:
field are applied to every file in the V1 ew: field.

122

Automatic labels

Example Using an automatic label as an alias for a changelist number

Bruno is running a nightly build process, and has successfully built a product as of changelist 1234.
Rather than having to remember the specific changelist for every night’s build, he types p4 Tabel
nightly20111201 and uses the label’s Revision: field to automatically tag all files as of
changelist 1234 with the night1y20111201 label:

Label: nightly20111201
owner: bruno
Description:

Nightly build process.
Options: unlocked noautoreload
View:

//depot/. ..

Revision:

@1234

The advantage to this approach is that it is highly amenable to scripting, takes up very little space in
the label table, and provides a way to easily refer to a nightly build without remembering which
changelist number was associated with the night’s build process.

Example Referring specifically to the set of files submitted in a single changelist

A bug was fixed by means of changelist 1238, and requires a patch label that refers to only those files
associated with the fix. Bruno types p4 1abel patch20111201 and uses the label’s
Revision: field to automatically tag only those files submitted in changelist 1238 with the
patch20111201 label:

Label: patch20111201
owner: bruno
Description:
Patch to 2011/12/01 nightly build.
Options: unlocked noautoreload
View:
//depot/. ..
Revision:
@1238,1238

This automatic label refers only to those files submitted in changelist 1238.

123

Automatic labels: superior performance

Example Referring to the first revision of every file over multiple changelists

You can use revision specifiers other than changelist specifiers. In this example, Bruno specifies to
the first revision (#1) of every file in a branch. Depending on how the branch was populated, these files
could have been created through multiple changelists over a long period of time:

Label: first2.2

owner: bruno

Description:

The first revision in the 2.2 branch
Options: unlocked noautoreload
View:

//JamCode/release/jam/2.2/src/...
Revision:
ll#lll

Because Helix Core forms use the # character as a comment indicator, Bruno has placed quotation
marks around the # to ensure that it is parsed as a revision specifier.

Automatic labels: superior performance

Automatic labels perform much better than static labels when synced because they are aliases for
changelists.

m Static labels must store information for every file revision associated with the label. Sites using a
large number of static labels with a large number of revisions have a very large db. Tabe1 table.

= Automatic labels using a changelist revision do not require storing each file revision, which greatly
reduces the amount of data that must be stored and scanned when referencing the label.

When using automatic labels containing both View: and Revision: fields, use of the automatic
labels to represent a revision ranges might not produce the same results when using the equivalent
changelist revision range. You can make an automatic label behave exactly like its revision specifier by
leaving the Vi ew: field blank. Without this field, the automatic label is considered a pure alias and is
processed exactly like the revision specification.

Tip
A changelist number can apply to more files than the number of files submitted by the changelist.

For example, putting @1234 in the Revision: fieldand //depot/. . . inthe View: fieldof a
label spec creates a label that is an alias for changelist 1234 for all files within depot at the time
the change was submitted, even if only one file revision was submitted with the change.

Changelist numbers increment in chronological order, and automatic labels can be used as fixed
points for any file or set of files in your depot.

124

Preventing inadvertent tagging and untagging of ~ files

Preventing inadvertent tagging and untagging of files

To tag the files that are in your client workspace and label view (if set) and untag all other files, issue the
p4 Tabelsync command with no arguments. To prevent the inadvertent tagging and untagging of
files, issuethe p4 label Tabelname command and lock the label by setting the Options: field
of the label form to Tocked. To prevent other users from unlocking the label, set the Owner : field. For
details about Helix Core privileges, see the Helix Versioning Engine Administrator Guide: Fundamentals.

Using labels on edge servers

You can user the Helix Versioning Engine in a distributed, multi-site environment using central and edge
servers. With a distributed Helix Core server architecture, users typically connect to an edge server and
execute commands just as they would with a classic Helix Core server. For more information, see Helix
Versioning Engine Administrator Guide: Multi-Site Deployment.

When connected to an edge server, the commands p4 label, p4 labelsync, and p4 tag operate on labels
local to the edge server. Global labels can be manipulated by using the —g option. For details, see the P4
Command Reference.

Note
Using the -g option with p4 Tabelsync only works with a global client. To manipulate a global
label, use p4 tag.

Using labels with Git

If you are using Git with Helix server, and you want to support build systems that need to build from
multiple repos not all of which are at the same branch, tag, or commit (SHA), create a label specification
inwhichthe Revision: fieldis set to "#head":
A Perforce Label Specification.
Label: mylabeT
Update: 2017/08/08 15:23:08
Access: 2012/01/23 16:16:17
owner: bruno
Description:
Created by bruno.
Options: unlocked noautoreload
Revision: "#head"
View:
//repo/linux/projects/...@Gmaster

125

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4dist/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html
http://www.perforce.com/perforce/doc.current/manuals/cmdref/index.html

Using labels with Git

//repo/linux/projects/drivers/...G0dev-1
//repo/linux/projects/forms/...@4759819D1EB8B706E71D54AD168AA

For more information about using Git with Helix server, see Helix4Git Administration.

126

https://www.perforce.com/perforce/doc.current/manuals/helix-for-git/

A job is a numbered (or named) work request managed by Helix Core. Helix Core jobs enable you to track
the status of bugs and enhancement requests and associate them with changelists that implement fixes
and enhancements. You can search for jobs based on the contents of fields, the date the job was entered
or last modified, and many other criteria.

Your Helix Core administrator can customize the job specification for your site’s requirements. For
details on modifying the job specification, see the Helix Versioning Engine Administrator
Guide: Fundamentals.

To integrate Helix Core with your in-house defect tracking system, or to develop an integration with a
third-party defect tracking system, use PADTG, the Perforce Defect Tracking Gateway. P4ADTG is an
integrated platform that includes both a graphical configuration editor and a replication engine. For more
information, see:

http://www.perforce.com/product/components/defect_tracking_gateway

Creating, editing, and deleting a job

To create a job using Helix Core’s default job-naming scheme, issue the p4 job command. To assign
aname to a new job (or edit an existing job), issue the p4 job jobname command.

Example Creating a job

Gale discovers a problem with Jam, so she creates a job by issuing the p4 job command and
describes it as follows:

Job: job000006

Status: open

User: gale

Date: 2011/11/14 17:12:21

Description:
MAXLINE can't account for expanded cmd buffer size.

The following table describes the fields in the default job specification:

127

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html
http://www.perforce.com/product/components/defect_tracking_gateway

Searching jobs

Field Name Description Default

Job The name of the job (white space is not allowed). By Last job number +
default, Helix Core assigns job names using a numbering 1
scheme (jobnnnnnn).

Status = Open: job has not yet been fixed. open

= closed: job has been completed.
= suspended: jobis not currently being worked

on.
User The user to whom the job is assigned, usually the person Helix Core user
assigned to fix this particular problem. name of the job
creator.

Date The date the job was last modified. Updated by Helix
Core when you
save the job.

Description Describes the work being requested, for example a bug None. You must

description or request for enhancement. entera
description.

To edit existing jobs, specify the job name when you issue the p4 job command: p4 job
jobname. Enter your changes in the job form, save the form and exit.

To delete a job, issue the p4 job -d jobname command.

Searching jobs

To search Helix Core jobs, issue the p4 jobs -e jobviewcommand, where jobview specifies
search expressions described in the sections that below. For more details, issue the p4 help
jobv1ew command.

Searching job text

You can use the expression "wordl word2 ... wordN' tofind jobs that contain all of word1
through wordN in any field (excluding date fields). Use single quotes on UNIX and double quotes on
Windows.

When searching jobs, note the following restrictions:

m When you specify multiple words separated by whitespace, Helix Core searches for jobs that
contain all the words specified. To find jobs that contain any of the terms, separate the terms with
the pipe (|) character.

m Field names and text comparisons in expressions are not case-sensitive.

128

Searching specific fields

= Only alphanumeric text and punctuation can appear in an expression. To match the following
characters, which are used by Helix Core as logical operators, precede them with a backslash:

=A&| O <>.

= You cannot search for phrases, only individual words.

Example Searching jobs for specific words
Bruno wants to find all jobs that contain the words filter, file, andmailbox. He types:

$ p4 jobs -e 'filter file mailbox'

Example Finding jobs that contain any of a set of words in any field
Bruno wants to find jobs that contain any of the words filter, file ormailbox. Hetypes:

$ p4 jobs -e 'filter|file|mailbox"

You can use the * wildcard to match one or more characters. For example, the expression
fieldname=string* matches string, strings, stringbuffer, andsoon.

To search for words that contain wildcards, precede the wildcard with a backslash in the command. For
instance, to search for ¥*string (perhaps in reference to char *string), issue the following
command:

$ p4 jobs -e '*string'

Searching specific fields

To search based on the values in a specific field, specify field=value.

Example Finding jobs that contain words in specific fields
Bruno wants to find all open jobs related to filtering. He types:

$ p4 jobs -e 'Status=open User=bruno filter.c'

This command finds all jobs with a Status : of open, auser : of bruno, and the word
filter. cinany non-date field.

To find fields that do not contain a specified expression, precede it with A, which is the NOT operator.
The NOT operator A can be used only directly after an AND expression (space or &). For example, p4
jobs -e "Auser=bruno' is not valid. To get around this restriction, use the * wildcard to add a
search term before the A term; for example: p4 jobs -e 'job=* Auser=bruno’ returns all
jobs not owned by Bruno.

Example Excluding jobs that contain specified values in a field
Bruno wants to find all open jobs he does not own that involve filtering. He types:

129

Using comparison operators

$ p4 jobs -e 'status=open Auser=bruno filter'

This command displays all open jobs that Bruno does not own that contain the word ilter.

Using comparison operators

The following comparison operators are available: =, >, <, >=, <=, and A for Boolean NOT.

The behavior of these operators depends upon the type of the field in the expression. The following table
describes the field types and how they can be searched:

Field Description Notes
Type
word A single word The equality operator (=) matches the value in the
word field exactly.
The relational operators perform comparisons in
ASCII order.
text A block of text entered on the The equality operator (=) matches the job if the value
lines beneath the field name. is found anywhere in the specified field.
The relational operators are of limited use here,
because they’ll match the job if any word in the
specified field matches the provided value. For
example, if a job has a text field
ShortDescription: that contains only the
phrase gui bug, and the expression is
'ShortbDesc<filter', thejob will match the
expression, because bug<filter.
Tine Asingle line of text enteredon Same as text
the same line as the field
name.
select Oneofasetof values. For The equality operator (=) matches a job if the value in
example, job status can be the field is the specified word. Relational operators
open, suspended, or perform comparisons in ASCI| order.
closed.
date A date and optionally a time. Dates are matched chronologically. If a time is not
For example, specified, the operators =, <=, and >= match the
2011/07/15:13:21:40 wholeday.
bulk Like text, but not indexed These fields are not searchable with p4 jobs -e.

for searching.

130

Searching date fields

If you're not sure of afield’s type, issue the p4 jobspec -0 command, which displays your job
specification. The field called Fields : lists the job fields' names and data types.

Searching date fields

To search date fields, specify the date using the format yyyy/mm/ddor yyyy/mm/dd: hh: mm: ss.
If you omit time, the equality operator (=) matches the entire day.

Example Using dates within expressions
Bruno wants to view all jobs modified on July 13, 2011. He enters:

$ p4 jobs -e 'ModifiedDate=2011/07/13"

Fixing jobs
Tofix ajob, you link it to a changelist and submit the changelist. Helix Core automatically changes the
value of a job’s status field to ¢1osed when the changelist is submitted.

Jobs can be linked to changelists in one of three ways:

= By settingthe JobV1iew: field in the p4 user form to an expression that matches the job.
= Withthe p4 f1iX command.
» By editing the p4 submi t form.

You can modify job status directly by editing the job, but if you close a job manually, there’s no
association with the changelist that fixed the job. If you have altered your site’s job specification by
deleting the Status : field, jobs can still be linked to changelists, but status cannot be changed when
the changelist is submitted. (In most cases, this is not a desired form of operation.) See the chapter on
editing job specifications in the Helix Versioning Engine Administrator Guide: Fundamentals for more
details.

To remove jobs from a changelist, issue the p4 fix -d command.

Linking automatically

You can modify your Helix Core user specification to automatically attach open jobs to any changelists
you create. To set up automatic inclusion, issue the p4 user command and set the JobView: field
value to a valid expression that locates the jobs you want attached.

Example Automatically linking jobs to changelists

Bruno wants to see all open jobs that he owns in all changelists he creates. He types p4 user and
adds the JobView: field:

131

http://www.perforce.com/perforce/doc.current/manuals/p4sag/index.html

Linking manually

User: bruno

Update: 2011/06/02 13:11:57
Access: 2011/06/03 20:11:07
Jobview: user=bruno&status=open

All of Bruno’s open jobs now are automatically attached to his default changelist. When he submits
changelists, he must be sure to delete jobs that aren’t fixed by the changelist he is submitting.

Linking manually

Tolink a job to a changelist manually, issue the p4 fix -c changenum jobname command. If
the changelist has already been submitted, the value of the job’s Status: field is changed to closed.
Otherwise, the status is not changed.

Example Manually linking jobs to changelists.
You canuse p4 f1X tolink a changelist to a job owned by another user.

Sarah has just submitted a job called opti0ons-bug to Bruno, but the bug has already been fixed in
Bruno’s previously submitted changelist 18. Bruno links the job to the changelist by typing:
$ p4 fix -c 18 options-bug

Because changelist 18 has already been submitted, the job’s status is changed to closed.

Linking jobs to changelists

To link jobs to changelists when submitting or editing the changelist, enter the job names in the Jobs :
field of the changelist specification. When you submit the changelist, the job is (by default) closed.

To unlink a job from a pending changelist, edit the changelist and delete its name from the Jobs : field.
To unlink a job from a submitted changelist, issue the p4 fix -d -c changenumjobname
command.

132

Scripting and reporting

This chapter provides details about using p4 commands in scripts and for reporting purposes. For a full
description of any particu